White Paper Communicating Risk in the 21

Total Page:16

File Type:pdf, Size:1020Kb

White Paper Communicating Risk in the 21 WHITE PAPER COMMUNICATING RISK IN THE 21ST CENTURY: The Case of Nanotechnology February 2010 By David M. Berube, Ph.D. With Brenton Faber, Ph.D. Dietram A. Scheufele, Ph.D. and Christopher L. Cummings, doctoral student Grant E. Gardner, Ph.D. Kelly N. Martin, doctoral candidate Michael S. Martin, PCOST assistant Nicholas M. Temple, doctoral student Illustration by Timothy Wickham An Independent Analysis Commissioned by the NNCO Any opinions, findings and conclusions or recommendations expressed are those of the authors and do not necessarily reflect the views of the NNCO. ACKNOWLEDGEMENTS This work was supported by a supplement to grant #0809470 from the National Science Foundation, NSF 06-595, Nanotechnology Interdisciplinary Research Team (NIRT): Intuitive Toxicology and Public Engagement. Logistical and additional support was received from North Carolina State University, the College of Humanities and Social Sciences (CHASS), and the Department of Communication. We especially appreciated the support of the Communication, Rhetoric and Digital Media (CRDM) doctoral program and the Public Communication of Science and Technology Project (PCOST). We thank the efforts of Vivian Ota Wang (National Human Genome Research Institute - National Institutes of Health of the U.S. Department of Health and Human Services (NHGRI-NIH-DHHS) and NIH Agency Representative to the National Science and Technology Council (NSTC) and the National Nanotechnology Coordination Office (NNCO), and Stephen Zehr (National Science Foundation- Science, Technology, and Society (NSF-STS) both of whom are associated with the Nanotechnology Public Engagement and Communications Work Group (NPEC) of the NSTC as Chair and Working Group Member respectively. In addition, two colleagues read through the paper and offered their insights: A. Celeste Farr and William Kinsella, Professors in the Department of Communication, NCSU. Two CRDM doctoral students, Jason Kalin and Daniel Sutko served as copy editors as well. All authors of this White Paper are members of PCOST. 2 TABLE OF CONTENTS Executive Summary. 8 1. Introduction . 13 2. Societal issues. 18 3. Sources and media . 23 3.1. Sources, amplification, and attenuation . 23 3.2. Social amplification and attenuation. 24 3.2.1. Amplification and media: New technologies amplify risk . 26 3.2.2. Industry, government, non-industrial scientists and non-governmental organizations . 27 3.2.3. Mediation . 29 3.2.4. Opinion leaders: Amplifiers and attenuators . 30 3.3. The Role of traditional media: Priming, framing, and agenda setting. 31 3.3.1. Setting public agenda. 32 3.3.2. Framing . 34 3.3.3. Different effects on different publics: The role of perceptual filters and values . 36 3.4. Digital media: Participatory differences from traditional media . 37 3.4.1. Digital media and amplification. 38 3.4.2. Digital media and science . 42 3.4.3. Future of digital media . 42 3.5. Information overload . 43 3.6. Summary and conclusions . 44 3 4. Risk perception . 46 4.1. From risk assessment to risk perception . 46 4.2. Risk as a socio-psychological construct . 47 4.3. The risk perception gap between experts and inexperts . 48 4.3.1. Defining the expert sphere . 49 4.3.2. Defining the public sphere . 50 4.3.3. The “Big Sort” effect . 51 4.3.4. Interactions between expert and inexpert perceptions . 51 4.4. Rationality in risk judgments and decision making . 52 4.4.1. Heuristics and biases . 53 4.5. Heuristics and nanotechnology risk perception . 55 4.5.1. Affect heuristic . 55 4.5.2. Anchoring and adjustment heuristics . 55 4.5.3. Availability heuristic . 56 4.6. Biases and nanotechnology risk perception . 57 4.7. Challenges to nanotechnology risk communication . 58 4.7.1. Public knowledge of nanotechnology . 59 4.7.2. Experts and nanotechnology . 60 4.8. Summary and conclusions . 60 5. Trust, fear, and belief . 62 5.1. Trust based arguments . 62 5.1.1. Proclivity to trust. 63 5.1.2. Types of trust . 64 5.1.3. How the public determines trust . 66 5.1.4. Building trust . 67 5.1.5. Whom the public trusts . 69 4 5.2. Fear-based arguments . 71 5.2.1. Dread . 72 5.2.2. From social cascades to moral panics . 72 5.2.3. Vet and respond . 73 5.3. Belief based arguments . 73 5.3.1. Nanobiotechnology and synthetic biology: Horizon issues . 74 5.3.2. Visions of the nanobiotechnology future . 75 5.4. Summary and conclusions . 75 6. Public engagement . 77 6.1. Stakeholders . 77 6.2. Classifying engagement models . 78 6.2.1. Deliberative polling . 79 6.2.2. Consensus Conferences . 79 6.2.3. Citizen Technology Forums . 81 6.2.4. Citizen juries . 81 6.2.5. Science cafes . 82 6.2.6. Citizen school . 83 6.2.7. Assessing the models . 83 6.3. Public - Private interface . 85 6.3.1. Defining streams . 85 6.3.2. Downstream and upstream . 86 6.3.3. Midstream modulation . 87 6.4. Assessment approaches . 89 6.4.1. Constructive Technology Assessment (CTA) . 89 6.4.2. Real-Time Technology Assessment (RTA) . 89 6.4.3. Assessing the assessment . 91 6.5. Summary and conclusions . 91 5 7. New risk findings . 93 7.1. General approaches . 93 7.1.1. Scientiating the public: The deficit model . 93 7.1.2. Boomerang and backlash effects . 96 7.1.3. Uncertainty effects: Fuzzy risks . 98 7.1.4. Risk valence . 100 7.1.5. Narratives and anecdotes . .101 7.2. New theories and research findings . 102 7.2.1. Dosage/Exposure discounting effect . 102 7.2.2. Mini-Max or Maxi-Min Effects: Low probability – high consequence bias . 104 7.2.3. Rumor and fraud . 105 7.2.4. Risk profile shifts . 106 7.2.5. Power language . ..
Recommended publications
  • Sustainable Development, Technological Singularity and Ethics
    European Research Studies Journal Volume XXI, Issue 4, 2018 pp. 714- 725 Sustainable Development, Technological Singularity and Ethics Vyacheslav Mantatov1, Vitaly Tutubalin2 Abstract: The development of modern convergent technologies opens the prospect of a new technological order. Its image as a “technological singularity”, i.e. such “transhuman” stage of scientific and technical progress, on which the superintelligence will be practically implemented, seems to be quite realistic. The determination of the basic philosophical coordinates of this future reality in the movement along the path of sustainable development of mankind is the most important task of modern science. The article is devoted to the study of the basic ontological, epistemological and moral aspects in the reception of the coming technological singularity. The method of this study is integrating dialectical and system approach. The authors come to the conclusion: the technological singularity in the form of a “computronium” (superintelligence) opens up broad prospects for the sustainable development of mankind in the cosmic dimension. This superintelligence will become an ally of man in the process of cosmic evolution. Keywords: Technological Singularity, Superintelligence, Convergent Technologies, Cosmocentrism, Human and Universe JEL code: Q01, Q56. 1East Siberia State University of Technology and Management, Ulan-Ude, Russia [email protected] 2East Siberia State University of Technology and Management, Ulan-Ude, Russia, [email protected] V. Mantatov, V. Tutubalin 715 1. Introduction Intelligence organizes the world by organizing itself. J. Piaget Technological singularity is defined as a certain moment or stage in the development of mankind, when scientific and technological progress will become so fast and complex that it will be unpredictable.
    [Show full text]
  • The Nanotoxicology of a Newly Developed Zero-Valent Iron
    The nanotoxicology of a newly developed zero-valent iron nanomaterial for groundwater remediation and its remediation efficiency assessment combined with in vitro bioassays for detection of dioxin-like environmental pollutants Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Biologe Andreas Herbert Schiwy aus Tarnowitz (Polen) Berichter: Universitätsprofessor Dr. rer. nat. Henner Hollert Universitätsprofessor Dr. rer. nat. Andreas Schäffer Tag der mündlichen Prüfung 28. Juli 2016 Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar. To my wife and my children Summary Summary The assessment of chemicals and new compounds is an important task of ecotoxicology. In this thesis a newly developed zero-valent iron material for nanoremediation of groundwater contaminations was investigated and in vitro bioassays for high throughput screening were developed. These two elements of the thesis were combined to assess the remediation efficiency of the nanomaterial on the groundwater contaminant acridine. The developed in vitro bioassays were evaluated for quantification of the remediation efficiency. Within the NAPASAN project developed iron based nanomaterial showed in a model field application its nanoremediation capabilities to reduce organic contaminants in a cost effective way. The ecotoxicological evaluation of the nanomaterial in its reduced and oxidized form was conducted with various ecotoxicological test systems. The effects of the reduced nanomaterial with field site resident dechlorinating microorganisms like Dehalococcoides sp., Desulfitobacterium sp., Desulfomonile tiedjei, Dehalobacter sp., Desulfuromonas sp. have been investigated in batch und column experiments. A short-term toxicity of the reduced nanomaterial was shown.
    [Show full text]
  • Nanotechnology and Health Risks
    NANOTECHNOLOGY AND HEALTH RISKS Nanotechnology is being hailed as the “next industrial revolution”. Nanomaterials are now found in hundreds of products, from cosmetics to clothing to food products. Inevitably, these nanomaterials will enter our bodies as we handle nanomaterials in the workplace, eat nano-foods, wear nano-clothes and nano- cosmetics, use nano-appliances and dispose of nano waste into the environment. Early scientific studies demonstrate the potential for materials that are benign in bulk form to become harmful at the nanoscale. There is an urgent need for regulations to protect workers, the public and the environment from nanotoxicity’s risks, for greater understanding of the short and long-term implications of nanotechnology for people’s health and the environment, for consideration of nanotechnology’s broader social implications and for public involvement in decision making regarding nanotechnology’s introduction. What is “nanotechnology” and how is it used? “Nanotechnology” refers to the design, production and application of structures, devices or systems at the incredibly small scale of atoms and molecules – the “nanoscale”. “Nanoscience” is the study of phenomena and the manipulation of materials at this scale, generally understood to be 100 nanometres (nm) or less1. To put 100nm in context, a single strand of DNA measures 2.5nm across, red blood cells measure about 7,000nm and a human hair is 80,000nm wide. Most observers do not make a distinction between nanotechnology and nanoscience and use the term nanotechnology to encompass production and use of nanoscale materials (“nanomaterials”). Nanomaterials are “first generation” products of nanotechnology and FACT SHEET have already entered wide-scale commercial use.
    [Show full text]
  • Nanotoxicology: Toxicological and Biological Activities of Nanomaterials - Yuliang Zhao, Bing Wang, Weiyue Feng, Chunli Bai
    NANOSCIENCE AND NANOTECHNOLOGIES - Nanotoxicology: Toxicological and Biological Activities of Nanomaterials - Yuliang Zhao, Bing Wang, Weiyue Feng, Chunli Bai NANOTOXICOLOGY: TOXICOLOGICAL AND BIOLOGICAL ACTIVITIES OF NANOMATERIALS Yuliang Zhao, CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, The Chinese Academy of Sciences, Beijing 100049, & National Center for Nanoscience and Technology of China, Beijing 100190, China Bing Wang, CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, The Chinese Academy of Sciences, Beijing 100049 Weiyue Feng, CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, The Chinese Academy of Sciences, Beijing 100049 Chunli Bai National Center for Nanoscience and Technology of China, Beijing 100190, China The Chinese Academy of Sciences, Beijing 100864, China Keywords: Nanotoxicology, Nanosafety, Nanomaterials, Nanoparticles, Contents 1. Introduction 2. Target organ toxicity of nanoparticles 2.1. Respiratory System 2.1.1. Deposition of Nanoparticles in the Respiratory Tract 2.1.2. Clearance of Nanoparticles in the Respiratory Tract 2.1.3. Nanotoxic Response of Respiratory System 2.2. Gastrointestinal System 2.3. Cardiovascular System 2.4. Central Nervous System 2.5. Skin 3. Absorption,UNESCO distribution, metabolism and excretion– EOLSS of nanoparticles (ADME) 3.1. ADME of Nanoparticle Following Inhalation Exposure 3.1.1. Absorption and Retention of Nanoparticles Following Respiratory Tract Exposure 3.1.2. Translocation and Distribution of Nanoparticles Following Respiratory Tract Exposure SAMPLE CHAPTERS 3.1.3. Metabolism and Excretion of Nanoparticles in the Lung 3.2. ADME of Nanoparticle via Gastrointestinal Tract 3.3. ADME of Nanoparticles via Skin 4.
    [Show full text]
  • Nanotoxicology Program Jenny R
    Nanotoxicology Program Jenny R. Roberts, Ph.D. HELD/ACIB NTRC Toxicology and Internal Dose Critical Area Coordinator National Institute for Occupational Safety and Health Morgantown, WV Definitions • Nanoparticle: – A particle having one dimension less than 100 nm. Carbon Nanotube (1 nanometer) x 100,000 = Strand of Hair (100 microns) • Engineered Nanoparticle: – Created for a purpose with tightly controlled size, shape, surface features and chemistry. • Incidental Nanoparticle: – Created as an inadvertent side product of a process. Growth of Nanotoxicology as a Field of Study Scopus: Nanoparticles and Toxicity 3000 2500 1990's Emergence of Nanotech Companies 2000 2004 1st NTRC Science Meeting 1500 1980's Discovery of Early 1990's 2000 Nanocrystals Carbon 1000 National and Fullerenes Nanotubes Publication Number Publication Nanotechnology Innitiative 500 0 1980 1985 1990 1995 2000 2005 2010 2015 Year Timeline and Images: www.nano.gov Nanotechnology Research Center (NTRC) NTRC: 10 Critical Areas NIOSH Program Toxicology & Internal Dose Measurement Recommendations & Guidance Methods Informatics & Exposure Applications Assessment NTRC Global Epidemiology & Collaborations Surveillance Risk Fire & Explosion Assessment Safety Controls & PPE 2016 Nanotoxicology Projects: 11 HELD, 13 NTRC > 40 Extramural Collaborations – Academia, Government, Industrial • Strategic Plan Goals Pertaining to Toxicology 1. Increase understanding of new hazards and related health risks to nanomaterial workers. Conduct research to contribute to the understanding of the toxicology and internal dose of emerging ENMs. Determine whether nanomaterial toxicity can be categorized on the basis of physicochemical properties and mode of action. 2. Expand understanding of the initial hazard findings of engineered nanomaterials. Determine whether human biomarkers of nanomaterial exposure and/or response can be identified.
    [Show full text]
  • Ecotoxicology and Environmental Safety 154 (2018) 237–244
    Ecotoxicology and Environmental Safety 154 (2018) 237–244 Contents lists available at ScienceDirect Ecotoxicology and Environmental Safety journal homepage: www.elsevier.com/locate/ecoenv Ecofriendly nanotechnologies and nanomaterials for environmental T applications: Key issue and consensus recommendations for sustainable and ecosafe nanoremediation ⁎ I. Corsia, ,1, M. Winther-Nielsenb, R. Sethic, C. Puntad, C. Della Torree, G. Libralatof, G. Lofranog, ⁎ L. Sabatinih, M. Aielloi, L. Fiordii, F. Cinuzzij, A. Caneschik, D. Pellegrinil, I. Buttinol, ,1 a Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4-53100 Siena, Italy b Department of Environment and Toxicology, DHI, Agern Allé 5, 2970 Hoersholm, Denmark c Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Italy d Department of Chemistry, Materials, and Chemical Engineering “G. Natta”, Politecnico di Milano and RU INSTM, Via Mancinelli 7, 20131 Milano, Italy e Department of Bioscience, University of Milano, via Celoria 26, 20133 Milano, Italy f Department of Biology, University of Naples Federico II, via Cinthia ed. 7, 80126 Naples, Italy g Department of Chemical and Biology “A. Zambelli”, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy h Regional Technological District for Advanced Materials, c/o ASEV SpA (management entity), via delle Fiascaie 12, 50053 Empoli, FI, Italy i Acque Industriali SRL, Via Molise, 1, 56025 Pontedera, PI, Italy j LABROMARE SRL, Via dell'Artigianato
    [Show full text]
  • Nanotoxicology - New Research Area in Toxicology
    Turk J. Pharm. Sci. 11(2), 231-240, 2014 Review article Nanotoxicology - New Research Area in Toxicology Merve BACANLI, Nur§en BA§ARAN Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 06100, Ankara, TURKEY Nano sized materials are increasingly used in the fields of industry, science, pharmacy, medicine, electronics, communication and consumer products. On the other hand there is a great concern that these products may have some detrimental effects on human health and environment. Nanotoxicology is a new and important research area in toxicology. This toxicological research area refers to the study of interactions between living organisms and nanomaterials. Studies about nanomaterials shows that some nanomaterials may have cytotoxic and genotoxic effects and may pose health risks. But there is limited knowledge about the toxicity of nanomaterials. The nanotoxicology researchers focused on the relationship between nanomaterial characteristics (size, shape, surface area etc.) and toxic responses (cytotoxicity, genotoxicity, inflammation etc.). This article aims to give a brief summary of what is known today about nanotoxicology. Key words: Nanomaterial, Nanoparticle, Nanotoxicology. Nanotoksikoloji - Toksikolojide Yeni Bir Ara^tırma Alanı Nano boyutlu materyallerin endüstri, bilim, eczacihk, Up, elektronik, ileti§im gibi alanlar ve tiiketici üriinlerinde kullanımı giderek artmaktadır. Bununla birlikte bu üriinlerin insan saghgina ve çevreye istenmeyen etkileri olabileceğine dair biiyiik kuşkular bulunmaktadır.
    [Show full text]
  • Defense 2045: Assessing the Future Security Environment And
    NOVEMBER 2015 1616 Rhode Island Avenue NW Washington, DC 20036 202-887-0200 | www.csis.org Defense 2045 Lanham • Boulder • New York • London 4501 Forbes Boulevard Assessing the Future Security Environment and Implications Lanham, MD 20706 301- 459- 3366 | www.rowman.com for Defense Policymakers Cover photo: Shutterstock.com A Report of the CSIS International Security Program AUTHOR ISBN 978-1-4422-5888-4 David T. Miller 1616 Rhode Island Avenue NW FOREWORD Washington,Ë|xHSLEOCy258884z DC 20036v*:+:!:+:! Joseph S. Nye Jr. 202-887-0200 | www.csis.org Blank Defense 2045 Assessing the Future Security Environment and Implications for Defense Policymakers AUTHOR David T. Miller FOREWORD Joseph S. Nye Jr. A Report of the CSIS International Security Program November 2015 Lanham • Boulder • New York • London 594-62791_ch00_3P.indd 1 11/6/15 7:13 AM hn hk io il sy SY ek eh About CSIS hn hk io il sy SY ek eh For over 50 years, the Center for Strategic and International Studies (CSIS) has worked to hn hk io il sy SY ek eh develop solutions to the world’s greatest policy challenges. ­Today, CSIS scholars are hn hk io il sy SY ek eh providing strategic insights and bipartisan policy solutions to help decisionmakers chart hn hk io il sy SY ek eh a course toward a better world. hn hk io il sy SY ek eh CSIS is a nonprofit organ ization headquartered in Washington, D.C. The Center’s 220 full- time staff and large network of affiliated scholars conduct research and analy sis and hn hk io il sy SY ek eh develop policy initiatives that look into the future and anticipate change.
    [Show full text]
  • Nanotechnology
    R E S O U R C E L I B R A R Y E N C Y C L O P E D I C E N T RY Nanotechnology Nanotechnology is the study and manipulation of individual atoms and molecules. G R A D E S 9 - 12+ S U B J E C T S Biology, Health, Chemistry, Engineering, Physics C O N T E N T S 25 Images, 2 Videos For the complete encyclopedic entry with media resources, visit: http://www.nationalgeographic.org/encyclopedia/nanotechnology/ Nanotechnology involves the understanding and control of matter at the nanometer-scale. The so-called nanoscale deals with dimensions between approximately 1 and 100 nanometers. A nanometer is an extremely small unit of length—a billionth (10-9) of a meter. Just how small is a nanometer (nm)? A single human hair is about 80,000 to 100,000 nm wide. On the nanometer-scale, materials may exhibit unusual properties. When you change the size of a particle, it can change color, for example. That’s because in nanometer-scale particles, the arrangement of atoms reflects light differently. Gold can appear dark red or purple, while silver can appear yellowish or amber-colored. Nanotechnology can increase the surface area of a material. This allows more atoms to interact with other materials. An increased surface area is one of the chief reasons nanometer- scale materials can be stronger, more durable, and more conductive than their larger-scale (called bulk) counterparts. Nanotechnology is not microscopy. "Nanotechnology is not simply working at ever smaller dimensions," the National Nanotechnology Initiative says.
    [Show full text]
  • Green Goo: Nanobiotechnology Comes Alive!
    Communiqué January/February 2003 Issue # 77 Green Goo: Nanobiotechnology Comes Alive! Issue: If the word registers in the public consciousness at all, "nanotechnology" conjures up visions of itty- bitty mechanical robots building BMWs, burgers or brick walls. For a few, nanotech inspires fear that invisible nanobots will go haywire and multiply uncontrollably until they suffocate the planet – a scenario known as "Gray Goo." Still others, recalling Orwell’s 1984, see nanotech as the path to Big Brother’s military-industrial dominance, a kind of “gray governance.” Gray Goo or gray governance – both are plausible outcomes of nanotechnology – the manipulation of matter at the scale of the nanometer (one billionth of a meter) – but possibly diversionary images of our techno-future. The first and greatest impact of nano-scale technologies may come with the merger of nanotech and biotech – a newly recognized discipline called nanobiotechnology. While Gray Goo has grabbed the headlines, self- replicating nanobots are not yet possible. The more likely future scenario is that the merger of living and non- living matter will result in hybrid organisms and products that end up behaving in unpredictable and uncontrollable ways – get ready for “Green Goo!” Impact: Roughly one-fifth (21%) of nanotech businesses in the USA are currently focusing on nanobiotechnology for the development of pharmaceutical products, drug delivery systems and other healthcare-related products.1 The US National Science Foundation predicts that the market for nano-scale products will reach $1 trillion per annum by 2015. As with biotech before it, nanotech is also expected to have a major impact on food and agriculture.
    [Show full text]
  • Ray Kurzweil Reader Pdf 6-20-03
    Acknowledgements The essays in this collection were published on KurzweilAI.net during 2001-2003, and have benefited from the devoted efforts of the KurzweilAI.net editorial team. Our team includes Amara D. Angelica, editor; Nanda Barker-Hook, editorial projects manager; Sarah Black, associate editor; Emily Brown, editorial assistant; and Celia Black-Brooks, graphics design manager and vice president of business development. Also providing technical and administrative support to KurzweilAI.net are Ken Linde, systems manager; Matt Bridges, lead software developer; Aaron Kleiner, chief operating and financial officer; Zoux, sound engineer and music consultant; Toshi Hoo, video engineering and videography consultant; Denise Scutellaro, accounting manager; Joan Walsh, accounting supervisor; Maria Ellis, accounting assistant; and Don Gonson, strategic advisor. —Ray Kurzweil, Editor-in-Chief TABLE OF CONTENTS LIVING FOREVER 1 Is immortality coming in your lifetime? Medical Advances, genetic engineering, cell and tissue engineering, rational drug design and other advances offer tantalizing promises. This section will look at the possibilities. Human Body Version 2.0 3 In the coming decades, a radical upgrading of our body's physical and mental systems, already underway, will use nanobots to augment and ultimately replace our organs. We already know how to prevent most degenerative disease through nutrition and supplementation; this will be a bridge to the emerging biotechnology revolution, which in turn will be a bridge to the nanotechnology revolution. By 2030, reverse-engineering of the human brain will have been completed and nonbiological intelligence will merge with our biological brains. Human Cloning is the Least Interesting Application of Cloning Technology 14 Cloning is an extremely important technology—not for cloning humans but for life extension: therapeutic cloning of one's own organs, creating new tissues to replace defective tissues or organs, or replacing one's organs and tissues with their "young" telomere-extended replacements without surgery.
    [Show full text]
  • Nanotech Ideas in Science-Fiction-Literature
    Nanotech Ideas in Science-Fiction-Literature Nanotech Ideas in Science-Fiction-Literature Text: Thomas Le Blanc Research: Svenja Partheil and Verena Knorpp Translation: Klaudia Seibel Phantastische Bibliothek Wetzlar Special thanks to the authors Karl-Ulrich Burgdorf and Friedhelm Schneidewind for the kind permission to publish and translate their two short stories Imprint Nanotech Ideas in Science-Fiction-Literature German original: Vol. 24 of the Hessen-Nanotech series by the Ministry of Economics, Energy, Transport and Regional Development, State of Hessen Compiled and written by Thomas Le Blanc Svenja Partheil, Verena Knorpp (research) Phantastische Bibliothek Wetzlar Turmstrasse 20 35578 Wetzlar, Germany Edited by Sebastian Hummel, Ulrike Niedner-Kalthoff (Ministry of Economics, Energy, Transport and Regional Development, State of Hessen) Dr. David Eckensberger, Nicole Holderbaum (Hessen Trade & Invest GmbH, Hessen-Nanotech) Editor For NANORA, the Nano Regions Alliance: Ministry of Economics, Energy, Transport and Regional Development, State of Hessen Kaiser-Friedrich-Ring 75 65185 Wiesbaden, Germany Phone: +49 (0) 611 815 2471 Fax: +49 (0) 611 815 49 2471 www.wirtschaft.hessen.de The editor is not responsible for the truthfulness, accuracy and completeness of this information nor for observing the individual rights of third parties. The views and opinions rendered herein do not necessarily reflect the opinion of the editor. © Ministry of Economics, Energy, Transport and Regional Development, State of Hessen Kaiser-Friedrich-Ring 75 65185 Wiesbaden, Germany wirtschaft.hessen.de All rights reserved. No part of this brochure may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without prior permission in writing from the publisher.
    [Show full text]