Water Resources & Riparian Habitats
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Penobscot Rivershed with Licensed Dischargers and Critical Salmon
0# North West Branch St John T11 R15 WELS T11 R17 WELS T11 R16 WELS T11 R14 WELS T11 R13 WELS T11 R12 WELS T11 R11 WELS T11 R10 WELS T11 R9 WELS T11 R8 WELS Aroostook River Oxbow Smith Farm DamXW St John River T11 R7 WELS Garfield Plt T11 R4 WELS Chapman Ashland Machias River Stream Carry Brook Chemquasabamticook Stream Squa Pan Stream XW Daaquam River XW Whitney Bk Dam Mars Hill Squa Pan Dam Burntland Stream DamXW Westfield Prestile Stream Presque Isle Stream FRESH WAY, INC Allagash River South Branch Machias River Big Ten Twp T10 R16 WELS T10 R15 WELS T10 R14 WELS T10 R13 WELS T10 R12 WELS T10 R11 WELS T10 R10 WELS T10 R9 WELS T10 R8 WELS 0# MARS HILL UTILITY DISTRICT T10 R3 WELS Water District Resevoir Dam T10 R7 WELS T10 R6 WELS Masardis Squapan Twp XW Mars Hill DamXW Mule Brook Penobscot RiverYosungs Lakeh DamXWed0# Southwest Branch St John Blackwater River West Branch Presque Isle Strea Allagash River North Branch Blackwater River East Branch Presque Isle Strea Blaine Churchill Lake DamXW Southwest Branch St John E Twp XW Robinson Dam Prestile Stream S Otter Brook L Saint Croix Stream Cox Patent E with Licensed Dischargers and W Snare Brook T9 R8 WELS 8 T9 R17 WELS T9 R16 WELS T9 R15 WELS T9 R14 WELS 1 T9 R12 WELS T9 R11 WELS T9 R10 WELS T9 R9 WELS Mooseleuk Stream Oxbow Plt R T9 R13 WELS Houlton Brook T9 R7 WELS Aroostook River T9 R4 WELS T9 R3 WELS 9 Chandler Stream Bridgewater T T9 R5 WELS TD R2 WELS Baker Branch Critical UmScolcus Stream lmon Habitat Overlay South Branch Russell Brook Aikens Brook West Branch Umcolcus Steam LaPomkeag Stream West Branch Umcolcus Stream Tie Camp Brook Soper Brook Beaver Brook Munsungan Stream S L T8 R18 WELS T8 R17 WELS T8 R16 WELS T8 R15 WELS T8 R14 WELS Eagle Lake Twp T8 R10 WELS East Branch Howe Brook E Soper Mountain Twp T8 R11 WELS T8 R9 WELS T8 R8 WELS Bloody Brook Saint Croix Stream North Branch Meduxnekeag River W 9 Turner Brook Allagash Stream Millinocket Stream T8 R7 WELS T8 R6 WELS T8 R5 WELS Saint Croix Twp T8 R3 WELS 1 Monticello R Desolation Brook 8 St Francis Brook TC R2 WELS MONTICELLO HOUSING CORP. -
The Black Flies of Maine
THE BLACK FLIES OF MAINE L.S. Bauer and J. Granett Department of Entomology University of Maine at Orono, Orono, ME 04469 Maine Life Sciences and Agriculture Experiment Station Technical Bulletin 95 May 1979 LS-\ F.\PFRi\ii-Nr Si \IION TK HNK \I BUI I HIN 9? ACKNOWLEDGMENTS We wish to thank Dr. Ivan McDaniel for his involvement in the USDA-funding of this project. We thank him for his assistance at the beginning of this project in loaning us literature, equipment, and giving us pointers on taxonomy. He also aided the second author on a number of collection trips and identified a number of collection specimens. We thank Edward R. Bauer, Lt. Lewis R. Boobar, Mr. Thomas Haskins. Ms. Leslie Schimmel, Mr. James Eckler, and Mr. Jan Nyrop for assistance in field collections, sorting, and identifications. Mr. Ber- nie May made the electrophoretic identifications. This project was supported by grant funds from the United States Department of Agriculture under CSRS agreement No. 616-15-94 and Regional Project NE 118, Hatch funds, and the Maine Towns of Brad ford, Brownville. East Millinocket, Enfield, Lincoln, Millinocket. Milo, Old Town. Orono. and Maine counties of Penobscot and Piscataquis, and the State of Maine. The electrophoretic work was supported in part by a faculty research grant from the University of Maine at Orono. INTRODUCTION Black flies have been long-time residents of Maine and cause exten sive nuisance problems for people, domestic animals, and wildlife. The black fly problem has no simple solution because of the multitude of species present, the diverse and ecologically sensitive habitats in which they are found, and the problems inherent in measuring the extent of the damage they cause. -
River Related Geologic/Hydrologic Features Abbott Brook
Maine River Study Appendix B - River Related Geologic/Hydrologic Features Significant Feature County(s) Location Link / Comments River Name Abbott Brook Abbot Brook Falls Oxford Lincoln Twp best guess location no exact location info Albany Brook Albany Brook Gorge Oxford Albany Twp https://www.mainememory.net/artifact/14676 Allagash River Allagash Falls Aroostook T15 R11 https://www.worldwaterfalldatabase.com/waterfall/Allagash-Falls-20408 Allagash Stream Little Allagash Falls Aroostook Eagle Lake Twp http://bangordailynews.com/2012/04/04/outdoors/shorter-allagash-adventures-worthwhile Austin Stream Austin Falls Somerset Moscow Twp http://www.newenglandwaterfalls.com/me-austinstreamfalls.html Bagaduce River Bagaduce Reversing Falls Hancock Brooksville https://www.worldwaterfalldatabase.com/waterfall/Bagaduce-Falls-20606 Mother Walker Falls Gorge Grafton Screw Auger Falls Gorge Grafton Bear River Moose Cave Gorge Oxford Grafton http://www.newenglandwaterfalls.com/me-screwaugerfalls-grafton.html Big Wilson Stream Big Wilson Falls Piscataquis Elliotsville Twp http://www.newenglandwaterfalls.com/me-bigwilsonfalls.html Big Wilson Stream Early Landing Falls Piscataquis Willimantic https://tinyurl.com/y7rlnap6 Big Wilson Stream Tobey Falls Piscataquis Willimantic http://www.newenglandwaterfalls.com/me-tobeyfalls.html Piscataquis River Black Stream Black Stream Esker Piscataquis to Branns Mill Pond very hard to discerne best guess location Carrabasset River North Anson Gorge Somerset Anson https://www.mindat.org/loc-239310.html Cascade Stream -
Historical Trend in Ice Thickness on the Piscataquis River in Central Maine
59th EASTERN SNOW CONFERENCE Stowe, Vermont USA 2002 Historical Trend in Ice Thickness on the Piscataquis River in Central Maine T.G. HUNTINGTON1, G.A. HODGKINS1, AND R.W. DUDLEY,1 ABSTRACT We analyzed a long-term record of ice thickness on the Piscataquis River in central Maine to determine whether there were temporal trends that were associated with climate warming. Trends in ice thickness were compared and correlated with regional time series of winter air temperature, heating degree days (HDD) , date of river ice-out, seasonal center-of-volume date (SCVD) (date on which half of the stream runoff volume during the period 1 Jan and 31 May has occurred), water temperature, and lake ice-out date. All of these variables except lake ice-out date showed significant temporal trends during the 20th century. Average ice thickness around 28 Feb. decreased by about 23 cm from 1912 to 2001. Over the period 1900 to 1999, winter air temperature increased by 1.7 ˚C and HDD decreased by about 7.5%. Final ice-out date on the Piscataquis River occurred earlier (advanced), by 0.23 days yr–1 over the period 1931 to 2002. The SCVD advanced by 0.11 days yr–1 over the period 1903 to 2001. Ice thickness was significantly correlated with winter air temperature, HDD, river ice-out, and SCVD (P-value < 0.01). These systematic temporal trends in multiple hydrologic indicator variables indicate a coherent response to climate forcing. Keywords: climate change, hydrologic indicators, river ice thickness INTRODUCTION Hydrologic variables that are sensitive to incremental changes in temperature regime can serve as indicators of systematic changes in climate, providing evidence for physical responses to these changes in spite of large interannual variability. -
Flood of April 1987 in Maine
FLOOD OF APRIL 1987 IN MAINE By Richard A. Fontaine and Joseph P. Nielsen U.S. GEOLOGICAL SURVEY Open-File Report 92-141 Prepared in cooperation with the MAINE DEPARTMENT OF TRANSPORTATION Augusta, Maine 1991 U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR ., Secretary U.S. GEOLOGICAL S0RVEY DALLAS L. PECK, Director For additional information write: Copies of report can be purchased from: U.S. Geological Survey Books and Open-File Reports Section Water Resources Division U.S. Geol Dgical Survey 26 Canneston Drive Box 25425 Federal Center Augusta, ME 04330 Denver, CO 80225 CONTENTS Page Abstract............................................................. 1 Introduction......................................................... 1 Purpose and scope .............................................. 2 Acknowledgments................................................ 2 Hydrometeorologic setting............................................ 2 Physiography and geology....................................... 2 Antecedent hydrologic conditions ............................... 4 Runoff................................................... 13 Storage.................................................. 15 Storm characteristics.......................................... 17 Precipitation............................................ 18 Temperature.............................................. 22 Description of flood................................................. 23 Flood discharge and frequency.................................. 24 Flood crests.................................................. -
SURFACE WATER SUPPLY of the UNITED STATES 1926
PLEASE DO NOT DESTROY! OR THROWAWAY THIS PUBLICATION, if you bm» no further use for it, write to the Geological Surrey at Washington and ask for a frank to return it UNITED STATES DEPARTMENT OF THE INTERIOR SURFACE WATER SUPPLY of the UNITED STATES 1926 PART I NORTH ATLANTIC SLOPE DRAINAGE BASINS GEOLOGICAL SURVEY WATER-SUPPLY PAPER 621 UNITED STATES DEPARTMENT OF THE INTERIOR BAY LYMAN WILBUR, Secretary GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director Water-Supply Paper 621 SURFACE WATER SUPPLY of the UNITED STATES 1926 PART I NORTH ATLANTIC SLOPE DRAINAGE BASINS NATHAN C. GROVER, Chief Hydraulic Engineer H. B. KINNISON, A. W. HARRINGTON, O. W. HARTWELL A. H. HORTON, andJ. J. DIRZULAITIS District Engineers Prepared in cooperation with the States of MAINE, NEW HAMPSHIRE, MASSACHUSETTS, NEW YORK NEW JERSEY, MARYLAND, and VIRGINIA Geological Survey, Box3l06,Cap Oklahoma CAY, UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON: 1930 For sale by the Superintendent of Documents, Washington, D. C. ----- Price 30 cents CONTENTS Page Authorization and scope of work____ _____________________________ 1 Definition of terms______________- _ __________ ___________ 2 Explanation of data___-____________-_-_--_------_-______-_-_____-- 2 Accuracy of field data and computed results._________________________ 4 Publications________ _________________-'---_-----_--____--________-_ 5 Cooperation. _____________________________________________________ 10 Division of work__________________________________________________ 11 Oaging-station records ______________________________________ -
Stillwater Recertification Attachments 2015
Stillwater Hydroelectric Project (FERC No. 2712) Project Description Black Bear Hydro Partners, LLC’s Stillwater Hydroelectric Project is a run-of-river hydroelectric generating facility located on the Stillwater Branch of the Penobscot River in Old Town, Maine with a gross nameplate generating capacity of 4.18 MW. The Stillwater Project Powerhouse A commenced initial commercial operations in 1913. The Licensee applied for an amendment to increase capacity at the Stillwater Project via the construction of an additional powerhouse (Powerhouse B). The Project consists of an existing 1,720-foot-long dam consisting of 13 sections of various height, creating an impoundment with a normal full pond elevation of 94.65 feet National Geodetic Vertical Datum. The Project has two powerhouses. Powerhouse A consists of four generating units a total installed capacity of 1,950 kW and a maximum hydraulic capacity of 1,700 cfs. Powerhouse B consists of three generating units with a total installed capacity of 2,229 kW and a maximum hydraulic capacity of 1,758 cfs. Powerhouse A has 50 ft long aerial transmission lines installed from the powerhouse’s GSU to the existing substation. Powerhouse B has 300 ft long aerial transmission lines installed from the powerhouse’s generating step-up unit (GSU) to the existing, adjacent 12.5 kV distribution system located adjacent to the existing project boundary and along the south side of Stillwater Avenue. The Stillwater Powerhouse B commenced initial commercial operation September, 2013. The Stillwater Project generates clean, renewable electricity while providing recreational opportunities (portage trail, parking areas for river access and hand-carried boat launch), fish passage measures, consistent water levels that enhance habitats for waterfowl, etc., and substantial support of the local community through stable property tax payments, reliable voltage support of the electrical distribution system, etc. -
Surface Water Supply of the United States 1914 Part I
U. 8, GFOL SURVEY H . HYO. RESEARCH ki A ^CITY, IOWA DEPARTMENT OF THE INTERIOR FRANKLIN K. LANE, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director WATER-SUPPLY PAPER 381 SURFACE WATER SUPPLY OF THE UNITED STATES 1914 PART I. NORTH ATLANTIC SLOPE DRAINAGE BASINS NATHAN C. GROVER, Chief Hydraulic Engineer C. C. COVERT, C. H. PIERCE, and G. C. STEVENS, District Engineers Prepared in cooperation with the States of MAINE, VERMONT, MASSACHUSETTS, and NEW YORK WASHINGTON GOVERNMENT PRINTING OFFICE 1916 u. A «tUU SURVEY C/0 IOWA INST. HYD, RESEARCH DEPARTMENT OF THE INTERIOR G1TY' I(WA FRANKLIN K. LANE, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director Water-Supply Paper 381 SDRFACE WATER SUPPLY OF THE UNITED STATES^*1 Geolosicil Survey, 1014 Box /r^] |_ PART I. NORTH ATLMTIC SLOPE ' NATHAN C. GROVER, Chief Hydraulic Engineer C. C. COVERT, C. H. PIERCE, and G. C. STEVENS, District Engineers Prepared in cooperation with the States of MAINE, VERMONT, MASSACHUSETTS, and NEW YORK WASHINGTON GOVERNMENT PRINTING OFFICE 1916 ADDITIONAL COPIES OF THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE WASHINGTON, D. C. AT 15 CENTS PER COPY CONTENTS. Page. Authorization and scope of work........................................... 7 Definition of terms......................................................... 8 Convenient equivalents.................................................... 9 Explanation of data........................................................ 11 Accuracy -
Water Quality Summary for Kenduskeag Stream and Upper Watershed Tributaries
Water Quality Summary for Kenduskeag Stream and Upper Watershed Tributaries By Mark Whiting, Maine Department of Environmental Protection In Collaboration with Ed Lindsey Old Town High School (formerly of Central High School) March 24, 2006 DEPLW0762 Water quality summary for Kenduskeag Stream and upper watershed tributaries By Mark Whiting, Maine DEP, March 2006 Introduction: General Watershed Characteristics: Kenduskeag Stream is the largest tributary to the Penobscot River located below the first dam at Veazie. For this reason, Kenduskeag Stream has been of interest in Maine’s salmon recovery program. The Penobscot River is the largest salmon river in Maine and it has most of the remaining Atlantic salmon (ASC 2004). However a string of dams restricts fish access to the upper river. Salmon have been maintained by fish ladders, natural reproduction in the mainstem and lower tributaries, and fish stocking by Penobscot-specific strains of salmon. Fortunately, an agreement with the dam owners, federal and state agencies, the Penobscot Indian Nation, and other private organizations will provide for the removal of the two lower dams (Veazie and Great Works), a natural looking bypass channel at another dam (Howland), and improved fish passage at four additional dams. This will improve access to over 500 river miles of fish habitat. For details on the Penobscot River recovery plan see the Penobscot River Restoration Trust website (http://penobscotriver.org/index.html). Kenduskeag Stream is 36 miles long and has a watershed of 215 square miles. The mainstem has 12 named tributaries with subwatersheds that range in size from 3-26 square miles. French Stream, Black Stream and Crooked Brook are the largest tributaries with 26.3, 26.0 and 19.2 square miles respectively (Penobscot County Soil and Water Conservation District watershed plan, 1988). -
Sporting Camps in the Piscataquis River Watershed, Section B, Katahdin Iron Works Area William W
The University of Maine DigitalCommons@UMaine Maine History Documents Special Collections 3-2017 Piscataquis Project: Sporting Camps in the Piscataquis River Watershed, Section B, Katahdin Iron Works Area William W. Geller Follow this and additional works at: https://digitalcommons.library.umaine.edu/mainehistory Part of the History Commons Repository Citation Geller, William W., "Piscataquis Project: Sporting Camps in the Piscataquis River Watershed, Section B, Katahdin Iron Works Area" (2017). Maine History Documents. 122. https://digitalcommons.library.umaine.edu/mainehistory/122 This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Maine History Documents by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. Piscataquis Project Sporting Camps in the Piscataquis River Watershed Section B North from Brownville to Prairie, the Ebeemee Ponds, and KIW South from KIW on the tote road to Big Houston Pond and the bowl in the shadow of the Barren-Chairback mountain range North from KIW on the Chamberlain Lake Tote Road to B-Pond, the headwaters of the East Branch of the Pleasant River, and the West Branch ponds March 2017 William (Bill) W. Geller – researcher and writer 108 Orchard Street Farmington, Maine 04938 or 207-778-6672 or [email protected] https://sites.google.com/a/maine.edu/mountain-explorations/home 1 Preface - Sporting Camps in the Piscataquis watershed I started this research and writing project when I retired in 2010. My interest was in reading the history of Maine’s wilderness through which Maine’s Appalachian Trail passes between Monson and the West Branch of the Penobscot River. -
Current Year Stocking Report (PDF)
2021 Year to Date STOCKING REPORT Androscoggin County DATEWATER City/Town SPECIES QTY SIZE (inch) 4/20/2021ANDROSCOGGIN R LISBON BROOK TROUT 300 10 5/14/2021ANDROSCOGGIN R LISBON BROOK TROUT 210 10 4/28/2021ANDROSCOGGIN R (LITTLE) MINOT RAINBOW TROUT 525 10 4/28/2021ANDROSCOGGIN R (LITTLE) MECHANIC FALLS RAINBOW TROUT 300 10 4/28/2021ANDROSCOGGIN R (LITTLE) AUBURN RAINBOW TROUT 200 10 4/29/2021ANDROSCOGGIN R (LITTLE) MINOT BROWN TROUT 525 9 4/29/2021ANDROSCOGGIN R (LITTLE) MECHANIC FALLS BROWN TROUT 300 9 4/29/2021ANDROSCOGGIN R (LITTLE) AUBURN BROWN TROUT 200 9 5/13/2021ANDROSCOGGIN R (LITTLE) MINOT RAINBOW TROUT 525 11 5/13/2021ANDROSCOGGIN R (LITTLE) MECHANIC FALLS RAINBOW TROUT 300 11 5/13/2021ANDROSCOGGIN R (LITTLE) AUBURN RAINBOW TROUT 200 11 5/18/2021ANDROSCOGGIN R (LITTLE) MECHANIC FALLS BROWN TROUT 300 10 5/18/2021ANDROSCOGGIN R (LITTLE) MINOT BROWN TROUT 525 10 5/18/2021ANDROSCOGGIN R (LITTLE) AUBURN BROWN TROUT 200 10 4/28/2021AUBURN L AUBURN LAKE TROUT 1150 7 5/21/2021AUBURN L AUBURN L.L. SALMON 250 7 4/14/2021BARTLETT P LIVERMORE BROOK TROUT 300 10 5/27/2021BARTLETT P LIVERMORE BROOK TROUT 250 10 5/3/2021BASIN B AUBURN BROOK TROUT 312 10 4/15/2021BEAVER PARK P #2 LISBON BROOK TROUT 100 10 4/15/2021BEAVER PARK P #3 LISBON BROOK TROUT 100 10 4/14/2021BRETTUNS P LIVERMORE BROOK TROUT 300 10 5/27/2021BRETTUNS P LIVERMORE BROWN TROUT 200 10 5/27/2021CRYSTAL (BEALS) P TURNER BROOK TROUT 250 10 5/5/2021LITTLE R LISBON BROOK TROUT 316 10 5/17/2021LITTLE R LISBON BROWN TROUT 500 8 5/27/2021LONG P LIVERMORE BROWN TROUT 200 10 4/20/2021MEADOW -
Surface Water Supply Op the United States 1918
DEPARTMENT OF THE INTERIOR ALBERT B. FALL, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director Water-Supply Paper 471 SURFACE WATER SUPPLY OP THE UNITED STATES 1918 PART I. NORTH ATLANTIC SLOPE DRAINAGE BASINS NATHAN C. GROVER, Chief Hydraulic Engineer C. H. PIERCE, C. C. COVERT, and G. C. STEYENS, District Engineers Prepared in cooperation with the States of MAINE, VERMONT, MASSACHUSETTS, and NEW YORK WASHINGTON GOVERNMENT PRINTING OFFICE 1921 CONTENTS. Page. Authorization and scope of work........................................... 7 Definition of terms......................................................... 8 Explanation of data........................................................ 9 Accuracy of field data and computed records................................. 10 Cooperation................................................................ 11 Division of work.......................................................... 11 Gaging station records...................................................... 12 St. John River basin................................................... 12 St. John River at Van Buren, Maine................................ 12 Machias River basin.................................................... 14 Machias River at Whitneyville, Maine.............................. 14 Union River basin..................................................... 16 West Branch of Union River at Amherst, Maine.................... 16 Penobscot River basin.................................................. 18 West Branch of Penobscot