July 2005 INFORMATION BULLETIN

Total Page:16

File Type:pdf, Size:1020Kb

July 2005 INFORMATION BULLETIN ISSN 1025-4943 Secretariat of the Pacific Community BECHE-DE-MER Number 22 — July 2005 INFORMATION BULLETIN Editor and group coordinator: Chantal Conand, Université de La Réunion, Laboratoire de biologie marine, 97715 Saint-Denis Cedex, La Réunion, France. [Fax: +262 938166; Email: [email protected]]. Production: Information Section, Marine Resources Division, SPC, BP D5, 98848 Noumea Cedex, New Caledonia. [Fax: +687 263818; Email: [email protected]; Website: http://www.spc.int/coastfish]. Produced with financial assistance from the European Union. Editorial It is a great pleasure to present the 22nd issue of the SPC Beche-de-mer Inside this issue Information Bulletin, which is particularly rich and diverse. The use of calcareous spicules for I draw your attention to the new database of all articles and ab- the identification of the Galápagos stracts published in the Bulletin to date. This was recently put to- sea cucumber Isostichopus fuscus on gether by SPC’s Fisheries Information Section, and is available on the international market SPC’s website at: http://www.spc.int/coastfish/news/search_ M.V.Toral-Granda p. 3 bdm.asp. The database includes close to 560 article and abstract Appearance and development of titles that can be searched by title, author’s name(s), scientific skeletal structures in Holothuria name, region or country. Each search result is presented with a scabra larvae and epibiont juveniles hyperlink that allows downloading in pdf format. Your com- R. Rasolofonirina and M. Jangoux p. 6 ments and suggestions on how to improve this useful tool are most welcome. Fission inducement in Indonesian holothurians This issue of the Bulletin includes articles focusing on many dif- P. Purwati and S.A.P. Dwiono p. 11 ferent areas; in some cases, this is the first time research from these locales has appeared in the Bulletin (e.g. the Comoros, fea- Sea cucumbers of the Comoros tured in the article by Samyn et al., p. 14; Mauritius, addressed by Archipelago Laxminarayana, p. 48; and Sri Lanka, addressed by Terney, p. 24). Y. Samyn et al. p. 14 These articles highlight the current interest in sea cucumbers in the western Indian Ocean. Contributions about Madagascar by Sea cucumber inventory in Mayotte, Rasolofonirina and Jangoux (p. 6) and Mayotte by Conand et al. southwest Indian Ocean (p. 19) also serve to illustrate the progress in sea cucumber re- C. Conand et al. p. 19 search in this region. Observation of asexual Identification of sea cucumber species is difficult. With CITES’ reproduction by natural fission of conservation concerns, the issue of identifying processed speci- Stichopus horrens Selenka in Okinawa mens has become critical. One identification method involves Island, Japan special preparation of the body wall to examine the calcareous H. Kohtsuka et al. p. 23 spicules. This method has been used in the Galapagos for Present status of the sea cucumber Isostichopus fuscus (see article by Toral on p. 3). fishery in southern Sri Lanka: Purcell presents advances from the important WorldFish Center, A resource depleted industry which is developing technologies for sandfish restocking (see ar- P.B.Terney Pradeep Kumara et al. p. 24 ticle on p. 30). MARINE RESOURCES DIVISION – INFORMATION SECTION 2 SPC Beche-de-mer Information Bulletin #22 – July 2005 We continue to publish articles on asexual reproduction by fis- Developing technologies for siparity. Purwati presents her recent findings with Holothuria restocking sandfish: atra and H. leucospilota (p. 11) and Kohtsuka et al. write about Update on the WorldFish–SPC their observation of a Stichopus horrens specimen undergoing project in New Caledonia fission (p. 23). S. Purcell p. 30 For this issue, we have not received answers to the different ques- An external check for disease and tionnaires presented in previous issues of the Bulletin, but we hope health of hatchery-produced sea to receive your contributions for the next issue on the following cucumbers important fishery-related subjects: overexploitation, sexual repro- S. Purcell and I. Eeckhaut p. 34 duction, recruitment and juvenile observations in the wild. An incidence of parasitic infestation Proceedings of the 11th International Echinoderm Conference are in Holothuria atra Jaeger now published as: Proceedings of the 11th International M.K. Ram Mohan and D.B. James p. 38 Echinoderm Conference, Munich, Germany, October 6–10, 2003: The recent status of sea cucumber Heinzeller, T. and Nebelsick, J.H. (eds), Taylor and Francis fisheries in the continental United Group, London, 633 p. You can order this publication through States of America Taylor and Francis website (http://www.tandf.co.uk/books/, A.W. Bruckner p. 39 click on “Catalogue” in the menu on the left side and enter Echinoderms Munchen in the search box). Several abstracts of Management of Queensland sea cu- published papers are included in the Abstracts and New cumber stocks by rotational zoning Publications section on p. 55 of this Bulletin. R. Lowden p. 47 The location of the 2006 International Echinoderm Conference Induced spawning and larval rearing has not yet been decided. We hope to be able to give this infor- of the sea cucumbers, Bohadschia mation in the next issue of the Bulletin. marmorata and Holothuria atra in Mauritius All previous issues of the Bulletin are available from SPC’s web- A. Laxminarayana p. 48 site at: http://www.spc.int/coastfish/News/BDM/bdm.htm (English and French versions). Correspondence p. 53 Abstracts and publications p. 55 The latest issue of the “Echinoderm Newsletter” is available at: http://www.nmnh.si.edu/iz/echinoderm. And, as usual, you can access the Echinoderm Portal from: http://www.nrm.se/ev/ echinoderms/echinoportal.html.en Produced with financial assistance Chantal Conand from the European Union, through the EU/SPC PROCFish project. The views expressed in this Bulletin are those of the authors and are not necessarily shared by the Secretariat of the Pacific Community or the European Union. SPC PIMRIS is a joint project of five international or- the availability of information on marine resources ganisations concerned with fisheries and marine to users in the region, so as to support their ratio- resource development in the Pacific Islands region. nal development and management. PIMRIS activi- The project is executed by the Secretariat of the ties include: the active collection, cataloguing and Pacific Community (SPC), the South Pacific Forum archiving of technical documents, especially ephe- Fisheries Agency (FFA), the University of the mera (“grey literature”); evaluation, repackaging South Pacific (USP), the South Pacific Applied and dissemination of information; provision of lit- Geoscience Commission (SOPAC), and the Pacific erature searches, question-and-answer services Regional Environment Programme (SPREP). This and bibliographic support; and assistance with the bulletin is produced by SPC as part of its commit- Pacific Islands Marine Resources development of in-country reference collections ment to PIMRIS. The aim of PIMRIS is to improve Information System and databases on marine resources. SPC Beche-de-mer Information Bulletin #22 – July 2005 3 newnew infoinfo beche-de-mer The use of calcareous spicules for the identification of the Galápagos sea cucumber Isostichopus fuscus on the international market M.Verónica Toral-Granda1 Introduction nized as an important food item in the Chinese market (J. Chen, Yellow Sea Fisheries Research About 40 species of commercial sea cucumbers are Institute, China, pers. comm). harvested throughout the world’s oceans (Conand 2004). Once on the international market, the dried In the field, this species can easily be recognized by (processed) form of some species can be almost im- its thick, firm brownish body wall covered with possible to distinguish from others (Conand 2004). blunt yellow papillae (Fig. 2) (Hickman 1998). Sea cucumber taxonomy is based on anatomical However, once processed, it looks similar to some features, such as the shapes and combination of mi- other species of the family, including S. horrens, croscopic spicules that are the skeletal components which is harvested illegally together with I. fuscus in the body wall of all sea cucumbers. These (Arellano 2004). The spicules in the body wall of spicules can take widely different shapes, such as I. fuscus take the form of tables and C-shaped rods rosettes, C-shaped rods, buttons, and plates (Fig. 1) while the tube feet produce spicules shaped like end- (Hickman 1998). The sea cucumber Isosti- chopus fuscus (Ludwig, crown 1875) has been har- cross-bridge spire crown vested commercially in pillar the Galápagos Islands disc since 1991, where it has disc become the most impor- side view top view pseudo-table tant fishery resource tables (Murillo et al. 2004); it is commercially depleted in mainland Ecuador (Camhi 1995). Illegal fishing activities have been continuous in the smooth nodose ellipsoid Galápagos (Piu 1998, buttons grains rosettes 2000; Martínez 1999; Sant 2004), fuelled mainly by international demand for this species and the economic needs of the local fishing sec- tor. Although it is not anchor C-shaped plate rods wheel among the most valu- spiracle able sea cucumber species (Conand 2004), Figure 1. Different types of calcareous ossicles present in holothurians. the Galápagos sea cu- Source: Conand 1998 cumber has been recog- 1. Department of Marine Research and Conservation, Charles Darwin Research Station, Galápagos Islands. Email: [email protected] 4 SPC Beche-de-mer Information Bulletin #22 – July 2005 Methodology Thirty I. fuscus specimens (10 fresh, 10 in brine and 10 dried) were obtained from the Galápagos National Park Service; all had been impounded by the Park Service. A slice 1 cm2 x 1 mm thickness was dissected from the dorsal epidermis of each in- dividual. Following the methodology described by Hickman (1998), each sample was placed in a small test tube with 3 ml of commercial bleach (NaOCl). Samples were left for approximately 30 min or until the body wall had dissolved and the ossicles settled to the bottom, resembling fine white sedi- Figure 2.
Recommended publications
  • Petition to List the Black Teatfish, Holothuria Nobilis, Under the U.S. Endangered Species Act
    Before the Secretary of Commerce Petition to List the Black Teatfish, Holothuria nobilis, under the U.S. Endangered Species Act Photo Credit: © Philippe Bourjon (with permission) Center for Biological Diversity 14 May 2020 Notice of Petition Wilbur Ross, Secretary of Commerce U.S. Department of Commerce 1401 Constitution Ave. NW Washington, D.C. 20230 Email: [email protected], [email protected] Dr. Neil Jacobs, Acting Under Secretary of Commerce for Oceans and Atmosphere U.S. Department of Commerce 1401 Constitution Ave. NW Washington, D.C. 20230 Email: [email protected] Petitioner: Kristin Carden, Oceans Program Scientist Sarah Uhlemann, Senior Att’y & Int’l Program Director Center for Biological Diversity Center for Biological Diversity 1212 Broadway #800 2400 NW 80th Street, #146 Oakland, CA 94612 Seattle,WA98117 Phone: (510) 844‐7100 x327 Phone: (206) 324‐2344 Email: [email protected] Email: [email protected] The Center for Biological Diversity (Center, Petitioner) submits to the Secretary of Commerce and the National Oceanographic and Atmospheric Administration (NOAA) through the National Marine Fisheries Service (NMFS) a petition to list the black teatfish, Holothuria nobilis, as threatened or endangered under the U.S. Endangered Species Act (ESA), 16 U.S.C. § 1531 et seq. Alternatively, the Service should list the black teatfish as threatened or endangered throughout a significant portion of its range. This species is found exclusively in foreign waters, thus 30‐days’ notice to affected U.S. states and/or territories was not required. The Center is a non‐profit, public interest environmental organization dedicated to the protection of native species and their habitats.
    [Show full text]
  • SPC Beche-De-Mer Information Bulletin #39 – March 2019
    ISSN 1025-4943 Issue 39 – March 2019 BECHE-DE-MER information bulletin v Inside this issue Editorial Towards producing a standard grade identification guide for bêche-de-mer in This issue of the Beche-de-mer Information Bulletin is well supplied with Solomon Islands 15 articles that address various aspects of the biology, fisheries and S. Lee et al. p. 3 aquaculture of sea cucumbers from three major oceans. An assessment of commercial sea cu- cumber populations in French Polynesia Lee and colleagues propose a procedure for writing guidelines for just after the 2012 moratorium the standard identification of beche-de-mer in Solomon Islands. S. Andréfouët et al. p. 8 Andréfouët and colleagues assess commercial sea cucumber Size at sexual maturity of the flower populations in French Polynesia and discuss several recommendations teatfish Holothuria (Microthele) sp. in the specific to the different archipelagos and islands, in the view of new Seychelles management decisions. Cahuzac and others studied the reproductive S. Cahuzac et al. p. 19 biology of Holothuria species on the Mahé and Amirantes plateaux Contribution to the knowledge of holo- in the Seychelles during the 2018 northwest monsoon season. thurian biodiversity at Reunion Island: Two previously unrecorded dendrochi- Bourjon and Quod provide a new contribution to the knowledge of rotid sea cucumbers species (Echinoder- holothurian biodiversity on La Réunion, with observations on two mata: Holothuroidea). species that are previously undescribed. Eeckhaut and colleagues P. Bourjon and J.-P. Quod p. 27 show that skin ulcerations of sea cucumbers in Madagascar are one Skin ulcerations in Holothuria scabra can symptom of different diseases induced by various abiotic or biotic be induced by various types of food agents.
    [Show full text]
  • Research on Indian Echinoderms - a Review
    J. mar. biol Ass. India, 1983, 25 (1 & 2):91 -108 RESEARCH ON INDIAN ECHINODERMS - A REVIEW D. B. JAMES* Central Marine fisheries Research Institute, Cochin -682031 In the present paper research work so far done on Indian Echinoderms is reviewed. Various aspects such as history, taxonomy, anatomy, reproductive physiology, development and larval forms, ecology, animal associations, parasites, utility, distribution and zoogeography, toxicology and bibliography are reviewed in detail. Corrections to misidentifications in earlier papers have been made wherever possible and presented in the Appendix at the end of the paper. and help at every stage. He thanks Dr. INTRODUCTION P.S.B.R. James, Director, C.M.F.R. Institute for kindly suggesting to write this review and ECHINODERMS being common and conspicuous also for his kind interest and encouragement. organisms of the sea shore have attracted the He also thanks Miss A.M. Clark, British Museum attention of the naturalists since very early (Natural History), London for commenting times. Their btauty, more so their symmetry on the correct identity of some of the echino­ have attracted the attention of many a natura­ derms presented here. list. Although the first paper on Indian Echino- <jlerms was published as early as 1743 by Plan- HISTORY cus and Gaultire from Goa there was not much progress in the field except in the late nineteenth Most of the research work on Indian echino­ and early twentieth centuries when echinoderms derms relate only to taxonomy with little or no collected mostly by R.I.M.S. Investigator were information on the ecology and other aspects reported by several authors.
    [Show full text]
  • Morphology of an Endosymbiotic Bivalve, Entovalva Nhatrangensis (Bristow, Berland, Schander & Vo, 2010) (Galeommatoidea)
    Molluscan Research 31(2): 114–124 ISSN 1323-5818 http://www.mapress.com/mr/ Magnolia Press Morphology of an endosymbiotic bivalve, Entovalva nhatrangensis (Bristow, Berland, Schander & Vo, 2010) (Galeommatoidea) J. LÜTZEN1, B. BERLAND2, & G.A.BRISTOW2* 1Biological Institute, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark 2Department of Biology, University of Bergen, N-5020 Bergen, Norway *Corresponding author, Email: [email protected] Abstract We describe the morphology of Entovalva nhatrangensis Bristow, Berland, Schander & Vo, 2010, an endosymbiontic bivalve living in the oesophagus of Holothuria spinifera and H. leucospilota in Vietnam. The delicate shells are entirely internalized. The body is very small compared to the foot, which is dorso-ventrally flattened and contains the digestive diverticula and the fertile parts of the gonads. Even though the gills are small, they probably serve in collecting suspended matter, and in addition, the species clearly feeds on benthic diatoms, which it probably sorts out from the contents of the host’s gut. The species is a protandric hermaphrodite. Most males have a total length of 1.5–3.0 mm and above that size start changing sex to become females, which may attain a total length of nearly nine mm. Sperm is transferred in spermatophores with a solid wall produced by glands within the male siphon. One to three spermatophores are placed on the gills of females and the ova become fertilized as they pass from the genital pores to the siphon, where they are brooded until released as D-larvae. Key words: functional anatomy, hermaphroditism, protandry, spermatophore, Holothuria spinifera, Holothuria leucospilota, Bivalvia, Heterodonta Introduction following morning.
    [Show full text]
  • Profiles and Biological Values of Sea Cucumbers: a Mini Review Siti Fathiah Masre
    Life Sciences, Medicine and Biomedicine, Vol 2 No 4 (2018) 25 Review Article Profiles and Biological Values of Sea Cucumbers: A Mini Review Siti Fathiah Masre Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), 50300 Kuala Lumpur, Malaysia. https://doi.org/10.28916/lsmb.2.4.2018.25 Received 8 October 2018, Revisions received 19 November 2018, Accepted 23 November 2018, Available online 31 December 2018 Abstract Sea cucumbers, blind cylindrical marine invertebrates that live in the ocean intertidal beds have more than thousand species available of varying morphology and colours throughout the world. Sea cucumbers have long been exploited in traditional treatment as a source of natural medicinal compounds. Various nutritional and therapeutic values have been linked to this invertebrate. These creatures have been eaten since ancient times and purported as the most commonly consumed echinoderms. Some important biological activities of sea cucumbers including anti-hypertension, anti-inflammatory, anti-cancer, anti-asthmatic, anti-bacterial and wound healing. Thus, this short review comes with the principal aim to cover the profile, taxonomy, together with nutritional and medicinal properties of sea cucumbers. Keywords: sea cucumber; invertebrate; echinoderm; therapeutic; taxonomy. 1.0 Introduction Sea cucumbers are marine invertebrate under phylum Echinodermata (Kamarudin et al., 2017). This cylindrical invertebrate that lives throughout the worlds’ oceans bed is known as sea cucumber or ‘gamat’ in Malaysia (Kamarudin et al., 2017). There are more than 1200 sea cucumber species available of varying morphology and colours throughout the world (Oh et al., 2017). Within the coastal areas of Malaysia, sea cucumbers can be located in Semporna Island, Pangkor Island, Tioman Island, Langkawi Island and coastal areas within Terengganu.
    [Show full text]
  • Sphingolipids of Asteroidea and Holothuroidea: Structures and Biological Activities
    marine drugs Review Sphingolipids of Asteroidea and Holothuroidea: Structures and Biological Activities Timofey V. Malyarenko 1,2,*, Alla A. Kicha 1, Valentin A. Stonik 1,2 and Natalia V. Ivanchina 1,* 1 G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; [email protected] (A.A.K.); [email protected] (V.A.S.) 2 Department of Bioorganic Chemistry and Biotechnology, School of Natural Sciences, Far Eastern Federal University, Sukhanova Str. 8, 690000 Vladivostok, Russia * Correspondence: [email protected] (T.V.M.); [email protected] (N.V.I.); Tel.: +7-423-2312-360 (T.V.M.); Fax: +7-423-2314-050 (T.V.M.) Abstract: Sphingolipids are complex lipids widespread in nature as structural components of biomembranes. Commonly, the sphingolipids of marine organisms differ from those of terres- trial animals and plants. The gangliosides are the most complex sphingolipids characteristic of vertebrates that have been found in only the Echinodermata (echinoderms) phylum of invertebrates. Sphingolipids of the representatives of the Asteroidea and Holothuroidea classes are the most studied among all echinoderms. In this review, we have summarized the data on sphingolipids of these two classes of marine invertebrates over the past two decades. Recently established structures, properties, and peculiarities of biogenesis of ceramides, cerebrosides, and gangliosides from starfishes and holothurians are discussed. The purpose of this review is to provide the most complete informa- tion on the chemical structures, structural features, and biological activities of sphingolipids of the Asteroidea and Holothuroidea classes.
    [Show full text]
  • Effects of Temperature, Salinity and Ph on Larval Growth, Survival and Development of the Sea Cucumber Holothuria Spinifera Theel
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository Aquaculture 250 (2005) 823–829 www.elsevier.com/locate/aqua-online Effects of temperature, salinity and pH on larval growth, survival and development of the sea cucumber Holothuria spinifera Theel P.S. Asha*, P. Muthiah Tuticorin Research Centre of CMFRI, 115 N.K. Chetty Street, Tuticorin 628 001, India Received 25 August 2004; received in revised form 29 April 2005; accepted 30 April 2005 Abstract For large-scale seed production of sea cucumbers through a hatchery system, it is imperative to know the effects of environmental parameters on larval rearing. Auricularia larvae (48 h post-fertilization) were obtained from induced spawning of Holothuria spinifera and used in experiments to ascertain the effects of temperature, salinity and pH on the growth and survivorship of the larvae. The larvae were reared for 12 days at temperatures of 20, 25, 28 and 32 8C; salinities of 15, 20, 25, 30, 35 and 40 ppt; and pH of 6.5, 7.0, 7.5, 7.8, 8.0, 8.5 and 9.0. The highest survivorship and growth rate and fastest development of auricularia indicated that water temperature of 28–32 8C, salinity of 35 ppt and pH of 7.8 were the most suitable conditions for rearing larvae of H. spinifera. D 2005 Elsevier B.V. All rights reserved. Keywords: Holothuria spinifera; Sea cucumber; Larval rearing; Salinity; Temperature; pH; Growth 1. Introduction and Chian, 1990), Holothuria scabra (James et al., 1994; Battaglene, 1999), Isostichopus japonicus (Ito Environmental conditions play a vital role in in- and Kitamura, 1998) and Holothuria spinifera (Asha vertebrate larval development.
    [Show full text]
  • Community Structure, Diversity, and Distribution Patterns of Sea Cucumber
    Community structure, diversity, and distribution patterns of sea cucumber (Holothuroidea) in the coral reef area of Sapeken Islands, Sumenep Regency, Indonesia 1Abdulkadir Rahardjanto, 2Husamah, 2Samsun Hadi, 1Ainur Rofieq, 2Poncojari Wahyono 1 Biology Education, Postgraduate Directorate, Universitas Muhammadiyah Malang, Malang, East Java, Indonesia; 2 Biology Education, Faculty of Teacher Training and Education, Universitas Muhammadiyah Malang, Malang, Indonesia. Corresponding author: A. Rahardjanto, [email protected] Abstract. Sea cucumbers (Holothuroidea) are one of the high value marine products, with populations under very critical condition due to over exploitation. Data and information related to the condition of sea cucumber communities, especially in remote islands, like the Sapeken Islands, Sumenep Regency, East Java, Indonesia, is still very limited. This study aimed to determine the species, community structure (density, frequency, and important value index), species diversity index, and distribution patterns of sea cucumbers found in the reef area of Sapeken Islands, using a quantitative descriptive study. This research was conducted in low tide during the day using the quadratic transect method. Data was collected by making direct observations of the population under investigation. The results showed that sea cucumbers belonged to 11 species, from 2 orders: Aspidochirotida, with the species Holothuria hilla, Holothuria fuscopunctata, Holothuria impatiens, Holothuria leucospilota, Holothuria scabra, Stichopus horrens, Stichopus variegates, Actinopyga lecanora, and Actinopyga mauritiana and order Apodida, with the species Synapta maculata and Euapta godeffroyi. The density ranged from 0.162 to 1.37 ind m-2, and the relative density was between 0.035 and 0.292 ind m-2. The highest density was found for H. hilla and the lowest for S.
    [Show full text]
  • Reproductive Biology of the Commercial Sea Cucumber Holothuria Spinifera (Echinodermata: Holothuroidea) from Tuticorin, Tamil Nadu, India
    Aquacult Int (2008) 16:231–242 DOI 10.1007/s10499-007-9140-z Reproductive biology of the commercial sea cucumber Holothuria spinifera (Echinodermata: Holothuroidea) from Tuticorin, Tamil Nadu, India P. S. Asha Æ P. Muthiah Received: 13 September 2006 / Accepted: 5 October 2007 / Published online: 27 October 2007 Ó Springer Science+Business Media B.V. 2007 Abstract The annual reproductive cycle of the commercial sea cucumber Holothuria spinifera was studied in Tuticorin, Tamil Nadu, India, from September 2000 to October 2001, by macroscopic and microscopic examination of gonad tubule, gonad index and histology of gametogenic stages, to determine the spawning pattern. The gonad consists of long tubules with uniform development. It does not confirm the progressive tubule recruitment model described for other holothurians. The maximum percentage of mature animals, gonad and fecundity indices, tubule length and diameter, with the observations on gonad histology, ascertained that H. spinifera had the peak gametogenic activity during September and October 2001 followed by a prolonged spawning period from November 2000–March 2001. Keywords Gonad index Á Holothuria spinifera Á Reproductive cycle Á Spawning period Introduction Sea cucumbers form an important part of multispecies fisheries, existing for over 1,000 years along the Indo-Pacific region, and the processed product, the ‘beche-de-mer’, is a valuable source of income for fishermen. Increasing demand and inadequate man- agement of sea cucumber stocks in many countries have resulted in severe overexploitation of commercially important species (Conand 1997). Sea-ranching, the release of hatchery- produced juveniles into the natural habitat, is being carried out to restore and enhance the wild stocks for sustainable yield (Yanagisawa 1998).
    [Show full text]
  • Echinodermata Associated with Coral Reefs of Andaman and Nicobar Islands
    Rec. zoo!. Surv. India: 100 (Part 3-4) : 21-60, 2002 ECHINODERMATA ASSOCIATED WITH CORAL REEFS OF ANDAMAN AND NICOBAR ISLANDS D. R. K. SASTRY Zoological Survey of India, A & N Regional Station, Port Blair - 744 102 INTRODUCTION Coral reefs are an important ecosystem of the coastal environment. The reef ecosystem IS highly productive and provides substratum, shelter, food etc. to a variety of biota. Consequently a number of faunal and floral elements are attracted towards the reef ecosystem and are closely associated with each other to form a community. Thus the reefs are also rich in biodiversity. Among the coral reef associates echinoderms are a conspicuous element on account of their size, abundance and effect on the reef ecosystem including the corals. In spite of their importance in the coral reef ecosystem and its conservation, very few studies were made on the echinoderm associates of the coral reefs. Though there were some studies elsewhere, the information on reef­ associated echinoderms of Indian coast is meager and scattered (see Anon, 1995). Hence an attempt is made here to collate the scattered accounts and unpublished information available with Zoological Survey of India. Since the information is from several originals and quoted references and many are to be cited often, these are avoided in the text and a comprehensive bibliography is appended which served as source material and also provides additional references of details and further information. ECHINODERMS OF CORAL REEFS More than 200 species of echinoderms occur in the reef ecosystem of Andaman and Nicobar Islands. These belong to five extant classes with 30 to 60 species of each class.
    [Show full text]
  • High-Value Components and Bioactives from Sea Cucumbers for Functional Foods—A Review
    Mar. Drugs 2011, 9, 1761-1805; doi:10.3390/md9101761 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review High-Value Components and Bioactives from Sea Cucumbers for Functional Foods—A Review Sara Bordbar 1, Farooq Anwar 1,2 and Nazamid Saari 1,* 1 Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; E-Mails: [email protected] (S.B.); [email protected] (F.A.) 2 Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +60-389-468-385; Fax: +60-389-423-552. Received: 3 August 2011; in revised form: 30 August 2011 / Accepted: 8 September 2011 / Published: 10 October 2011 Abstract: Sea cucumbers, belonging to the class Holothuroidea, are marine invertebrates, habitually found in the benthic areas and deep seas across the world. They have high commercial value coupled with increasing global production and trade. Sea cucumbers, informally named as bêche-de-mer, or gamat, have long been used for food and folk medicine in the communities of Asia and Middle East. Nutritionally, sea cucumbers have an impressive profile of valuable nutrients such as Vitamin A, Vitamin B1 (thiamine), Vitamin B2 (riboflavin), Vitamin B3 (niacin), and minerals, especially calcium, magnesium, iron and zinc. A number of unique biological and pharmacological activities including anti-angiogenic, anticancer, anticoagulant, anti-hypertension, anti-inflammatory, antimicrobial, antioxidant, antithrombotic, antitumor and wound healing have been ascribed to various species of sea cucumbers. Therapeutic properties and medicinal benefits of sea cucumbers can be linked to the presence of a wide array of bioactives especially triterpene glycosides (saponins), chondroitin sulfates, glycosaminoglycan (GAGs), sulfated polysaccharides, sterols (glycosides and sulfates), phenolics, cerberosides, lectins, peptides, glycoprotein, glycosphingolipids and essential fatty acids.
    [Show full text]
  • High-Value Components and Bioactives from Sea Cucumbers for Functional Foods—A Review
    Mar. Drugs 2011, 9, 1761-1805; doi:10.3390/md9101761 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review High-Value Components and Bioactives from Sea Cucumbers for Functional Foods—A Review Sara Bordbar 1, Farooq Anwar 1,2 and Nazamid Saari 1,* 1 Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; E-Mails: [email protected] (S.B.); [email protected] (F.A.) 2 Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +60-389-468-385; Fax: +60-389-423-552. Received: 3 August 2011; in revised form: 30 August 2011 / Accepted: 8 September 2011 / Published: 10 October 2011 Abstract: Sea cucumbers, belonging to the class Holothuroidea, are marine invertebrates, habitually found in the benthic areas and deep seas across the world. They have high commercial value coupled with increasing global production and trade. Sea cucumbers, informally named as bêche-de-mer, or gamat, have long been used for food and folk medicine in the communities of Asia and Middle East. Nutritionally, sea cucumbers have an impressive profile of valuable nutrients such as Vitamin A, Vitamin B1 (thiamine), Vitamin B2 (riboflavin), Vitamin B3 (niacin), and minerals, especially calcium, magnesium, iron and zinc. A number of unique biological and pharmacological activities including anti-angiogenic, anticancer, anticoagulant, anti-hypertension, anti-inflammatory, antimicrobial, antioxidant, antithrombotic, antitumor and wound healing have been ascribed to various species of sea cucumbers. Therapeutic properties and medicinal benefits of sea cucumbers can be linked to the presence of a wide array of bioactives especially triterpene glycosides (saponins), chondroitin sulfates, glycosaminoglycan (GAGs), sulfated polysaccharides, sterols (glycosides and sulfates), phenolics, cerberosides, lectins, peptides, glycoprotein, glycosphingolipids and essential fatty acids.
    [Show full text]