Leap Second App Note
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
WWVB: a Half Century of Delivering Accurate Frequency and Time by Radio
Volume 119 (2014) http://dx.doi.org/10.6028/jres.119.004 Journal of Research of the National Institute of Standards and Technology WWVB: A Half Century of Delivering Accurate Frequency and Time by Radio Michael A. Lombardi and Glenn K. Nelson National Institute of Standards and Technology, Boulder, CO 80305 [email protected] [email protected] In commemoration of its 50th anniversary of broadcasting from Fort Collins, Colorado, this paper provides a history of the National Institute of Standards and Technology (NIST) radio station WWVB. The narrative describes the evolution of the station, from its origins as a source of standard frequency, to its current role as the source of time-of-day synchronization for many millions of radio controlled clocks. Key words: broadcasting; frequency; radio; standards; time. Accepted: February 26, 2014 Published: March 12, 2014 http://dx.doi.org/10.6028/jres.119.004 1. Introduction NIST radio station WWVB, which today serves as the synchronization source for tens of millions of radio controlled clocks, began operation from its present location near Fort Collins, Colorado at 0 hours, 0 minutes Universal Time on July 5, 1963. Thus, the year 2013 marked the station’s 50th anniversary, a half century of delivering frequency and time signals referenced to the national standard to the United States public. One of the best known and most widely used measurement services provided by the U. S. government, WWVB has spanned and survived numerous technological eras. Based on technology that was already mature and well established when the station began broadcasting in 1963, WWVB later benefitted from the miniaturization of electronics and the advent of the microprocessor, which made low cost radio controlled clocks possible that would work indoors. -
User Manual for Amazfit GTR 2 (English Edition) Contents
User Manual for Amazfit GTR 2 (English Edition) Contents User Manual for Amazfit GTR 2 (English Edition) ......................................................................................1 Getting started................................................................................................................................................3 Appearance ....................................................................................................................................3 Power on and off............................................................................................................................3 Charging ........................................................................................................................................3 Wearing & Replacing Watch Strap ...............................................................................................4 Connecting & Pairing ....................................................................................................................4 Updating the system of your watch ...............................................................................................5 Control center ................................................................................................................................5 Time System..................................................................................................................................6 Units...............................................................................................................................................6 -
SOFA Time Scale and Calendar Tools
International Astronomical Union Standards Of Fundamental Astronomy SOFA Time Scale and Calendar Tools Software version 1 Document revision 1.0 Version for Fortran programming language http://www.iausofa.org 2010 August 27 SOFA BOARD MEMBERS John Bangert United States Naval Observatory Mark Calabretta Australia Telescope National Facility Anne-Marie Gontier Paris Observatory George Hobbs Australia Telescope National Facility Catherine Hohenkerk Her Majesty's Nautical Almanac Office Wen-Jing Jin Shanghai Observatory Zinovy Malkin Pulkovo Observatory, St Petersburg Dennis McCarthy United States Naval Observatory Jeffrey Percival University of Wisconsin Patrick Wallace Rutherford Appleton Laboratory ⃝c Copyright 2010 International Astronomical Union. All Rights Reserved. Reproduction, adaptation, or translation without prior written permission is prohibited, except as al- lowed under the copyright laws. CONTENTS iii Contents 1 Preliminaries 1 1.1 Introduction ....................................... 1 1.2 Quick start ....................................... 1 1.3 The SOFA time and date routines .......................... 1 1.4 Intended audience ................................... 2 1.5 A simple example: UTC to TT ............................ 2 1.6 Abbreviations ...................................... 3 2 Times and dates 4 2.1 Timekeeping basics ................................... 4 2.2 Formatting conventions ................................ 4 2.3 Julian date ....................................... 5 2.4 Besselian and Julian epochs ............................. -
International Earth Rotation and Reference Systems Service (IERS) Provides the International Community With
The Role of the IERS in the Leap Second Brian Luzum Chair, IERS Directing Board Background The International Earth Rotation and Reference Systems Service (IERS) provides the international community with: • the International Celestial Reference System and its realization, the International Celestial Reference Frame (ICRF); • the International Terrestrial Reference System and its realization, the International Terrestrial Reference Frame (ITRF); • Earth orientation parameters (EOPs) that are used to transform between the ICRF and the ITRF; • Conventions (i.e., standards, models, and constants) used in generating and using reference frames and EOPs; • Geophysical data to study and understand variations in the reference frames and the Earth’s orientation. The IERS was created in 1987 and began operations on 1 January 1988. It continued much of the tasking of the Bureau International de l’Heure (BIH), which had been created early in the 20th century. It is responsible to the International Astronomical Union (IAU) and the International Union of Geodesy and Geophysics (IUGG). For more than twenty-five years, the IERS has been providing for the reference frame and EOP needs of a variety of users. Time The IERS has an important role in determining when the leap seconds are to be inserted and the dissemination of information regarding leap seconds. In order to understand this role, it is important to realize some things regarding time. For instance, there are two different kinds of “time” being related: (1) a uniform time, now based on atomic clocks and (2) “time” based on the variable rotation of the Earth. The differences between uniform time and Earth rotation “time” only became apparent in the 1930s with the improvements in clock technology. -
Role of the IERS in the Leap Second Brian Luzum Chair, IERS Directing Board Outline
Role of the IERS in the leap second Brian Luzum Chair, IERS Directing Board Outline • What is the IERS? • Clock time (UTC) • Earth rotation angle (UT1) • Leap Seconds • Measures and Predictions of Earth rotation • How are Earth rotation data used? • How the IERS provides for its customers • Future considerations • Summary What is the IERS? • The International Earth Rotation and Reference Systems Service (IERS) provides the following to the international scientific communities: • International Celestial Reference System (ICRS) and its realization the International Celestial Reference Frame (ICRF) • International Terrestrial Reference System (ITRS) and its realization the International Terrestrial Reference Frame (ITRF) • Earth orientation parameters that transform between the ICRF and the ITRF • Conventions (i.e. standards, models, and constants) used in generating and using reference frames and EOPs • Geophysical data to study and understand variations in the reference frames and the Earth’s orientation • Due to the nature of the data, there are many operational users Brief history of the IERS • The International Earth Rotation Service (IERS) was created in 1987 • Responsible to the International Astronomical Union (IAU) and the International Union of Geodesy and Geophysics (IUGG) • IERS began operations on 1 January 1988 • IERS changed its name to International Earth Rotation and Reference Systems Service to better represent its responsibilities • Earth orientation relies directly on having accurate, well-defined reference systems Structure -
The Matter of Time
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 June 2021 doi:10.20944/preprints202106.0417.v1 Article The matter of time Arto Annila 1,* 1 Department of Physics, University of Helsinki; [email protected] * Correspondence: [email protected]; Tel.: (+358 44 204 7324) Abstract: About a century ago, in the spirit of ancient atomism, the quantum of light was renamed the photon to suggest its primacy as the fundamental element of everything. Since the photon carries energy in its period of time, a flux of photons inexorably embodies a flow of time. Time comprises periods as a trek comprises legs. The flows of quanta naturally select optimal paths, i.e., geodesics, to level out energy differences in the least time. While the flow equation can be written, it cannot be solved because the flows affect their driving forces, affecting the flows, and so on. As the forces, i.e., causes, and changes in motions, i.e., consequences, cannot be separated, the future remains unpre- dictable, however not all arbitrary but bounded by free energy. Eventually, when the system has attained a stationary state, where forces tally, there are no causes and no consequences. Then time does not advance as the quanta only orbit on and on. Keywords: arrow of time; causality; change; force; free energy; natural selection; nondeterminism; quantum; period; photon 1. Introduction We experience time passing, but the experience itself lacks a theoretical formulation. Thus, time is a big problem for physicists [1-3]. Although every process involves a passage of time, the laws of physics for particles, as we know them today, do not make a difference whether time flows from the past to the future or from the future to the past. -
Concern on UTC Leap Second Schedule Announcements
Concern on UTC Leap Second Schedule Announcements Karl Kovach 15 Aug 19 © 2019 The Aerospace Corporation UTC & Leap Seconds • International Earth Rotation Service (IERS) – The “keeper’ of UTC • The ‘decider’ of UTC leap seconds • U.S. Naval Observatory (USNO) – Contributes to IERS for UTC • Follows IERS for UTC leap seconds • U.S. Department of Defense (DoD) – Follows USNO for UTC & UTC leap seconds • Global Positioning System (GPS) – Should be following USNO for UTC & UTC leap seconds 2 UTC Leap Second Announcements • IERS announces the UTC leap second schedule – USNO forwards the IERS announcements • DoD uses the IERS leap second announcements – GPS should simply follow along… 3 IERS “Bulletin C” Announcements Paris, 6 July 2016 – Bulletin C 52 4 IERS “Bulletin C” Announcements Paris, 9 January 2017 – Bulletin C 53 5 IERS “Bulletin C” Announcements Paris, 06 July 2017 – Bulletin C 54 6 IERS “Bulletin C” Announcements Paris, 09 January 2018 – Bulletin C 55 7 IERS “Bulletin C” Announcements Paris, 05 July 2018 – Bulletin C 56 8 IERS “Bulletin C” Announcements Paris, 07 January 2019 – Bulletin C 57 9 IERS “Bulletin C” Announcements Paris, 04 July 2019 – Bulletin C 58 10 UTC Leap Second Announcements • IERS announces the UTC leap second schedule – USNO forwards the IERS announcements • DoD uses the IERS leap second announcements – GPS should simply follow along… • GPS also announces a UTC leap second schedule – Should be the same schedule as IERS & USNO 11 GPS Leap Second Announcement WNLSF DN ΔtLSF 12 GPS Leap Second Announcement Leap -
Leap Second Application Anomaly
PRESS RELEASE Leap Second Application Anomaly Affected products The following models will not properly apply the leap second coming 31 December 201 6. Model 1 084A/B/C Model 1 093A/B/C Model 1 1 33A Model 1 088A/B Model 1 094B Model 1 092A/B/C Model 1 095B/C What is a leap second? A leap second is the second added to or subtracted from the UTC time reference when the difference between UTC and UT1 approaches 0.9 seconds. By adding an additional second to the time count, clocks are effectively stopped for that second to give Earth the opportunity to catch up with atomic time. What does this mean, UTC, UT1 , et cetera? There are many time references in use. There is time based on atoms. There is time based on the Earth's rotation. Then there is time that we civilians use. • International Atomic Time (TAI). TAI is a statistical atomic time scale based on a large number of clocks operating at standards laboratories around the world with the unit interval of the SI second. • Universal Time (UT1 ). UT1 is also known as Astronomical Time and is the non-uniform time based on the Earth’s rotation. • Coordinated Universal Time (UTC) is a widely used standard for international timekeeping of civil time and differs from TAI by the total number of leap seconds. • Global Positioning System (GPS) Time is the atomic time scale implemented by the atomic clocks in the GPS ground control stations and the GPS satellites themselves. GPS time was zero at 0h 6 January 1 980 and does not include leap seconds. -
Changing the Time on Your Qqest Time Clock For
IntelliClockDaylight SavingSeries Time CHANGING THE TIME ON YOUR QQEST IQTIME 1000 CLOCK FOR DAYLIGHT SAVING TIME HardwareIt’s Daylight Specifications Saving Time Automatic DST Uploads main ClockLink screen. Highlight the clock that you would like to upload again! Make sure that your the date and time to and click on the clocks are reset before the The ClockLink Scheduler contains a “Connect” link. The ClockLink utility time changes. pre-configured Daylight Saving script connects to the selected time clock. As our flagship data collection terminal, Dimensionsintended & Weight: to automatically upload the 8.75” x 8.25” x 1.5”, approx. 1.65 lbs.; with the IQ1000, our most advanced time time to your clocks each Daylight . Once you have connected to a time biometric authentication module 1.9 lbs HID Proximity3 Card Reader: clock, delivers the capabilities required Saving. This script already exists in clock, the clock options are displayed the ClockLink Scheduler, and cannot HID 26 bit and 37 bit formats supported for even the most demanding Keypad: 25 keys (1-9, (decimal point), CLEAR, on the right-hand side of the screen. be edited or deleted. Since Windows The row of icons at the top of the applications. ENTER,automatically MENU, Lunch updates and Meal/Br the eakcomputer’s Keys, Communication Options: Job Costing and Tracking Keys, Department Directscreen Ethernet allows or Cellular you to select which time for Daylight Saving, the time offset functions you would like to perform at Transfernever Keys, needs Tip/Gratuity to be updated.Keys. Key “Click”. Selectable by user. If enabled, the clock will Cellular:the GSM clock. -
Best Practices for Leap Second Event Occurring on 30 June 2015
26 May 2015 Best Practices for Leap Second Event Occurring on 30 June 2015 Sponsored by the National Cybersecurity and Communications Integration Center in coordination with the United States Naval Observatory, National Institute of Standards and Technology, the USCG Navigation Center, and the National Coordination Office for Space-Based Positioning, Navigation and Timing. This product is intended to assist federal, state, local, and private sector organizations with preparations for the 30-June 2015 Leap Second event. Entities using precision time should be mindful that no leap second adjustment has occurred on a non- holiday weekday in the past decade. Of the three leap seconds implemented since 2000, two have been scheduled on 31 December and the most recent was on Sunday, 1 July 2012. Please report operational challenges you experience to the following organizations: GPS -- United States Coast Guard Navigation Center (NAVCEN), via the NAVCEN Website, http://www.navcen.uscg.gov/ under "Report a GPS Problem" Network Timing Protocols (NTP) -- Michael Lombardi at NIST, Boulder, Colorado at 303-497- 3212, or [email protected]. ============================================= 1. Leap Second Introduction The Coordinated Universal Time (UTC) time standard, based on atomic clocks, is widely used for international timekeeping and as the reference for time in most countries. UTC is the basis of legal time for most of the world. UTC must be adjusted at irregular intervals to maintain its correlation to mean solar time due to irregularities in the Earth’s rotation. These adjustments, called leap seconds, are pre-determined. The next leap second will occur on 30 June 2015 at 23:59:59 UTC. -
Clock/Calendar Implementation on the Stm32f10xxx Microcontroller RTC
AN2821 Application note Clock/calendar implementation on the STM32F10xxx microcontroller RTC The internal RTC (real-time clock) of the 32-bit, ARM® Cortex™-M3-based medium-density STM32F10xxx microcontroller is an independent timer. It provides a set of continuously running counters, which, using suitable software, can be used to implement a clock/calendar function. The RTC and backup registers are supplied through a switch that draws power from either the VDD supply (when present) or the backup battery. Thus the RTC runs even when the main supply is switched off. This application note gives an example of how to implement the clock/calendar functionality using the medium-density STM32F10xxx microcontroller in low-power and standard applications. The firmware example also performs leap year counting and tamper time stamping. It provides a low-power mode demonstration and a basic RTC calibration routine to compensate for crystal and temperature variations. The STM3210B-EVAL board supports the firmware example described in this application note without any modification to its hardware. Figure 1. STM3210B-EVAL board April 2009 Doc ID 14949 Rev 2 1/28 www.st.com Contents AN2821 Contents 1 Overview of the medium-density STM32F10xxx backup domain . 6 1.1 Main backup domain features . 6 1.2 Main RTC features . 7 2 Configuring the RTC registers . 8 3 Clock/calendar functionality features . 9 3.1 Clock/calendar basics . 9 3.1.1 Implementing the clock function on the medium-density STM32F10xxx . 9 3.1.2 Implementing calendar function on the medium-density STM32F10xxx . 9 3.1.3 Summer time correction . 11 3.2 Clock source selection . -
Automatically Setting Daylight Saving Time on MISER
DST SETTINGS Effective: Revision: 12/01/10 Draft Automa tically Setting Daylight Saving Time on MISER NTP The Network Time Protocol (NTP) provides synchronized timekeeping among a set of distributed time servers and clients. The local OpenVMS host maintains an NTP configuration file ( TCPIP$NTP.CONF) of participating peers. Before configuring your host, you must do the following: 1) Select time sources. 2) Obtain the IP addresses or host names of the time sources. 3) Enable the NTP service via the TCPIP$CONFIG command procedure. TCPIP$NTP.CONF is maintained in the SYS$SPECIFIC[TCPIP$NTP] directory. NOTE: The NTP configuration file is not dynamic; it requires restarting NTP after editing for the changes to take effect. NTP Startup and Shutdown To stop and then restart the NTP server to allow configuration changes to take effect, you must execute the following commands from DCL: $ @sys$startup:tcpip$ntp_shutdown $ @sys$startup:tcpip$ntp_startup NOTE: Since NTP is an OpenVMS TCP/IP service, there is no need to modify any startup command procedures to include these commands; normal TCP/IP startup processing will check to see if it should start or stop the service at the right time. NTP Configuration File Statements Your NTP configuration file should always include the following driftfile entry. driftfile SYS$SPECIFIC:[TCPIP$NTP]TCPIP$NTP.DRIFT CONFIDENTIAL All information contained in this document is confidential and is the sole property of HSQ Technology. Any reproduction in part or whole without the written permission of HSQ Technology is prohibited. PAGE: 1 of 9 DST SETTINGS ] NOTE: The driftfile is the name of the file that stores the clock drift (also known as frequency error) of the system clock.