The DNA Repair Associated Protein Gadd45γ Regulates the Temporal Coding of Immediate Early Gene Expression and Is Required
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Suppression of DNA Double-Strand Break Formation by DNA Polymerase B in Active DNA Demethylation Is Required for Development of Hippocampal Pyramidal Neurons
9012 • The Journal of Neuroscience, November 18, 2020 • 40(47):9012–9027 Development/Plasticity/Repair Suppression of DNA Double-Strand Break Formation by DNA Polymerase b in Active DNA Demethylation Is Required for Development of Hippocampal Pyramidal Neurons Akiko Uyeda,1 Kohei Onishi,1 Teruyoshi Hirayama,1,2,3 Satoko Hattori,4 Tsuyoshi Miyakawa,4 Takeshi Yagi,1,2 Nobuhiko Yamamoto,1 and Noriyuki Sugo1 1Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan, 2AMED-CREST, Japan Agency for Medical Research and Development, Suita, Osaka 565-0871, Japan, 3Department of Anatomy and Developmental Neurobiology, Tokushima University Graduate School of Medical Sciences, Kuramoto, Tokushima 770-8503, Japan, and 4Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan Genome stability is essential for brain development and function, as de novo mutations during neuronal development cause psychiatric disorders. However, the contribution of DNA repair to genome stability in neurons remains elusive. Here, we demonstrate that the base excision repair protein DNA polymerase b (Polb) is involved in hippocampal pyramidal neuron fl/fl differentiation via a TET-mediated active DNA demethylation during early postnatal stages using Nex-Cre/Polb mice of ei- ther sex, in which forebrain postmitotic excitatory neurons lack Polb expression. Polb deficiency induced extensive DNA dou- ble-strand breaks (DSBs) in hippocampal pyramidal neurons, but not dentate gyrus granule cells, and to a lesser extent in neocortical neurons, during a period in which decreased levels of 5-methylcytosine and 5-hydroxymethylcytosine were observed in genomic DNA. Inhibition of the hydroxylation of 5-methylcytosine by expression of microRNAs miR-29a/b-1 diminished DSB formation. -
Activation of Immediate Early Genes by Drugs of Abuse
National Institute on Drug Abuse RESEARCH MONOGRAPH SERIES Activation of Immediate Early Genes by Drugs of Abuse 125 U.S. Department of Health and Human Services • Public Health Service • National Institutes of Health Activation of Immediate Early Genes By Drugs of Abuse Editors: Reinhard Grzanna, Ph.D. Roger M. Brown, Ph.D. NIDA Research Monograph 125 1993 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health National Institute on Drug Abuse 5600 Fishers Lane Rockville, MD 20857 ACKNOWLEDGMENT This monograph is based on the papers and discussions from a technical review on “Activation of Immediate Early Genes by Drugs of Abuse” held on June 3-4, 1991, in Rockville, MD. The technical review was sponsored by the National Institute on Drug Abuse (NIDA). COPYRIGHT STATUS The National Institute on Drug Abuse has obtained permission from the copyright holders to reproduce certain previously published material as noted in the text. Further reproduction of this copyrighted material is permitted only as part of a reprinting of the entire publication or chapter. For any other use, the copyright holder’s permission is required. All other material in this volume except quoted passages from copyrighted sources is in the public domain and may be used or reproduced without permission from the Institute or the authors, Citation of the source is appreciated. Opinions expressed in this volume are those of the authors and do not necessarily reflect the opinions or official policy of the National Institute on Drug Abuse or any other part of the U.S. Department of Health and Human Services. -
Oxidative Stress in Sperm Affects the Epigenetic Reprogramming in Early
Wyck et al. Epigenetics & Chromatin (2018) 11:60 https://doi.org/10.1186/s13072-018-0224-y Epigenetics & Chromatin RESEARCH Open Access Oxidative stress in sperm afects the epigenetic reprogramming in early embryonic development Sarah Wyck1,2,3, Carolina Herrera1, Cristina E. Requena4,5, Lilli Bittner1, Petra Hajkova4,5, Heinrich Bollwein1* and Rafaella Santoro2* Abstract Background: Reactive oxygen species (ROS)-induced oxidative stress is well known to play a major role in male infer- tility. Sperm are sensitive to ROS damaging efects because as male germ cells form mature sperm they progressively lose the ability to repair DNA damage. However, how oxidative DNA lesions in sperm afect early embryonic develop- ment remains elusive. Results: Using cattle as model, we show that fertilization using sperm exposed to oxidative stress caused a major developmental arrest at the time of embryonic genome activation. The levels of DNA damage response did not directly correlate with the degree of developmental defects. The early cellular response for DNA damage, γH2AX, is already present at high levels in zygotes that progress normally in development and did not signifcantly increase at the paternal genome containing oxidative DNA lesions. Moreover, XRCC1, a factor implicated in the last step of base excision repair (BER) pathway, was recruited to the damaged paternal genome, indicating that the maternal BER machinery can repair these DNA lesions induced in sperm. Remarkably, the paternal genome with oxidative DNA lesions showed an impairment of zygotic active DNA demethylation, a process that previous studies linked to BER. Quantitative immunofuorescence analysis and ultrasensitive LC–MS-based measurements revealed that oxidative DNA lesions in sperm impair active DNA demethylation at paternal pronuclei, without afecting 5-hydroxymethyl- cytosine (5hmC), a 5-methylcytosine modifcation that has been implicated in paternal active DNA demethylation in mouse zygotes. -
Expression of an Arc-Immunoreactive Protein in the Adult Zebrafish Brain Increases in Response to a Novel Environment Robert A
Georgia Journal of Science Volume 76 No.1 Scholarly Contributions from the Article 2 Membership and Others 2018 Expression of an Arc-Immunoreactive Protein in the Adult Zebrafish Brain Increases in Response to a Novel Environment Robert A. Mans Georgia Southern University - Armstrong, [email protected] Kyle D. Hinton Georgia Southern University - Armstrong Amanda E. Rumer Armstrong State University Kourtnei A. Zellner Armstrong State University Emily A. Blankenship Armstrong State University See next page for additional authors Follow this and additional works at: https://digitalcommons.gaacademy.org/gjs Part of the Molecular and Cellular Neuroscience Commons Recommended Citation Mans, Robert A.; Hinton, Kyle D.; Rumer, Amanda E.; Zellner, Kourtnei A.; Blankenship, Emily A.; Kerkes, Lia M.; Hamilton, Michael J.; Reilly, Theresa R.; and Payne, Cicely H. (2018) "Expression of an Arc-Immunoreactive Protein in the Adult Zebrafish Brain Increases in Response to a Novel Environment," Georgia Journal of Science, Vol. 76, No. 2, Article 2. Available at: https://digitalcommons.gaacademy.org/gjs/vol76/iss2/2 This Research Articles is brought to you for free and open access by Digital Commons @ the Georgia Academy of Science. It has been accepted for inclusion in Georgia Journal of Science by an authorized editor of Digital Commons @ the Georgia Academy of Science. Expression of an Arc-Immunoreactive Protein in the Adult Zebrafish Brain Increases in Response to a Novel Environment Authors Robert A. Mans, Kyle D. Hinton, Amanda E. Rumer, Kourtnei A. Zellner, Emily A. Blankenship, Lia M. Kerkes, Michael J. Hamilton, Theresa R. Reilly, and Cicely H. Payne This research articles is available in Georgia Journal of Science: https://digitalcommons.gaacademy.org/gjs/vol76/iss2/2 Mans et al.: Expression of an Arc-Immunoreactive Protein in the Adult Zebrafish Brain Increases in Response to a Novel Environment EXPRESSION OF AN ARC-IMMUNOREACTIVE PROTEIN IN THE ADULT ZEBRAFISH BRAIN INCREASES IN RESPONSE TO A NOVEL ENVIRONMENT Robert A. -
Tet2-Mediated Epigenetic Drive for Astrocyte Differentiation from Embryonic Neural Stem Cells Fei He1,Haowu2,3, Liqiang Zhou1,Quanlin4,Yincheng4 and Yi E
He et al. Cell Death Discovery (2020) 6:30 https://doi.org/10.1038/s41420-020-0264-5 Cell Death Discovery ARTICLE Open Access Tet2-mediated epigenetic drive for astrocyte differentiation from embryonic neural stem cells Fei He1,HaoWu2,3, Liqiang Zhou1,QuanLin4,YinCheng4 and Yi E. Sun1,4,5 Abstract DNA methylation and demethylation at CpG di-nucleotide sites plays important roles in cell fate specification of neural stem cells (NSCs). We have previously reported that DNA methyltransferases, Dnmt1and Dnmt3a, serve to suppress precocious astrocyte differentiation from NSCs via methylation of astroglial lineage genes. However, whether active DNA demethylase also participates in astrogliogenesis remains undetermined. In this study, we discovered that a Ten- eleven translocation (Tet) protein, Tet2, which was critically involved in active DNA demethylation through oxidation of 5-Methylcytosine (5mC), drove astrocyte differentiation from NSCs by demethylation of astroglial lineage genes including Gfap. Moreover, we found that an NSC-specific bHLH transcription factor Olig2 was an upstream inhibitor for Tet2 expression through direct association with the Tet2 promoter, and indirectly inhibited astrocyte differentiation. Our research not only revealed a brand-new function of Tet2 to promote NSC differentiation into astrocytes, but also a novel mechanism for Olig2 to inhibit astrocyte formation. Introduction stages (E11-12) mainly give rise to neurons, even in the 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; Neural stem cells (NSCs) are self-renewing, multipotent presence of glial induction factors (e.g., bone morphoge- stem cells that possess both the ability to proliferate and netic protein (Bmp) or leukemia inhibitory factor (LIF)). self-renew and to differentiate into three major cell During in vitro culturing, NSCs gradually acquire com- lineages in the central nervous system (CNS), namely petence for astrogliogenesis and dampen their neurogenic neurons, astrocytes, and oligodendrocytes1. -
Sex-Specific Effects of Cytotoxic Chemotherapy Agents
www.impactaging.com AGING, April 2016, Vol 8 No 4 Research Paper Sex‐specific effects of cytotoxic chemotherapy agents cyclophospha‐ mide and mitomycin C on gene expression, oxidative DNA damage, and epigenetic alterations in the prefrontal cortex and hippocampus – an aging connection 1 2 2 2 Anna Kovalchuk , Rocio Rodriguez‐Juarez , Yaroslav Ilnytskyy , Boseon Byeon , Svitlana 3,4 4 3 1,5,6 2,5 Shpyleva , Stepan Melnyk , Igor Pogribny , Bryan Kolb, , and Olga Kovalchuk 1 Department of Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada 2 Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada 3 Division of Biochemical Toxicology, Food and Drug Administration National Center for Toxicological Research, Jefferson, AR 72079, USA 4Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA 5 Alberta Epigenetics Network, Calgary, AB, T2L 2A6, Canada 6 Canadian Institute for Advanced Research, Toronto, ON, M5G 1Z8, Canada Key words: chemotherapy, chemo brain, epigenetics, DNA methylation, DNA hydroxymethylation, oxidative stress, transcriptome, aging Received: 01/08/16; Accepted: 01/30/1 6; Published: 03/30/16 Corresponden ce to: Bryan Kolb, PhD; Olga Kovalchuk, PhD; E‐mail: [email protected]; [email protected] Copyright: Kovalchuk et al. This is an open‐access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Abstract: Recent research shows that chemotherapy agents can be more toxic to healthy brain cells than to the target cancer cells. They cause a range of side effects, including memory loss and cognitive dysfunction that can persist long after the completion of treatment. -
Synapse Development Organized by Neuronal Activity-Regulated Immediate- Early Genes Seungjoon Kim1, Hyeonho Kim1 and Ji Won Um1
Kim et al. Experimental & Molecular Medicine (2018) 50:11 DOI 10.1038/s12276-018-0025-1 Experimental & Molecular Medicine REVIEW ARTICLE Open Access Synapse development organized by neuronal activity-regulated immediate- early genes Seungjoon Kim1, Hyeonho Kim1 and Ji Won Um1 Abstract Classical studies have shown that neuronal immediate-early genes (IEGs) play important roles in synaptic processes critical for key brain functions. IEGs are transiently activated and rapidly upregulated in discrete neurons in response to a wide variety of cellular stimuli, and they are uniquely involved in various aspects of synapse development. In this review, we summarize recent studies of a subset of neuronal IEGs in regulating synapse formation, transmission, and plasticity. We also discuss how the dysregulation of neuronal IEGs is associated with the onset of various brain disorders and pinpoint key outstanding questions that should be addressed in this field. Introduction experience-dependent synaptic changes and maturation Numerous studies have shown that neural activity plays of neural circuits. an important role in regulating synaptic strength, neuro- More than dozens of neuronal IEGs were identified by fi 1– 12 1234567890():,; 1234567890():,; nal membrane properties, and neural circuit re nement Paul Worley, Elly Nedivi, and colleagues , owing to the 3. In particular, sensory experiences continually influence use of the subtractive hybridization method, in combi- brain development at synaptic, circuit, and organismal nation with various neural stimulation protocols, most levels, as Hubel4 and Wiesel5 elegantly demonstrated in notably seizure paradigms. Among them, cAMP- their work on visual cortex organization during the cri- responsive element-binding protein (CREB) has been tical period5. -
DNA Excision Repair Proteins and Gadd45 As Molecular Players for Active DNA Demethylation
Cell Cycle ISSN: 1538-4101 (Print) 1551-4005 (Online) Journal homepage: http://www.tandfonline.com/loi/kccy20 DNA excision repair proteins and Gadd45 as molecular players for active DNA demethylation Dengke K. Ma, Junjie U. Guo, Guo-li Ming & Hongjun Song To cite this article: Dengke K. Ma, Junjie U. Guo, Guo-li Ming & Hongjun Song (2009) DNA excision repair proteins and Gadd45 as molecular players for active DNA demethylation, Cell Cycle, 8:10, 1526-1531, DOI: 10.4161/cc.8.10.8500 To link to this article: http://dx.doi.org/10.4161/cc.8.10.8500 Published online: 15 May 2009. Submit your article to this journal Article views: 135 View related articles Citing articles: 92 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=kccy20 Download by: [University of Pennsylvania] Date: 27 April 2017, At: 12:48 [Cell Cycle 8:10, 1526-1531; 15 May 2009]; ©2009 Landes Bioscience Perspective DNA excision repair proteins and Gadd45 as molecular players for active DNA demethylation Dengke K. Ma,1,2,* Junjie U. Guo,1,3 Guo-li Ming1-3 and Hongjun Song1-3 1Institute for Cell Engineering; 2Department of Neurology; and 3The Solomon Snyder Department of Neuroscience; Johns Hopkins University School of Medicine; Baltimore, MD USA Abbreviations: DNMT, DNA methyltransferases; PGCs, primordial germ cells; MBD, methyl-CpG binding protein; NER, nucleotide excision repair; BER, base excision repair; AP, apurinic/apyrimidinic; SAM, S-adenosyl methionine Key words: DNA demethylation, Gadd45, Gadd45a, Gadd45b, Gadd45g, 5-methylcytosine, deaminase, glycosylase, base excision repair, nucleotide excision repair DNA cytosine methylation represents an intrinsic modifica- silencing of gene activity or parasitic genetic elements (Fig. -
The Role of Active DNA Demethylation and Tet Enzyme Function in Memory Formation and Cocaine Action
Accepted Manuscript Title: The role of active DNA demethylation and Tet enzyme function in memory formation and cocaine action Author: Yasaman Alaghband Timothy W. Bredy Marcelo A. Wood PII: S0304-3940(16)30022-2 DOI: http://dx.doi.org/doi:10.1016/j.neulet.2016.01.023 Reference: NSL 31781 To appear in: Neuroscience Letters Received date: 15-8-2015 Revised date: 29-11-2015 Accepted date: 14-1-2016 Please cite this article as: Yasaman Alaghband, Timothy W.Bredy, Marcelo A.Wood, The role of active DNA demethylation and Tet enzyme function in memory formation and cocaine action, Neuroscience Letters http://dx.doi.org/10.1016/j.neulet.2016.01.023 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. The role of active DNA demethylation and Tet enzyme function in memory formation and cocaine action Yasaman Alaghband1,2, Timothy W. Bredy1,2,3, and Marcelo A. Wood1,2 1. Department of Neurobiology & Behavior, UC Irvine 2. Center for the Neurobiology of Learning and Memory, UC Irvine 3. Queensland Brain Institute, The University of Queensland, Brisbane, Australia Corresponding Author: Dr. Marcelo A Wood University of California Irvine Department of Neurobiology & Behavior 301 Qureshey Research Lab Irvine, CA 92697 [email protected] 949-824-2259 1 Abstract Active DNA modification is a major epigenetic mechanism that regulates gene expression in an experience-dependent manner, which is thought to establish stable changes in neuronal function and behavior. -
Synaptic Control of DNA Methylation Involves Activity-Dependent
www.nature.com/npp ARTICLE OPEN Synaptic control of DNA methylation involves activity- dependent degradation of DNMT3A1 in the nucleus Gonca Bayraktar 1,11, PingAn Yuanxiang 1, Alessandro D. Confettura1, Guilherme M. Gomes 1,2, Syed A. Raza3, Oliver Stork2,3, Shoji Tajima4, Isao Suetake 5,6,7, Anna Karpova1,2, Ferah Yildirim8 and Michael R. Kreutz 1,2,9,10 DNA methylation is a crucial epigenetic mark for activity-dependent gene expression in neurons. Very little is known about how synaptic signals impact promoter methylation in neuronal nuclei. In this study we show that protein levels of the principal de novo DNA-methyltransferase in neurons, DNMT3A1, are tightly controlled by activation of N-methyl-D-aspartate receptors (NMDAR) containing the GluN2A subunit. Interestingly, synaptic NMDARs drive degradation of the methyltransferase in a neddylation- dependent manner. Inhibition of neddylation, the conjugation of the small ubiquitin-like protein NEDD8 to lysine residues, interrupts degradation of DNMT3A1. This results in deficits in promoter methylation of activity-dependent genes, as well as synaptic plasticity and memory formation. In turn, the underlying molecular pathway is triggered by the induction of synaptic plasticity and in response to object location learning. Collectively, the data show that plasticity-relevant signals from GluN2A-containing NMDARs control activity-dependent DNA-methylation involved in memory formation. Neuropsychopharmacology (2020) 45:2120–2130; https://doi.org/10.1038/s41386-020-0780-2 1234567890();,: INTRODUCTION de novo DNA methyltransferase in the brain and plays a It is widely believed that rapid and reversible DNA methylation is documented role in activity-dependent DNA methylation essential for the stability of long-term memory but very little is [15, 16]. -
Inositol Polyphosphate Multikinase Is a Coactivator for Serum Response Factor-Dependent Induction of Immediate Early Genes
Inositol polyphosphate multikinase is a coactivator for serum response factor-dependent induction of immediate early genes Eunha Kima,1, Richa Tyagib,1, Joo-Young Leea, Jina Parka, Young-ran Kima, Jiyoon Beona, Po Yu Chenb, Jiyoung Y. Chab, Solomon H. Snyderb,c,d,2, and Seyun Kima,e,2 aDepartment of Biological Sciences and eKAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea; and bThe Solomon H. Snyder Department of Neuroscience, cDepartment of Psychiatry and Behavioral Sciences, and dDepartment of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 Contributed by Solomon H. Snyder, November 1, 2013 (sent for review August 13, 2013) Inositol polyphosphate multikinase (IPMK) is a notably pleiotropic We monitored expression of RNA for a wide range of genes in protein. It displays both inositol phosphate kinase and phospha- a microarray analysis in wild-type and IPMK-deleted mouse tidylinositol kinase catalytic activities. Noncatalytically, IPMK stabil- embryonic fibroblasts (MEFs) in the presence of serum (Fig. 1 izes the mammalian target of rapamycin complex 1 and acts as a and Fig. S1A). Over 1,400 genes are down-regulated by IPMK transcriptional coactivator for CREB-binding protein/E1A binding deletion whereas 767 are up-regulated. Among the down-regulated protein p300 and tumor suppressor protein p53. Serum response genes are a substantial number of immediate early genes that factor (SRF) is a major transcription factor for a wide range of contain serum response element (SRE) in their promoters and immediate early genes. We report that IPMK, in a noncatalytic are well-known as SRF targets (Fig. -
Coordinated and Spatial Upregulation of Arc in Striatonigral Neurons Correlates with L-Dopa-Induced Behavioral Sensitization in Dyskinetic Rats
J Neuropathol Exp Neurol Vol. 64, No. 11 Copyright Ó 2005 by the American Association of Neuropathologists, Inc. November 2005 pp. 936–947 ORIGINAL ARTICLE Coordinated and Spatial Upregulation of Arc in Striatonigral Neurons Correlates With L-Dopa-Induced Behavioral Sensitization in Dyskinetic Rats Ve´ronique Sgambato-Faure, PhD, Virginie Buggia, MSc, Francxois Gilbert, MSc, Daniel Le´vesque, PhD, Alim-Louis Benabid, MD, PhD, and Francxois Berger, MD, PhD Downloaded from https://academic.oup.com/jnen/article/64/11/936/2916615 by guest on 30 September 2021 remains the best symptomatic treatment (6). However, its long- Abstract term use is commonly associated with side effects such as Although oral administration of L-Dopa remains the best therapy motor fluctuations and abnormal involuntary movements, for Parkinson disease, its long-term administration causes the appear- namely L-Dopa-induced dyskinesia (LID) (7–10; for review, ance of abnormal involuntary movements such as dyskinesia. Although [11]). The genesis of LID is not fully understood, but major persistent striatal induction of some genes has already been asso- factors include degree of presynaptic nigral denervation (12– ciated with such pathologic profiles in hemiparkinsonian rats, molec- 15); onset, dose, and manner of administration of L-Dopa (16); ular and cellular mechanisms underlying such long-term adaptations sensitization of dopaminergic receptors and their pulsatile remain to be elucidated. In this study, using a rat model of L-Dopa- stimulation (17, 18); imbalance between the output structures induced dyskinesia, we report that activity regulated cytoskeletal (Arc)- of basal ganglia (3, 4); as well as alteration of activity and associated protein is strongly upregulated in the lesioned striatum and discharge pattern of neurons of basal ganglia (19, 20).