The Chiral Structure of Loop Quantum Gravity Wolfgang Martin Wieland

Total Page:16

File Type:pdf, Size:1020Kb

The Chiral Structure of Loop Quantum Gravity Wolfgang Martin Wieland The Chiral Structure of Loop Quantum Gravity Wolfgang Martin Wieland To cite this version: Wolfgang Martin Wieland. The Chiral Structure of Loop Quantum Gravity. Relativité Générale et Cosmologie Quantique [gr-qc]. Aix-Marseille Université, 2013. Français. tel-00952498 HAL Id: tel-00952498 https://tel.archives-ouvertes.fr/tel-00952498 Submitted on 3 Mar 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Aix-Marseille Université École Doctorale ED352 Physique et Sciences de la Matière Thèse de doctorat présentée par WOLFGANG MARTIN WIELAND Pour obtenir le grade de DocTEUR D’AIX-MARSEILLE UnIVERSIté Specialité : Physique théorique et mathématiques STRUCTURE CHIRALE DE LA GRAVITé QUANTIQUE à BOUCLES Soutenue le 12 decembre 2013 Thèse préparée au Centre de Physique Théorique (CPT) Directeur de thèse : Carlo Rovelli CPT (Aix-Marseille Université) Codirecteur : Simone Speziale CPT (Aix-Marseille Université) Rapporteurs : Jerzy Lewandowski IFT (Uniwersytet Warszawski) Karim Noui LMPT (Université François Rabelais) Membres de jury : Kristina Giesel IQG (FAU Erlangen-Nürnberg) Daniel Grumiller ITP (Technische Universität Wien) Ted Jacobson Department of Physics (University of Maryland) Etera Livine Laboratoire de Physique ÉNS de Lyon Karim Noui LMPT (Université François Rabelais) Alejandro Perez CPT (Aix-Marseille Université) Carlo Rovelli CPT (Aix-Marseille Université) WOLFGANG MARTIN WIELAND THE CHIRAL STRUCTURE OF LOOP QUANTUM GRAVITY Meinen Eltern ABSTRACT Loop gravity is a tentative theory to describe what happens at the Planck scale, the scale at which both general relativity and quantum theory become equally important. It comes in two versions. The canonical approach seeks to solve the Wheeler–DeWitt equation and find the physical states of the theory. Spinfoam gravity, on the other hand, takes a covariant path integral representation to define the transition amplitudes of the theory. Both approaches use the same Hilbert space, but we do not know whether they actually define the same theory. In this thesis, I will present four results, all of which lie in between the two ap- proaches. We start with the classical theory. When Ashtekar first formulated Hamil- tonian general relativity in terms of self-dual (complex Ashtekar) variables the ADM constraint equations turned into neat polynomials of the elementary fields. This was a huge simplification and eventually initiated the program of loop quantum gravity. For a number of technical reasons the complex variables have later been abandoned in favour of the SU(2) Ashtekar–Barbero variables, and the simplification of the Hamil- tonian constraint was lost again. These SU(2) variables are usually derived from the Holst action, which contains the Barbero–Immirzi parameter as an additional coupling constant. After the first introductory chapter, we will use the original self-dual connection to repeat the canonical analysis for the Holst action, while leaving the Barbero–Immirzi parameter untouched. The resulting constraint equations depend on this parameter, yet maintain a polynomial form. To guarantee that the metric is real, we have to introduce additional constraints. These reality conditions match the linear simplicity constraints of spinfoam gravity. They are preserved in time only if the spatial spin connection is torsionless, which appears as a secondary constraint in the canonical analysis. This is our first complex of results. The next chapter is about the classical theory, and studies how to discretise gravity in terms of first-order holonomy-flux variables. The corresponding phase space has a non-linear structure. Twistors allow to handle this non-linearity while working on a linear phase space with canonical Darboux coordinates. This framework was originally introduced by Freidel and Speziale, but only for the case of SU(2) Ashtekar–Barbero variables. Here, we develop the generalisation to SL(2, C), that is we use twistors to parametrise the phase space of self-dual holonomy-flux variables. This is the second result. We will then discuss the spinfoam dynamics in terms of these twistorial variables, and arrive at our third result: A new Hamiltonian formulation of discretised gravity. The Hamiltonian comes with a continuum action adapted to a fixed simplicial discretisation of spacetime. The action is a sum of the spinorial analogue of the topological “BF ”- action and the reality conditions that guarantee the existence of a metric. Chapter four studies the resulting quantum theory. Since the action is a polynomial in the spinors, canonical quantisation is straightforward. Transition amplitudes reproduce the EPRL (Engle–Pereira–Rovelli–Livine) spinfoam model. This is our final result. It shows that spinfoam gravity can be derived from a classical action, with spinors as the fundamental configuration variables. iv VORWORT Von allen Grundkräften der Physik passt nur die Schwerkraft nicht zur Quantentheo- rie. Als schwächste aller vier Wechselwirkungen (das sind die beiden Kernkräfte, die elektromagnetische Kraft und eben die Gravitation) spielt sie für die Physik des Mi- krokosmos keine Rolle; die Gravitation beherrscht die Welt im Großen. Die allgemeine Relativitätstheorie liefert den mathematischen Rahmen. Einstein erklärt die Schwer- kraft aus der geometrischen Struktur von Raum und Zeit: Genauso wie die Krümmung der Erdoberfläche den Kurs eines Flugzeugs bestimmt (von Wien nach Washington folgt der Pilot der kürzesten Verbindung, einem Großkreis, keiner Geraden), genauso zwingt die Krümmung der Raumzeit die Erde auf ihre Bahn um die Sonne. Die Quantenmechanik spielt für die Umlaufbahnen der Planeten keine Rolle. Sie beherrscht die Physik im Kleinen. Ort und Impuls eines Teilchens lassen sich als kom- plementäre Variable nicht gleichzeitig scharf messen, sind als Zufallsgrößen unscharf verschmiert. Die Schrödingergleichung beschreibt diese Unschärfen als Wellenfeld in Raum und Zeit. „Das Elektron trifft in zehn Minuten am Ort x ein.“ So ein Satz ist der Quantentheorie ganz unbekannt, wir sagen stattdessen: „In zehn Minuten ist das Elektron mit p(x)-prozentiger Wahrscheinlichkeit am Orte x.“ Den alten Streit um die Frage, ob es kleinste Teilchen gebe, oder die Welt aus einem stofflichen Kontinuum bestehe, beendet die Quantenmechanik mit einem salomonischen Urteil. Beides ist gleichermaßen wahr, und hängt von der Fragestellung ab. In dem einen Experiment enthüllt sich die Quantennatur der Welt: Angeregte Atome senden Licht- teilchen nur ganz bestimmter Farbe aus – das charakteristische Orange der Straßenla- ternen kommt vom Natrium. Ein anderer Versuch zeigt die Kontinuumseigenschaften der Materie: Bei aufmerksamem Blick in eine Straßenlaterne kann man Beugungsringe sehen, wenn im Augapfel die Wellen des Natriumlichts an kleinen Hindernissen streuen. Was hat das nun alles mit der Gravitation zu tun? Nach Einsteins allgemeiner Re- lativitätstheorie hat das Schwerefeld der Erde stets überall einen fest vorhersagbaren Wert. In der Quantenmechanik ist das nicht mehr so, hier gibt es nur mehr Wahrschein- lichkeitsaussagen. Es kann nicht beides stimmen; entweder es gibt echten Zufall, oder die Welt ist streng deterministisch. Außerdem folgt alle Materie der Quantentheorie, doch koppelt in immer gleicher Weise an die Gravitation. Damit müssen sich die Ge- setze der Quantentheorie auch auf die Schwerkraft übertragen. Wie die Quantentheorie mit der Relativitätstheorie zu versöhnen sei, das weiß freilich niemand so genau. Trotz jahrzehntelanger, teils recht phantastischer Bemühungen, fehlt uns noch immer eine Theorie der Quantengravitation. Was können wir von einer Quantentheorie der Gravitation erwarten? Zunächst müss- te sie alle bisherigen experimentellen Tests bestehen. Sie muss uns aber auch Fragen beantworten, die über unser bisheriges Verständnis weit hinausgehen: Was geschah beim Urknall? Was sind die Quanten des Gravitationsfeldes? Ist vielleicht die Geometrie der Raumzeit selbst gequantelt, gibt es gleichsam kleinste Raumatome? Was geschieht im Inneren eines schwarzen Lochs? Meine Doktorarbeit beschäftigt sich mit nur einem Ansatz, diese Fragen zu beant- worten, mit der loop quantum gravity wie die Theorie auf Englisch heißt. An erster Stelle steht die Frage: Gelingt der Übergang zur bekannten Physik? Dafür braucht es geeignetes mathematisches Handwerkszeug. Meine Doktorarbeit entwickelt solches v Werkzeug, und untersucht den klassischen Grenzfall der Theorie. Ich kann zeigen, dass die Schleifentheorie im klassischen Limes sich als Vielteilchentheorie deuten lässt. Die zugehörigen Punktteilchen bewegen sich allerdings nicht in Raum und Zeit, sondern leben in einem zweidimensionalen komplexen Vektorraum, im Raume der Spinoren. RÉSUMÉ La gravité quantique à boucles est une théorie candidate à la description unifiée de la relativité générale et de la mécanique quantique à l’échelle de Planck. Cette théorie peut être formulée de deux manières. L’approche canonique, d’une part, cherche à ré- soudre l’équation de Wheeler–DeWitt et à définir les états physiques. L’approche par les écumes de spins, d’autre
Recommended publications
  • Covariant Hamiltonian Formalism for Field Theory: Hamilton-Jacobi
    Covariant hamiltonian formalism for field theory: Hamilton-Jacobi equation on the space G Carlo Rovelli Centre de Physique Th´eorique de Luminy, CNRS, Case 907, F-13288 Marseille, EU February 7, 2008 Abstract Hamiltonian mechanics of field theory can be formulated in a generally covariant and background independent manner over a finite dimensional extended configuration space. The physical symplectic structure of the theory can then be defined over a space G of three-dimensional surfaces without boundary, in the extended configuration space. These surfaces provide a preferred over-coordinatization of phase space. I consider the covariant form of the Hamilton-Jacobi equation on G, and a canonical function S on G which is a preferred solution of the Hamilton-Jacobi equation. The application of this formalism to general relativity is equiv- alent to the ADM formalism, but fully covariant. In the quantum domain, it yields directly the Ashtekar-Wheeler-DeWitt equation. Finally, I apply this formalism to discuss the partial observables of a covariant field theory and the role of the spin networks –basic objects in quantum gravity– in the classical theory. arXiv:gr-qc/0207043v2 26 Jul 2002 1 Introduction Hamiltonian mechanics is a clean and general formalism for describing a physi- cal system, its states and its observables, and provides a road towards quantum theory. In its traditional formulation, however, the hamiltonian formalism is badly non covariant. This is a source of problems already for finite dimensional systems. For instance, the notions of state and observable are not very clean in the hamiltonian mechanics of the systems where evolution is given in para- metric form, especially if the evolution cannot be deparametrized (as in certain cosmological models).
    [Show full text]
  • Refraction and Reflexion According to the Principle of General Covariance
    REFRACTION AND REFLEXION ACCORDING TO THE PRINCIPLE OF GENERAL COVARIANCE PATRICK IGLESIAS-ZEMMOUR Abstract. We show how the principle of general covariance introduced by Souriau in smoothly uniform contexts, can be extended to singular situ- ations, considering the group of diffeomorphisms preserving the singular locus. As a proof of concept, we shall see how we get again this way, the laws of reflection and refraction in geometric optics, applying an extended general covariance principle to Riemannian metrics, discontinuous along a hypersurface. Introduction In his paper “Modèle de particule à spin dans le champ électromagnétique et gravitationnel” published in 1974 [Sou74], Jean-Marie Souriau suggests a pre- cise mathematical interpretation of the principle of General Relativity. He names it the Principle of General Covariance. Considering only gravitation field1, he claimed that any material presence in the universe is characterized by a covector defined on the quotient of the set of the Pseudo-Riemannian metrics on space-time, by the group of diffeomorphisms. This principle be- ing, according to Souriau, the correct statement of the Einsteins’s principle of invariance with respect to any change of coordinates. Actually, Souriau’s general covariance principle can be regarded as the active version of Einstein invariance statement, where change of coordinates are interpreted from the active point of view as the action of the group of diffeomorphisms. Now, for reasons relative to the behavior at infinity and results requirement, the group of diffeomorphisms of space-time is reduced to the subgroup of compact supported diffeomorphisms. Date: April 6, 2019. 1991 Mathematics Subject Classification. 83C10, 78A05, 37J10.
    [Show full text]
  • Conformal Symmetry in Field Theory and in Quantum Gravity
    universe Review Conformal Symmetry in Field Theory and in Quantum Gravity Lesław Rachwał Instituto de Física, Universidade de Brasília, Brasília DF 70910-900, Brazil; [email protected] Received: 29 August 2018; Accepted: 9 November 2018; Published: 15 November 2018 Abstract: Conformal symmetry always played an important role in field theory (both quantum and classical) and in gravity. We present construction of quantum conformal gravity and discuss its features regarding scattering amplitudes and quantum effective action. First, the long and complicated story of UV-divergences is recalled. With the development of UV-finite higher derivative (or non-local) gravitational theory, all problems with infinities and spacetime singularities might be completely solved. Moreover, the non-local quantum conformal theory reveals itself to be ghost-free, so the unitarity of the theory should be safe. After the construction of UV-finite theory, we focused on making it manifestly conformally invariant using the dilaton trick. We also argue that in this class of theories conformal anomaly can be taken to vanish by fine-tuning the couplings. As applications of this theory, the constraints of the conformal symmetry on the form of the effective action and on the scattering amplitudes are shown. We also remark about the preservation of the unitarity bound for scattering. Finally, the old model of conformal supergravity by Fradkin and Tseytlin is briefly presented. Keywords: quantum gravity; conformal gravity; quantum field theory; non-local gravity; super- renormalizable gravity; UV-finite gravity; conformal anomaly; scattering amplitudes; conformal symmetry; conformal supergravity 1. Introduction From the beginning of research on theories enjoying invariance under local spacetime-dependent transformations, conformal symmetry played a pivotal role—first introduced by Weyl related changes of meters to measure distances (and also due to relativity changes of periods of clocks to measure time intervals).
    [Show full text]
  • Linearization Instability in Gravity Theories1
    Linearization Instability in Gravity Theories1 Emel Altasa;2 a Department of Physics, Middle East Technical University, 06800, Ankara, Turkey. Abstract In a nonlinear theory, such as gravity, physically relevant solutions are usually hard to find. Therefore, starting from a background exact solution with symmetries, one uses the perturbation theory, which albeit approximately, provides a lot of information regarding a physical solution. But even this approximate information comes with a price: the basic premise of a perturbative solution is that it should be improvable. Namely, by going to higher order perturbation theory, one should be able to improve and better approximate the physical problem or the solution. While this is often the case in many theories and many background solutions, there are important cases where the linear perturbation theory simply fails for various reasons. This issue is well known in the context of general relativity through the works that started in the early 1970s, but it has only been recently studied in modified gravity theories. This thesis is devoted to the study of linearization instability in generic gravity theories where there are spurious solutions to the linearized equations which do not come from the linearization of possible exact solutions. For this purpose we discuss the Taub charges, arXiv:1808.04722v2 [hep-th] 2 Sep 2018 the ADT charges and the quadratic constraints on the linearized solutions. We give the three dimensional chiral gravity and the D dimensional critical gravity as explicit examples and give a detailed ADM analysis of the topologically massive gravity with a cosmological constant. 1This is a Ph.D.
    [Show full text]
  • Wave Extraction in Numerical Relativity
    Doctoral Dissertation Wave Extraction in Numerical Relativity Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayrischen Julius-Maximilians-Universitat¨ Wurzburg¨ vorgelegt von Oliver Elbracht aus Warendorf Institut fur¨ Theoretische Physik und Astrophysik Fakultat¨ fur¨ Physik und Astronomie Julius-Maximilians-Universitat¨ Wurzburg¨ Wurzburg,¨ August 2009 Eingereicht am: 27. August 2009 bei der Fakultat¨ fur¨ Physik und Astronomie 1. Gutachter:Prof.Dr.Karl Mannheim 2. Gutachter:Prof.Dr.Thomas Trefzger 3. Gutachter:- der Dissertation. 1. Prufer¨ :Prof.Dr.Karl Mannheim 2. Prufer¨ :Prof.Dr.Thomas Trefzger 3. Prufer¨ :Prof.Dr.Thorsten Ohl im Promotionskolloquium. Tag des Promotionskolloquiums: 26. November 2009 Doktorurkunde ausgehandigt¨ am: Gewidmet meinen Eltern, Gertrud und Peter, f¨urall ihre Liebe und Unterst¨utzung. To my parents Gertrud and Peter, for all their love, encouragement and support. Wave Extraction in Numerical Relativity Abstract This work focuses on a fundamental problem in modern numerical rela- tivity: Extracting gravitational waves in a coordinate and gauge independent way to nourish a unique and physically meaningful expression. We adopt a new procedure to extract the physically relevant quantities from the numerically evolved space-time. We introduce a general canonical form for the Weyl scalars in terms of fundamental space-time invariants, and demonstrate how this ap- proach supersedes the explicit definition of a particular null tetrad. As a second objective, we further characterize a particular sub-class of tetrads in the Newman-Penrose formalism: the transverse frames. We establish a new connection between the two major frames for wave extraction: namely the Gram-Schmidt frame, and the quasi-Kinnersley frame. Finally, we study how the expressions for the Weyl scalars depend on the tetrad we choose, in a space-time containing distorted black holes.
    [Show full text]
  • Weyl Gauge-Vector and Complex Dilaton Scalar for Conformal Symmetry and Its Breaking
    1 Weyl gauge-vector and complex dilaton scalar for conformal symmetry and its breaking Hans C. Ohanian1 Abstract Instead of the scalar “dilaton” field that is usually adopted to construct conformally invariant Lagrangians for gravitation, we here propose a hybrid construction, involving both a complex dilaton scalar and a Weyl gauge- vector, in accord with Weyl’s original concept of a non-Riemannian conformal geometry with a transport law for length and time intervals, for which this gauge vector is required. Such a hybrid construction permits us to avoid the wrong sign of the dilaton kinetic term (the ghost problem) that afflicts the usual construction. The introduction of a Weyl gauge-vector and its interaction with the dilaton also has the collateral benefit of providing an explicit mechanism for spontaneous breaking of the conformal symmetry, whereby the dilaton and the Weyl gauge-vector acquire masses somewhat smaller than mP by the Coleman-Weinberg mechanism. Conformal symmetry breaking is assumed to precede inflation, which occurs later by a separate GUT or electroweak symmetry breaking, as in inflationary models based on the Higgs boson. Keywords Quantum gravity • Conformal invariance • Spontaneous symmetry breaking •Weyl length transport Publication history First arXiv publication [v1] 30 January 2015. The final publication is available at Springer via http://dx.doi.org/10.1007/s10714-016-2023-8 and in General Relativity and Gravitation, March 2016, 48:25. 1 Introduction Modifications of Einstein’s gravitational theory that incorporate local conformal symmetry—that is, invariance 2 (x ) under the transformation g( x ) e g ( x ) , where ()x is an arbitrary real function—have been exploited in attempts at the solution of various of theoretical problems, such as renormalization of the stress tensor, renormalization of quantum gravity, quantum mechanics of black holes, analytic solutions and geodesic completeness in the early universe, and the dynamics that lead to inflation by symmetry breaking.
    [Show full text]
  • A Note on Conformally Compactified Connection Dynamics Tailored For
    A note on conformally compactified connection dynamics tailored for anti-de Sitter space N. Bodendorfer∗ Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland October 9, 2018 Abstract A framework conceptually based on the conformal techniques employed to study the struc- ture of the gravitational field at infinity is set up in the context of loop quantum gravity to describe asymptotically anti-de Sitter quantum spacetimes. A conformal compactification of the spatial slice is performed, which, in terms of the rescaled metric, has now finite volume, and can thus be conveniently described by spin networks states. The conformal factor used is a physical scalar field, which has the necessary asymptotics for many asymptotically AdS black hole solutions. 1 Introduction The study of asymptotic conditions on spacetimes has received wide interest within general relativity. Most notably, the concept of asymptotic flatness can serve as a model for isolated systems and one can, e.g., study a system’s total energy or the amount of gravitational ra- diation emitted [1]. More recently, with the discovery of the AdS/CFT correspondence [2], asymptotically anti de Sitter spacetimes have become a focus of interest. In a certain low en- ergy limit of the correspondence, computations on the gravitational side correspond to solving the Einstein equations with anti-de Sitter asymptotics. Within loop quantum gravity (LQG), the issue of non-compact spatial slices or asymptotic conditions on spacetimes has received only little attention so far due to a number of technical reasons. However, also given the recent interest in holography from a loop quantum gravity point of view [3, 4, 5], this question is important to address.
    [Show full text]
  • Quantum Mechanics from General Relativity : Particle Probability from Interaction Weighting
    Annales de la Fondation Louis de Broglie, Volume 24, 1999 25 Quantum Mechanics From General Relativity : Particle Probability from Interaction Weighting Mendel Sachs Department of Physics State University of New York at Bualo ABSTRACT. Discussion is given to the conceptual and mathemat- ical change from the probability calculus of quantum mechanics to a weighting formalism, when the paradigm change takes place from linear quantum mechanics to the nonlinear, holistic eld theory that accompanies general relativity, as a fundamental theory of matter. This is a change from a nondeterministic, linear theory of an open system of ‘particles’ to a deterministic, nonlinear, holistic eld the- ory of the matter of a closed system. RESUM E. On discute le changement conceptuel et mathematique qui fait passer du calcul des probabilites de la mecanique quantique a un formalisme de ponderation, quand on eectue le changement de paradigme substituantalam ecanique quantique lineairelatheorie de champ holistique non lineaire qui est associee alatheorie de la relativitegenerale, prise comme theorie fondamentale de la matiere. Ce changement mene d’une theorie non deterministe et lineaire decrivant un systeme ouvert de ‘particules’ a une theorie de champ holistique, deterministe et non lineaire, de la matiere constituant un systeme ferme. 1. Introduction. In my view, one of the three most important experimental discov- eries of 20th century physics was the wave nature of matter. [The other two were 1) blackbody radiation and 2) the bending of a beam of s- tarlight as it propagates past the vicinity of the sun]. The wave nature of matter was predicted in the pioneering theoretical studies of L.
    [Show full text]
  • BEYOND SPACE and TIME the Secret Network of the Universe: How Quantum Geometry Might Complete Einstein’S Dream
    BEYOND SPACE AND TIME The secret network of the universe: How quantum geometry might complete Einstein’s dream By Rüdiger Vaas With the help of a few innocuous - albeit subtle and potent - equations, Abhay Ashtekar can escape the realm of ordinary space and time. The mathematics developed specifically for this purpose makes it possible to look behind the scenes of the apparent stage of all events - or better yet: to shed light on the very foundation of reality. What sounds like black magic, is actually incredibly hard physics. Were Albert Einstein alive today, it would have given him great pleasure. For the goal is to fulfil the big dream of a unified theory of gravity and the quantum world. With the new branch of science of quantum geometry, also called loop quantum gravity, Ashtekar has come close to fulfilling this dream - and tries thereby, in addition, to answer the ultimate questions of physics: the mysteries of the big bang and black holes. "On the Planck scale there is a precise, rich, and discrete structure,” says Ashtekar, professor of physics and Director of the Center for Gravitational Physics and Geometry at Pennsylvania State University. The Planck scale is the smallest possible length scale with units of the order of 10-33 centimeters. That is 20 orders of magnitude smaller than what the world’s best particle accelerators can detect. At this scale, Einstein’s theory of general relativity fails. Its subject is the connection between space, time, matter and energy. But on the Planck scale it gives unreasonable values - absurd infinities and singularities.
    [Show full text]
  • Vacuum GR in Chang--Soo Variables: Hilbert Space Structure In
    Vacuum GR in Chang–Soo variables: Hilbert space structure in anisotropic minisuperspace Eyo Eyo Ita III January 20, 2009 Department of Applied Mathematics and Theoretical Physics Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road Cambridge CB3 0WA, United Kingdom [email protected] Abstract In this paper we address the major criticism of the pure Kodama state, namely its normalizability and its existence within a genuine Hilbert space of states, by recasting Ashtekar’s general relativity into set of new variables attributed to Chang–Soo/CDJ. While our results have been shown for anisotropic minisuperspace, we reserve a treat- ment of the full theory for a following paper which it is hoped should finally bring this issue to a close. We have performed a canonical treat- ment of these new variables from the level of the classical/quantum algebra of constraints, all the way to the construction of the Hilbert space of states, and have demonstrated their relevance to the principle arXiv:0901.3041v1 [gr-qc] 20 Jan 2009 of the semiclassical-quantum correspondence. It is hoped that these new variables and their physical interpretation should provide a new starting point for investigations in classical and quantum GR and in the construction of a consistent quantum theory. 1 1 Introduction The main focus of the present paper to establish a new Hilbert space struc- ture for quantum gravity by recasting general relativity in terms of a set of new variables. The traditional approach in loop variables utilizes the spin network states, which have been rigorously shown to meet the requirements of a Hilbert space [1].
    [Show full text]
  • Open Taveras.Pdf
    The Pennsylvania State University The Graduate School LOOP GRAVITY: AN APPLICATION AND AN EXTENSION A Dissertation in Physics by Victor Manuel Taveras c 2009 Victor Manuel Taveras Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2009 The thesis of Victor Manuel Taveras was reviewed and approved∗ by the following: Abhay Ashtekar Eberly Professor of Physics Dissertation Advisor, Chair of Committee Martin Bojowald Professor of Physics Sam Finn Professor of Physics Nigel Higson Professor of Mathematics Richard Robinett Professor of Physics Head of the Department of Physics ∗Signatures are on file in the Graduate School. Abstract In this thesis we address two issues in the area of loop quantum gravity. The first concerns the semiclassical limit in loop quantum cosmology via the use of so-called effective equations. In loop quantum cosmology the quantum dynamics is well understood. We can approximate the full quantum dynamics in the infi- nite dimensional Hilbert space by projecting it on a finite dimensional submanifold thereof, spanned by suitably chosen semiclassical states. This submanifold is iso- morphic with the classical phase space and the projected dynamical flow provides effective equations incorporating the leading quantum corrections to the classical equations of motion. Numerical work has been done in the full theory using quan- tum states which are semiclassical at late times. These states follow the classical trajectory until the density is on the order of 1% of the Planck density then deviate strongly from the classical trajectory. The effective equations we obtain reproduce this behavior to surprising accuracy. The second issue concerns generalizations of the classical action which is the starting point for loop quantum gravity.
    [Show full text]
  • Physics Needs Philosophy. Philosophy Needs Physics. Carlo Rovelli
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PhilSci Archive Physics needs philosophy. Philosophy needs physics. Carlo Rovelli Extended version of a keynote talk at the XVIII UK-European Conference on the Foundation of Physics, given at the London School of Economics the 16 July 2016 Published on Foundations of Physics, 48, 481-491, 2018 Abstract Contrary to claims about the irrelevance of philosophy for science, I argue that philosophy has had, and still has, far more influence on physics than is commonly assumed. I maintain that the current anti-philosophical ideology has had damaging effects on the fertility of science. I also suggest that recent important empirical results, such as the detection of the Higgs particle and gravitational waves, and the failure to detect supersymmetry where many expected to find it, question the validity of certain philosophical assumptions common among theoretical physicists, inviting us to engage in a clearer philosophical reflection on scientific method. 1. Against Philosophy is the title of a chapter of a book by one of the great physicists of the last generation: Steven Weinberg, Nobel Prize winner and one of the architects of the Standard Model of elementary particle physicsi. Weinberg argues eloquently that philosophy is more damaging than helpful for physics—although it might provide some good ideas at times, it is often a straightjacket that physicists have to free themselves from. More radically, Stephen Hawking famously wrote that “philosophy is dead” because the big questions that used to be discussed by philosophers are now in the hands of physicistsii.
    [Show full text]