A Multiple-Pulse Emplacement Model for the Shonkin Sag Laccolith, MT

Total Page:16

File Type:pdf, Size:1020Kb

A Multiple-Pulse Emplacement Model for the Shonkin Sag Laccolith, MT Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2020 A multiple-pulse emplacement model for the Shonkin Sag laccolith, MT Claire Elizabeth Ruggles Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Recommended Citation Ruggles, Claire Elizabeth, "A multiple-pulse emplacement model for the Shonkin Sag laccolith, MT" (2020). Graduate Theses and Dissertations. 18212. https://lib.dr.iastate.edu/etd/18212 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. A multiple-pulse emplacement model for the Shonkin Sag laccolith, MT by Claire Ruggles A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Geology Program of Study Committee: Sven Morgan, Co-major Professor Jacqueline Reber, Co-major Professor Yuyu Zhou The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this thesis. The Graduate College will ensure this thesis is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2020 Copyright © Claire Ruggles, 2020. All rights reserved. ii TABLE OF CONTENTS Page LIST OF FIGURES .................................................................................................................. .iv LIST OF TABLES .....................................................................................................................v ACKNOWLEDGMENTS .......................................................................................................... vi ABSTRACT .............................................................................................................................vii CHAPTER 1. INTRODUCTION ................................................................................................ 1 CHAPTER 2. GEOLOGIC SETTING ........................................................................................ 7 Regional Geology ..................................................................................................................7 Petrology ...............................................................................................................................8 Emplacement History ........................................................................................................... 12 CHAPTER 3. FIELD OBSERVATIONS .................................................................................. 14 Preliminary Field Work ........................................................................................................ 14 Field Work ........................................................................................................................... 14 Field Observations ............................................................................................................... 15 Internal Contacts and Magma Mingling .......................................................................... 15 Faults and Folds .............................................................................................................. 19 Deformation Levels ........................................................................................................ 21 Bulk Magnetic Susceptibility ............................................................................................... 22 Displacement Calculations ................................................................................................... 25 CHAPTER 4. ROCK FABRIC, MAGNETIC, AND PETROGRAPHIC ANALYSES .............. 27 Thin Sections ....................................................................................................................... 27 Rock Composition, Fabrics and Textures ........................................................................ 27 Magnetic Mineralogy ...................................................................................................... 28 Features of Interest .......................................................................................................... 29 Curie Point Estimates ........................................................................................................... 33 Anisotropy of Magnetic Susceptibility ................................................................................. 34 Image Analysis .................................................................................................................... 37 CHAPTER 5. THERMAL MODELLING ................................................................................. 39 Testing Parameters ............................................................................................................... 39 Determining the Maximum and Minimum Emplacement Times ........................................... 42 CHAPTER 6. DISCUSSION .................................................................................................... 49 Evidence for Multiple Pulses ................................................................................................ 49 Emplacement Model for the SSL.......................................................................................... 54 Rock Fabric and Magnetic Analyses .................................................................................... 57 Thermal Modeling ............................................................................................................... 59 iii CHAPTER 7. IMPLICATIONS ................................................................................................ 61 CHAPTER 8. CONCLUSION .................................................................................................. 62 REFERENCES ......................................................................................................................... 64 APPENDIX SUPPLEMENTARY TABLES ......................................................................... 67 iv LIST OF FIGURES Figure 1: Regional map of the area northeast of the Highwoods Volcanic Center ........................5 Figure 2: Geologic map and cross-section of the Shonkin Sag laccolith. ......................................6 Figure 3: Image and sketch of the south-eastern margin of the Shonkin Sag laccolith looking north ...........................................................................................................9 Figure 4: Drone image perpendicular to the fringing sill wall and the kinematic cross section of the fringing sills ..................................................................................... 10 Figure 5: A generalized section of the SSL ................................................................................ 12 Figure 6: Field photos of observed features at the SSL .............................................................. 17 Figure 7: Field photos of observed features at the SSL .............................................................. 18 Figure 8: Bulk magnetic susceptibility measurements................................................................ 24 Figure 9: Microphotographs of thin sections displaying deformation levels ............................... 30 Figure 10: Microphotographs of oxides and sulfides in thin section. .......................................... 31 Figure 11: Microphotographs of features of interest in thin section ............................................ 32 Figure 12: Heating curves for Curie Point thermal analyses ....................................................... 34 Figure 13: Anisotropy of magnetic susceptibilty data. ............................................................... 36 Figure 14: Jelinek plot. .............................................................................................................. 37 Figure 15: Microphotographs of thin sections and rose diagram for Image Analysis .................. 38 Figure 16: Stills of the initial and end results of the single-pulse model ..................................... 43 Figure 17: Stills of the initial and end results of the double-pulse model .................................... 44 Figure 18: Stills of the initial and end results of the minimum-time triple-pulse model .............. 46 Figure 19: Stills of the initial and end results of the maximum-time triple-pulse model ............. 47 Figure 20: Emplacement diagram of the Shonkin Sag laccolith ................................................. 53 Figure 21: Location of the bulk magnetic susceptibility measurements ...................................... 74 v LIST OF TABLES Page Table 1: Displacement calculations for offset accommodated by the major, subvertical tangential fault ....................................................................................................... 26 Table 2: Parameters and cooling time for the parameter testing models. .................................... 41 Table 3: Parameters used for the emplacement time models. ..................................................... 42 Table 4: Cooling times for each pulse in the emplacement models. ........................................... 48 Table 5: Block sample data.
Recommended publications
  • Geology and Mineralization of the Sierra Blanca Peaks, Hudspeth County, Texas W
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/31 Geology and mineralization of the Sierra Blanca Peaks, Hudspeth County, Texas W. N. McAnulty, 1980, pp. 263-266 in: Trans Pecos Region (West Texas), Dickerson, P. W.; Hoffer, J. M.; Callender, J. F.; [eds.], New Mexico Geological Society 31st Annual Fall Field Conference Guidebook, 308 p. This is one of many related papers that were included in the 1980 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • Highwood Mountains Range Analysis Project Area on Those Resources Affected by Implementation
    United States Department of Agriculture Environmental Forest Service Assessment 2015 Highwood Mountains Range Judith Ranger District, Lewis and Clark National Forest Cascade, Choteau and Judith Basin Counties, Montana For More Information Contact: Lewis and Clark National Forest Judith Ranger District Standford, Montana www.fs.fed.us/r1/lewisclark/projects 406-566-2292. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TTY). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW., Washington, DC 20250-9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TTY). USDA is an equal opportunity provider and employer. Environmental Assessment Table of Contents Introduction ...................................................................................................................................................4 Location of the Proposed Project Area ..........................................................................................................4
    [Show full text]
  • Three-Dimensional Magmatic Architecture of a Buried Shield Volcano
    https://doi.org/10.1130/G47941.1 Manuscript received 22 January 2020 Revised manuscript received 24 August 2020 Manuscript accepted 29 August 2020 © 2020 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Published online 12 October 2020 Inside the volcano: Three-dimensional magmatic architecture of a buried shield volcano Faye Walker1*, Nick Schofield1, John Millett1,2, Dave Jolley1, Simon Holford3, Sverre Planke2,4, Dougal A. Jerram4,5 and Reidun Myklebust6 1 Geology and Petroleum Geology, University of Aberdeen, Aberdeen AB24 3UE, UK 2 Volcanic Basin Petroleum Research, Blindernveien 5, N-0361 Oslo, Norway 3 Australian School of Petroleum, University of Adelaide, Adelaide, South Australia 5000, Australia 4 Centre for Earth Evolution and Dynamics (CEED), University of Oslo, N-0315 Oslo, Norway 5 DougalEARTH Ltd., Solihull B91 3NU, UK 6 TGS, Asker N-1386, Norway ABSTRACT its magma chamber have never been imaged in The nature and growth of magmatic plumbing systems are of fundamental importance detail before. to igneous geology. Traditionally, magma chambers have been viewed as rapidly emplaced Magma chambers have traditionally been bodies of molten rock or partially crystallized “magma mush” connected to the surface viewed as large, long-lived, geometrically sim- by a narrow cylindrical conduit (referred to as the “balloon-and-straw” model). Recent ple bodies of molten rock, which are emplaced data suggest, however, that magma chambers beneath volcanoes are formed incrementally rapidly and slowly crystallize to form plutons through amalgamation of smaller intrusions. Here we present the first high-resolution three- (Glazner et al., 2004; Annen et al., 2015; Jerram dimensional reconstruction of an ancient volcanic plumbing system as a large laccolithic and Bryan, 2018; Sparks et al., 2019).
    [Show full text]
  • Igneous Activity and Volcanism Homework
    DATE DUE: Name: Ms. Terry J. Boroughs Geology 300 Section: IGNEOUS ROCKS AND IGNEOUS ACTIVITY Instructions: Read each question carefully before selecting the BEST answer. Use GEOLOGIC vocabulary where applicable! Provide concise, but detailed answers to essay and fill-in questions. TURN IN YOUR 882 –ES SCANTRON AND ANSWER SHEET ONLY! MULTIPLE CHOICE QUESTIONS: 1. Gabbro and Granite a. Have a similar mineral composition b. Have a similar texture c. Answers A. and B. d. Are in no way similar 2. Which of the factors listed below affects the melting point of rock and sediment? a. Composition of the material d. Water content b. The confining pressure e. All of the these c. Only composition of the material and the confining pressure 3. Select the fine grained (aphanitic) rock, which is composed mainly of sodium-rich plagioclase feldspar, amphibole, and biotite mica from the list below: a. Basalt b. Andesite c. Granite d. Diorite e. Gabbro 4. __________ is characterized by extremely coarse mineral grains (larger than 1-inch)? a. Pumice b. Obsidian c. Granite d. Pegmatite 5. Basalt exhibits this texture. a. Aphanitic b. Glassy c. Porphyritic d. Phaneritic e. Pyroclastic 6. Rocks that contain crystals that are roughly equal in size and can be identified with the naked eye and don’t require the aid of a microscope, exhibits this texture: a. Aphanitic b. Glassy c. Porphyritic d. Phaneritic e. Pyroclastic 7. The texture of an igneous rock a. Is controlled by the composition of magma. b. Is the shape of the rock body c. Determines the color of the rock d.
    [Show full text]
  • 3D Seismic Imaging of the Shallow Plumbing System Beneath the Ben Nevis 2 Monogenetic Volcanic Field: Faroe-Shetland Basin 3 Charlotte E
    ArticleView metadata, text citation and similar papers at core.ac.uk Click here to download Article text Ben Nevis Paperbrought to you by CORE MASTER.docx provided by Aberdeen University Research Archive Plumbing systems of monogenetic edifices 1 3D seismic imaging of the shallow plumbing system beneath the Ben Nevis 2 Monogenetic Volcanic Field: Faroe-Shetland Basin 3 Charlotte E. McLean1*; Nick Schofield2; David J. Brown1, David W. Jolley2, Alexander Reid3 4 1School of Geographical and Earth Sciences, Gregory Building, University of Glasgow, G12 8QQ, UK 5 2Department of Geology and Petroleum Geology, University of Aberdeen AB24 3UE, UK 6 3Statoil (U.K.) Limited, One Kingdom Street, London, W2 6BD, UK 7 *Correspondence ([email protected]) 8 Abstract 9 Reflective seismic data allows for the 3D imaging of monogenetic edifices and their 10 corresponding plumbing systems. This is a powerful tool in understanding how monogenetic 11 volcanoes are fed and how pre-existing crustal structures can act as the primary influence 12 on their spatial and temporal distribution. This study examines the structure and lithology of 13 host-rock as an influence on edifice alignment and provides insight into the structure of 14 shallow, sub-volcanic monogenetic plumbing systems. The anticlinal Ben Nevis Structure 15 (BNS), located in the northerly extent of the Faroe-Shetland Basin, NE Atlantic Margin, was 16 uplifted during the Late Cretaceous and Early Palaeocene by the emplacement of a laccolith 17 and a series of branching sills fed by a central conduit. Seismic data reveals multiple 18 intrusions migrated up the flanks of the BNS after its formation, approximately 58.4 Ma 19 (Kettla-equivalent), and fed a series of scoria cones and submarine volcanic cones.
    [Show full text]
  • Description of the Fort Benton Quadrangle
    DESCRIPTION OF THE FORT BENTON QUADRANGLE. INTRODUCTION. steeply inclined sides. In the center of the range of the throat of a volcano, the dikes which radiate heat and cold, varying greatly, of course, with the the limestones and other stratified rocks are hori­ from these centers of activity, and the loose mate­ altitude. The annual rainfall is from 13 to 20 General relations. The Fort Benton quad­ zontal, or nearly so, while on the flanks structure of rials and lava flows of which the cones Structure_. , of. inches, being greatest in the mountains; June and rangle extends in longitude from 110° to 111° of the mountains they are sharply BheuLMoun- were built. The sedimentary strata October are the rainy months. The snowfall is and in latitude from 47° to 48°. It is inclined and dip away from the moun­ through which the volcanoes broke up heavy and the mountain tracts are well watered. 69.25 miles Ions; from north to south. extent°ofan tains to the lower plains country. The horizontal and upon which their materials accumulated are, Agriculture is therefore confined to the foothills . quadrangle. 47.36 miles wide, and contains 3272.7 attitude is well shown in the rocks of Belt Park, over most of the area, nearly horizontal or inclined and stream bottoms, except where irrigation is square miles. It includes part of Choteau, the whereas farther north the mountain masses near gently to the north. These rocks belong entirely possible. northwest corner of Fergus, and the eastern part Monarch are formed of blocks of tilted limestones to the Cretaceous system, and denudation has Culture.
    [Show full text]
  • Origin of Gabbroic Xenoliths Within the Lone Mountain Dacite Intrusion, Big Sky, Montana: a Field and Petrographic Analysis Emily Clement
    Undergraduate Review Volume 2 Article 28 2006 Origin of Gabbroic Xenoliths within the Lone Mountain Dacite Intrusion, Big Sky, Montana: A Field and Petrographic Analysis Emily Clement Follow this and additional works at: http://vc.bridgew.edu/undergrad_rev Part of the Geochemistry Commons, and the Geology Commons Recommended Citation Clement, Emily (2006). Origin of Gabbroic Xenoliths within the Lone Mountain Dacite Intrusion, Big Sky, Montana: A Field and Petrographic Analysis. Undergraduate Review, 2, 214-222. Available at: http://vc.bridgew.edu/undergrad_rev/vol2/iss1/28 This item is available as part of Virtual Commons, the open-access institutional repository of Bridgewater State University, Bridgewater, Massachusetts. Copyright © 2006 Emily Clement ,>4 Origin ofGabbroic Xenoliths within the Lone Mountain Dacite Intrusion, Big Sky, Montana: A Field and Petrographic Analysis BY EMILY CLEMENT Emily is an Earth Science major graduating Abstract in 2006. Her project, funded with an AlP one Mountain represents a dacite laccolith that intruded in Late gran, allowed her to conduct research in Cretaceous time -68 Ma. This intrusion resulted in contact meta· the lab at Big Sky, Montana. She and her morphism of the sedimentary country rock resulting in formation mentor, Dr. Michael Krol, are continuing L ofa thin zone of black hornfels. Field work reveals the presence of to research both geochemical and micro­ abundant, 1~9 em sized gabbro xenoliths and lesser amounts of siltstone inclu­ structural analysis. sions within the dacite intrusion. Compositionally, the Lone Mountain dacite consists of hornblende + plagioclase + biotite + quartz + opaques. Whereas the gabbroic xenoliths consist of pyroxene + hornblende + plagioclase + minor chlorite. This study is concerned with the origin of the gabbroic xenoliths and their relation to the dacite intrusion.
    [Show full text]
  • Report 104: Geochemistry of Volcanic Rocks of the Northern Pilbara Craton
    REPORT GEOCHEMISTRY OF VOLCANIC ROCKS 104 OF THE NORTHERN PILBARA CRATON WESTERN AUSTRALIA by R. H. Smithies, D. C. Champion, M. J. Van Kranendonk and A. H. Hickman Keep 3 mm border around photo. Resize white box as required. GEOLOGICAL SURVEY OF WESTERN AUSTRALIA REPORT 104 GEOCHEMISTRY OF VOLCANIC ROCKS OF THE NORTHERN PILBARA CRATON by R. H. Smithies, D. C. Champion1, M. J. Van Kranendonk, and A. H. Hickman 1 Geoscience Australia, GPO Box 378, Canberra, ACT 2601 Perth 2007 MINISTER FOR ENERGY; RESOURCES; INDUSTRY AND ENTERPRISE Hon. Francis Logan MLA DIRECTOR GENERAL, DEPARTMENT OF INDUSTRY AND RESOURCES Jim Limerick EXECUTIVE DIRECTOR, GEOLOGICAL SURVEY OF WESTERN AUSTRALIA Tim Griffi n REFERENCE The recommended reference for this publication is: SMITHIES, R. H., CHAMPION, D. C., VAN KRANENDONK, M. J., and HICKMAN, A. H., 2007, Geochemistry of volcanic rocks of the northern Pilbara Craton, Western Australia: Western Australia Geological Survey, Report 104, 47p. National Library of Australia Cataloguing-in-publication entry (Geochemistry of volcanic rocks of the northern Pilbara Craton, Western Australia) Bibliography. ISBN 978-1-74168-122-2 (web) 1. Geochemistry — Western Australia — Pilbara 2. Volcanic ash, tuff, etc. — Western Australia — Pilbara 3. Rocks, Igneous — Analysis I. Smithies, Robert Hugh, 1962– II. (Title. (Series: Report (Geological Survey of Western Australia); 104). 552.06 ISSN 0508–4741 Grid references in this publication refer to the Geocentric Datum of Australia 1994 (GDA94). Locations mentioned in the text are referenced using Map Grid Australia (MGA) coordinates, Zones 50 and 51. All locations are quoted to at least the nearest 100 m. Copy editor: J.
    [Show full text]
  • The Archean Geology of Montana
    THE ARCHEAN GEOLOGY OF MONTANA David W. Mogk,1 Paul A. Mueller,2 and Darrell J. Henry3 1Department of Earth Sciences, Montana State University, Bozeman, Montana 2Department of Geological Sciences, University of Florida, Gainesville, Florida 3Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana ABSTRACT in a subduction tectonic setting. Jackson (2005) char- acterized cratons as areas of thick, stable continental The Archean rocks in the northern Wyoming crust that have experienced little deformation over Province of Montana provide fundamental evidence long (Ga) periods of time. In the Wyoming Province, related to the evolution of the early Earth. This exten- the process of cratonization included the establishment sive record provides insight into some of the major, of a thick tectosphere (subcontinental mantle litho- unanswered questions of Earth history and Earth-sys- sphere). The thick, stable crust–lithosphere system tem processes: Crustal genesis—when and how did permitted deposition of mature, passive-margin-type the continental crust separate from the mantle? Crustal sediments immediately prior to and during a period of evolution—to what extent are Earth materials cycled tectonic quiescence from 3.1 to 2.9 Ga. These compo- from mantle to crust and back again? Continental sitionally mature sediments, together with subordinate growth—how do continents grow, vertically through mafi c rocks that could have been basaltic fl ows, char- magmatic accretion of plutons and volcanic rocks, acterize this period. A second major magmatic event laterally through tectonic accretion of crustal blocks generated the Beartooth–Bighorn magmatic zone assembled at continental margins, or both? Structural at ~2.9–2.8 Ga.
    [Show full text]
  • 2017 Wings Reg. Brochure
    program 17 layout:Layout 1 2/22/17 2:10 PM Page 1 18th ANNUAL MONTANA AUDUBON BIRD FESTIVAL June 9–11, 2017 Best Western Plus Heritage Inn Great Falls, Montana John Lambing Russell Hill program 17 layout:Layout 1 2/22/17 2:10 PM Page 2 welcome Festival headquarters and lodging The Best Western Plus Heritage Inn is located off the 10th Avenue South We will be celebrating the milestone of Montana (I-15) exit in Great Falls and is within minutes of the CM Russell Museum, Audubon’s first 40 Years at our 18th Annual Lewis and Clark Interpretive Center, Giant Springs State Park, First People’s Wings Across the Big Sky Festival, co-hosted by Buffalo Jump, Great Falls International Airport, Holiday Village Mall, and the the Upper Missouri Breaks Audubon Chapter. Rivers Edge Trail along the Missouri River. As the largest full-service hotel in This is shaping up to be a spectacular event and Central Montana with 231 guest rooms and over 17,000 sq. ft. event space we hope you will join us in Great Falls, June 9–11, with 12 meeting rooms, we are able to accommodate groups of all sizes. 2017. Registration will open at 1:00 p.m. so plan Complimentary features include: airport and area-wide transportation, to sign in and enjoy a special presentation parking, wireless internet, indoor pool and fitness center. The address is Friday afternoon, followed by a Barbecue and 1700 Fox Farm Road and is easily accessible from the south, north or west Celebration Friday evening.
    [Show full text]
  • Paleontology and Stratigraphy of Upper Coniacianemiddle
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2005 Paleontology and stratigraphy of upper Coniacianemiddle Santonian ammonite zones and application to erosion surfaces and marine transgressive strata in Montana and Alberta W. A. Cobban U.S. Geological Survey T. S. Dyman U.S. Geological Survey, [email protected] K. W. Porter Montana Bureau of Mines and Geology Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Part of the Earth Sciences Commons Cobban, W. A.; Dyman, T. S.; and Porter, K. W., "Paleontology and stratigraphy of upper Coniacianemiddle Santonian ammonite zones and application to erosion surfaces and marine transgressive strata in Montana and Alberta" (2005). USGS Staff -- Published Research. 367. https://digitalcommons.unl.edu/usgsstaffpub/367 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Cretaceous Research 26 (2005) 429e449 www.elsevier.com/locate/CretRes Paleontology and stratigraphy of upper Coniacianemiddle Santonian ammonite zones and application to erosion surfaces and marine transgressive strata in Montana and Alberta W.A. Cobban a,1, T.S. Dyman b,*, K.W. Porter c a US Geological Survey, Denver, CO 80225, USA b US Geological Survey, Denver, CO 80225, USA c Montana Bureau of Mines and Geology, Butte, MT 59701, USA Received 28 September 2004; accepted in revised form 17 January 2005 Available online 21 June 2005 Abstract Erosional surfaces are present in middle and upper Coniacian rocks in Montana and Alberta, and probably at the base of the middle Santonian in the Western Interior of Canada.
    [Show full text]
  • Comparative Study of the Economic and Business Potential of Chouteau and Teton Counties
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1979 Comparative study of the economic and business potential of Chouteau and Teton counties Larry Ray Gerfen The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Gerfen, Larry Ray, "Comparative study of the economic and business potential of Chouteau and Teton counties" (1979). Graduate Student Theses, Dissertations, & Professional Papers. 5145. https://scholarworks.umt.edu/etd/5145 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. COMPARATIVE STUDY OF THE ECONOMIC AND BUSINESS POTENTIAL OF CHOUTEAU AND TETON COUNTIES By Larry R. Gerfen B.B.A., Baylor University, 1974 Presented in partial fulfillment of the requirements for the degree of Master of Business Administration UNIVERSITY OF MONTANA 1979 Approved by: Chai Board of Examiners Dean, Graduate School UMI Number: EP40609 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. JUM3LDissertation PaMWn® UMI EP40609 Published by ProQuest LLC (2014).
    [Show full text]