The Hyper Igm Syndromes Epidemiology, Pathogenesis, Clinical Manifestations, Diagnosis and Management

Total Page:16

File Type:pdf, Size:1020Kb

The Hyper Igm Syndromes Epidemiology, Pathogenesis, Clinical Manifestations, Diagnosis and Management Clinical Immunology 198 (2019) 19–30 Contents lists available at ScienceDirect Clinical Immunology journal homepage: www.elsevier.com/locate/yclim Review Article The hyper IgM syndromes: Epidemiology, pathogenesis, clinical manifestations, diagnosis and management T Reza Yazdania, Saba Fekrvanda, Sepideh Shahkaramia, Gholamreza Azizib, Bobak Moazzamia, ⁎ Hassan Abolhassania,c, Asghar Aghamohammadia, a Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran b Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran c Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden ARTICLE INFO ABSTRACT Keywords: Hyper Immunoglobulin M syndrome (HIGM) is a rare primary immunodeficiency disorder characterized by low Primary immunodeficiency disorders or absent levels of serum IgG, IgA, IgE and normal or increased levels of serum IgM. Various X-linked and Hyper-IgM syndrome autosomal recessive/dominant mutations have been reported as the underlying cause of the disease. Based on Class switch recombination the underlying genetic defect, the affected patients present a variety of clinical manifestations including pul- Somatic hyper mutation monary and gastrointestinal complications, autoimmune disorders, hematologic abnormalities, lymphoproli- DNA repair defects feration and malignancies which could be controlled by multiple relevant therapeutic approaches. Herein, the epidemiology, pathogenesis, clinical manifestations, diagnosis, management, prognosis and treatment in pa- tients with HIGM syndrome have been reviewed. 1. Introduction alpha (PIK3R1), tumor necrosis factor receptor superfamily member 13B (TACI/TNFRSF13B), inducible T-cell costimulator (ICOS), CD19,B Hyper-immunoglobulin M syndrome (HIGM) was first described in cell-activating factor receptor (BAFF-R/TNFRSF13C), LPS Responsive 1961 by Rosen et al. [1] and molecularly was defined in 1992 with a Beige-Like Anchor Protein (LRBA), phospholipase C gamma-2 (PLCG2), report of a mutation in the CD40 ligand (CD40L) gene [2]. This syn- Bruton tyrosine kinase (BTK) and signaling lymphocyte activation drome is also known as immunoglobulin class switch recombination molecule-associated protein (SAP)[2,5–10]. Although less frequent (Ig-CSR) deficiencies. Ig-CSR deficiencies are a group of rare inherited cases of the HIGM syndrome with autosomal recessive inheritance have primary immunodeficiency disorders (PIDs) characterized by low or been reported in previous studies, the X-linked Hyper-IgM syndrome absent serum levels of IgG, IgA and IgE, whereas the IgM concentration (X-HIGM), which is caused by CD40L mutations, is the most common is either normal or increased [3,4]. form of HIGM and accounts for about 65–70% of all cases [3,11]. HIGM To date, in addition to CD40L mutations in several genes responsible predisposes affected individuals to recurrent and prolonged infections for B cell signaling, Ig-CSR, somatic hypermutation and DNA repair including opportunistic infections, neutropenia, autoimmune disease mechanism involved in presentation of HIGM phenotype, including and cancer [12]. Immunoglobulin replacement is an effective treatment CD40L, CD40, nuclear factor-kappa-B essential modulator (NEMO/ for decreasing chronic infections in patients with HIGM, however in IKKγ), inhibitor of kappa light chain gene enhancer in B cells, alpha patients with combined immunodeficiency hematopoietic stem cell (IκBα), nuclear factor kappa-B subunit 1 (NKFB1), activation-induced transplantation (HSCT) should be considered [13]. cytidine deaminase (AICDA), uracil-DNA glycosylase (UNG), ataxia Patients with HIGM syndrome could have distinct clinical infectious telangiectasia mutated (ATM), post meiotic segregation increased 2 complications based on the genetic characteristic and exact type of the (PMS2), MutS Homolog 6 (MSH6), MutS Homolog 2 (MSH2), INO80, syndrome, which makes it a challenge for clinicians and researchers. the gene encoding Nibrin/Nijmegen breakage syndrome 1 (NBS1/ Majority of autosomal forms of HIGM are presented as a typical hu- NBN), meiotic recombination 11-Like Protein A (MRE11), recombina- moral PID; however the X-linked and autosomal dominant forms show tion activating gene 2 (RAG2), phosphatidylinositol 3-kinase catalytic the spectrum of clinical manifestations similar to the combined im- delta (PIK3CD), phosphatidylinositol 3-kinase regulatory subunit 1 munodeficiency disorders [14]. Early diagnosis and appropriate ⁎ Corresponding author at: Children’s Medical Center Hospital, 62 Qarib St., Keshavarz Blvd., Tehran 14194, Iran. E-mail address: [email protected] (A. Aghamohammadi). https://doi.org/10.1016/j.clim.2018.11.007 Received 4 November 2018; Accepted 11 November 2018 Available online 13 November 2018 1521-6616/ © 2018 Published by Elsevier Inc. R. Yazdani et al. Clinical Immunology 198 (2019) 19–30 management of HIGM patients would be performed more efficiently by 3.1. CD40L and CD40 mutations knowing the clinical phenotypes along with associated immunological and genetic parameters. The most prevalent type of HIGM is the X-linked CD40L deficiency accounting for almost 65–70 % of all cases, exclusively observed in male subjects [24,35]. The CD40L gene is located at X chrmosome 2. Epidemiology [36,37] which encodes CD40L (CD154), a member of tumor necrosis factor (TNF) family made-up of 3 functional domains: intracellular, The prevalence of HIGM varies in different ethnicities across the transmembrane and extracellular [38]. More than 100 unique muta- world. According to US X-HIGM registry, the prevalence of X-HIGM was tions including single amino acid substitutions, truncations, in-frame or approximately 1 in 1,000,000 live births from 1984–1993 [15]. The out-of-frame deletions, nonsense, missense, insertion and splice-site estimated frequency of CD40L deficiency is 2:1,000,000 in males [15]. mutations have been reported among X-HIGM patients (http:// Although there are few data available on the frequency of AICDA de- structure.bmc.lu.se/idbase/CD40Lbase). These mutation mostly affect ficiency, this disorder is estimated to affect less than 1:1,000,000 in- the extracellular domain, resulting in a defective geometrical folding of dividuals [16]. Globally, all forms of HIGM constitute 0.3–2.9% of all CD40L or preventing the CD40L/CD40 binding [6,15,39–42]. Ab- patients with PIDs. In 2014, a multicenter report on PID by Jeffrey normalities in the promoter region of the CD40L gene [43] have been Modell Foundation (JMF) indicated ~880 HIgM patients (2.3% of also identified to be responsible for X-HIGM [3]. Defective T cell co- 37,532 antibody deficient patients and 1.2% of all 77,193 PID patients). stimulation in CD40L-deficiency leads to combined T- (cellular) and B- In this report CD40L deficiency ranked as 28th frequent type of PID (372 cell (humoral) immunodeficiency [24,44]. patients, 42.2% of all HIgM patients, 272 patients from US) worldwide. CD40, a unique receptor of CD40L, is a member of the TNF receptor Of note, CD40 deficiency (92 patients, 71 patients from US) was more family that is expressed on APCs (B cells, monocytes, macrophages and common genetic defect compared to AID deficiency (81 patients, 71 dendritic cells). CD40 deficiency is one of the autosomal recessive types patients from US), however majority of the CD40 deficient patients of HIGM syndromes [44,45]. Reported biallelic mutations in the gene have not been reported in details [17]. A study of 7430 PID patients encoding CD40, consist of a single amino acid change in a highly from the European Society for Immune Deficiency (ESID) demonstrated conserved area of an extra-cellular cysteine-rich domain, a 6-bp dele- that 3.08% of PID patients enrolled had CSR defects, the most prevalent tion in exon 4 and a cryptic splice site resulting in skipping of exon 5 being CD40L deficiency with a frequency of 1.16% [18]. According to [29,46]. Therefore there are many underreported patients with CD40 the national registry in Spain, the incidence rate of all forms of HIGM is deficiency according to IDbase (http://structure.bmc.lu.se/idbase/ 1 per 20 million live births which X-HIGM represents about 65–70% of CD40base) and JMF global report [17]. Similar to CD40L deficiency, all cases [19]. Studies are inadequate to provide racial and ethnic data defects in CD40 also result in combined immunodeficiency. regarding X-HIGM incidence. The US X-HIGM registry reported the racial background of 75 patients, as 52 of the patients were white, 12 3.2. AICDA and UNG mutations were black, 9 were Asian, 1 was both black and Asian, and 1 was white and Asian [15]. B cell intrinsic defects including defects of AICDA and UNG genes A retrospective study of the Registry of the ESID on 56 affected comprise two other autosomal recessive types of HIGM syndromes. AID males showed a 20% survival rate in individuals aged ~25 years [20]. and UNG enzymes have a crucial role in CSR and SHM processes The US X-HIGM Registry reported that 11 out of 61 surviving patients [23,47]. AID generates deoxyuracils by deaminating deoxycytosine in were aged 20 years or older [15]. The leading cause of death was the switch regions of the immunoglobulin heavy chain genes during pneumonia, encephalitis or malignancy. Other patients died of liver CSR [48], afterwards, UNG removes deoxyuracils from DNA as a part of failure secondary to sclerosing cholangitis
Recommended publications
  • Clinical Implications of Systematic Phenotyping and Exome Sequencing in Patients with Primary Antibody Deficiency
    © American College of Medical Genetics and Genomics ARTICLE Clinical implications of systematic phenotyping and exome sequencing in patients with primary antibody deficiency Hassan Abolhassani, MD, PhD1,2, Asghar Aghamohammadi, MD, PhD2, Mingyan Fang, PhD1,3,4, Nima Rezaei, MD, PhD2, Chongyi Jiang, PhD3,4, Xiao Liu, PhD3,4, Qiang Pan-Hammarström, MD, PhD1 and Lennart Hammarström, MD, PhD1,3,4 Purpose: The etiology of 80% of patients with primary antibody known genes (38 patients) and the discovery of a new genetic defect deficiency (PAD), the second most common type of human (CD70 pathogenic variants in 2 patients). Medical implications of a immune system disorder after human immunodeficiency virus definite genetic diagnosis were reported in ~50% of the patients. infection, is yet unknown. Conclusion: Due to misclassification of the conventional approach Methods: Clinical/immunological phenotyping and exome for targeted sequencing, employing next-generation sequencing as a sequencing of a cohort of 126 PAD patients (55.5% male, 95.2% preliminary step of molecular diagnostic approach to patients with childhood onset) born to predominantly consanguineous parents PAD is crucial for management and treatment of the patients and (82.5%) with unknown genetic defects were performed. The their family members. American College of Medical Genetics and Genomics criteria were used for validation of pathogenicity of the variants. Genetics in Medicine (2019) 21:243–251; https://doi.org/10.1038/ Results: This genetic approach and subsequent immunological s41436-018-0012-x investigations identified potential disease-causing variants in 86 patients (68.2%); however, 27 of these patients (31.4%) carried autosomal dominant (24.4%) and X-linked (7%) gene defects.
    [Show full text]
  • Retrospective Diagnosis of X-Linked Hyper-Igm Syndrome in a Family With
    Letters to the Editor ical malignancies. One of the proband’s brothers (Patient Retrospective diagnosis of X-linked hyper-IgM III.4) was hospitalized 6-7 times a year with recurrent, syndrome in a family with multiple deaths of affected males severe bacterial infections of the gastrointestinal and res - piratory tracts until his death at age 10. Laboratory eval - uations between 1971 and 1977 demonstrated severe hypo-gammaglobulinemia with normal or elevated IgM All males in two generations of a Hungarian fam - levels (IgG, 0.85-2.95 g/L; IgA, 0.10-0.87 g/L; IgM, 1.37- ily died of interstitial pneumonia. History and 3.72 g/L). These data together with the family history records suggested X-linked hyper-IgM syndrome suggested X-HIG. 1-2 (X-HIGM). DNA sequencing of a female carrier We performed mutational analysis of the CD40L of the revealed a c. 654C →A transversion of the CD40L proband and her mother. The proband’s aunt (II.4) who gene that predicts premature termination of CD40L died at 70 years of age, and had no children, was not synthesis. This report points to the importance of available for genetic testing. Genomic DNA was isolated early carrier detection and genetic counseling in from whole blood samples. Exons 1 to 5 of the CD40L, families with X-linked primary immunodeficiency and the flanking intron regions were amplified by PCR. 3 diseases. We propose that the c.654C →A sequence The PCR products were sequenced with the BigDye variant may associate with severe X-HIGM pheno - Terminator Cycle sequencing kit (Applied Biosystems).
    [Show full text]
  • X Inactivation and Immunocompetence in Female Carriers of the X-Linked Hyper-Igm Syndrome
    X inactivation and immunocompetence in female carriers of the X-linked hyper-IgM syndrome. T J Kipps J Clin Invest. 1994;94(2):469-469. https://doi.org/10.1172/JCI117355. Editorial Find the latest version: https://jci.me/117355/pdf X Inactivation and Immunocompetence in Female Carriers of the X-linked Hyper-lgM Syndrome Editorial Immunocompetence requires cognate cell-cell communication severe combined immune deficiency, in which carriers predomi- that is mediated through cell surface ligand-receptor interac- nately generate mature lymphocytes that express the normal tions (1). An important player in such interactions is CD40, a allele. type I membrane glycoprotein that is expressed by a variety of Cases of extreme Lyonization can result in phenotype ex- cells, including B cells, monocytes, dendritic cells, and thymic pression of an X-linked disease in the female carrier, as has epithelial cells. Crosslinking this surface molecule can induce been noted in cases of Wiskott-Aldrich syndrome, hemophilia maturation, activation, and/or proliferation of CD40-bearing A, or Duchenne muscular dystrophy. However, with regard to cells. This is mediated by the CD40-ligand (otherwise called the relative number of T cells that can express a functional gp39 or TRAP), a type II membrane glycoprotein that is ex- CD40-ligand, it seems that a little can go a long way. This may pressed on the surface of T cells 6-8 h after their immune reflect the presence of signaling pathways other than that of the activation (2). CD40-CD40-ligand, that, once primed by a relatively small The importance of the CD40-CD40-ligand interaction is number of CD40-ligand-expressing T cells, can perpetuate the underscored by the X-linked hyper-IgM syndrome.
    [Show full text]
  • Blueprint Genetics Severe Combined Immunodeficiency Panel
    Severe Combined Immunodeficiency Panel Test code: IM0101 Is a 80 gene panel that includes assessment of non-coding variants. Is ideal for patients with a clinical suspicion of combined immunodeficiencies. The genes on this panel are included in the Primary Immunodeficiency Panel. About Severe Combined Immunodeficiency Severe combined immunedeficiencies (SCIDs) are a group of primary immunodeficiencies characterized by specific mutations in genes of T and B-lymphocyte systems and leading to little or no immune response. Different subtypes of SCIDs are characterized and subdivided by the presence of circulating T and B cells. T cells are absent or markedly decreased in the most types, but levels of B cells vary. In addition, both of these disease subgroups (T-B+ and T-B-) can occur with or without NK cells. Patients with SCID are susceptible to recurrent infections that can be fatal. The worldwide prevalence of SCID is estimated to be at least 1:100,000 births, while some genetically more homogenous populations may show markedly increased numbers. Mutations in IL2RG are the most common reason for SCIDs, explaining approximately 50% of all cases and close to 100% of X-linked cases. Availability 4 weeks Gene Set Description Genes in the Severe Combined Immunodeficiency Panel and their clinical significance Gene Associated phenotypes Inheritance ClinVar HGMD ADA Severe combined immunodeficiency due to adenosine deaminase AR 49 93 deficiency AK2 Reticular dysgenesis AR 14 17 ATM Breast cancer, Ataxia-Telangiectasia AD/AR 1047 1109 BCL11B Immunodeficiency
    [Show full text]
  • Infectious and Non-Infectious Complications Among
    Iran J Pediatr Original Article Dec 2009; Vol 19 (No 4), Pp:367-375 Infectious and Non­Infectious Complications among Undiagnosed Patients with Common Variable Immunodeficiency Asghar Aghamohammadi*1,2, MD, PhD; Mahmoud Tavassoli1, MD, MPH; Hassan Abolhassani2; Nima Parvaneh1,2, MD; Kasra Moazzami2; Abdolreza Allahverdi1, MD; Seyed­Alireza Mahdaviani1,MD; Lida Atarod1; MD; Nima Rezaei1,2, MD, PhD 1. Department of Pediatrics, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, IR Iran 2. Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, IR Iran Received: Mar 29, 2009; Final Revision: Jun 08, 2009; Accepted: Jul 11, 2009 Abstract Objective: Common variable immunodeficiency (CVID) is a heterogeneous group of disorders, characterized by hypogammaglobulinemia, defective specific antibody responses to pathogens and increased susceptibility to recurrent bacterial infections. Delay in diagnosis and inadequate treatment can lead to irreversible complications and mortality. In order to determine infectious complications among undiagnosed CVID patients, 47 patients diagnosed in the Children’s Medical Center Hospital during a period of 25 years (1984–2009) were enrolled in this study. Methods: Patients were divided into two groups including Group 1 (G1) with long diagnostic delay of more than 6 years (24 patients) and Group 2 (G2) with early diagnosis (23 patients). The clinical manifestations were recorded in a period prior to diagnosis in G1 and duration
    [Show full text]
  • Lymphocytic Interstitial Pneumonitis: an Unusual Presentation of X-Linked Hyper Ig M Syndrome
    Iran J Pediatr. 2016 April; 26(2):e3656. doi: 10.5812/ijp.3656 Letter Published online 2016 March 5. Lymphocytic Interstitial Pneumonitis: An Unusual Presentation of X-Linked Hyper Ig M Syndrome 1 2,3 4 3,5 Mohsen Reisi, Gholamreza Azizi, Tooba Momen, Hassan Abolhassani, and Asghar 3,* Aghamohammadi 1Child Growth and Development Research Center, Pediatric Pulmonology Department, Research Institute of Primordial Prevention of Non- Communicable Disease, Isfahan University of Medical Sciences, Isfahan, IR Iran 2Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, IR Iran 3Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, IR Iran 4Pediatric immunology, Allergy and Asthma Department, Child Growth and Development Research Center, Research Institute of Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, IR Iran 5Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University, Stockholm, Sweden *Corresponding author : Asghar Aghamohammadi, Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, IR Iran. Tel: +98-2166428998, Fax: +98-2166923054, E-mail: [email protected] Received ; Accepted 2015 July 26 2015 November 30. Keywords: Infection, Children, Pediatrics Dear Editor, X-linked hyper IgM syndrome (XHIGM or HIGM1) is a of his family history showed that his sister and an aunt rare immunodeficiency disease caused by mutations in had died in infancy with unknown pulmonary disease. the gene that codes CD40 ligand (CD40L), which is nec- On admission, Chest X-ray (CXR) showed bilateral diffuse essary for T cells to induce B cells to undergo immuno- alveolar shadow (Figure 1).
    [Show full text]
  • Prevention of Infections During Primary Immunodeficiency
    Clinical Infectious Diseases Advance Access published September 28, 2014 INVITED ARTICLE IMMUNOCOMPROMISED HOSTS David R. Snydman, Section Editor Prevention of Infections During Primary Immunodeficiency Claire Aguilar,1,2,3 Marion Malphettes,1,4 Jean Donadieu,1,5 Olivia Chandesris,1,3,6 Hélène Coignard-Biehler,1,2,3 Emilie Catherinot,1,7 Isabelle Pellier,1,8 Jean-Louis Stephan,1,9 Vincent Le Moing,1,10 Vincent Barlogis,1,11 Felipe Suarez,1,3,6 Stéphane Gérart,3 Fanny Lanternier,1,2,3 Arnaud Jaccard,1,12 Paul-Henri Consigny,2 Florence Moulin,13 Odile Launay,14 Marc Lecuit,1,2,3 Olivier Hermine,1,3,6 Eric Oksenhendler,1,4 Capucine Picard,1,3,15,16,a Stéphane Blanche,1,3,16,a Alain Fischer,1,3,16,17,a Nizar Mahlaoui,1,3,16 and Olivier Lortholary1,2,3 1Centre de Référence des Déficits Immunitaires Héréditaires, and 2Centre d’Infectiologie Necker Pasteur, Hôpital Necker–Enfants Malades, Assistance publique–Hôpitaux de Paris (AP-HP), 3Sorbonne Paris Cité, Université Paris Descartes, Institut-Hospitalo-Universitaire (IHU) Imagine, 4Département ’ 5 ’ 6 d Immunologie, Hôpital Saint-Louis, Service d Hémato-Oncologie Pédiatrique, Registre des Neutropénies Congénitales, Hôpital Trousseau, Service Downloaded from d’Hématologie Adulte, IHU Imagine, Hôpital Necker–Enfants Malades, AP-HP, Paris, 7Service de Pneumologie, Hôpital Foch, Suresnes, 8Unité d’Immuno- Hématologie-Oncologie Pédiatrique, Centre Hospitalier Universitaire (CHU) d’Angers, 9Unité d’Immuno-Hématologie-Oncologie Pédiatrique, CHU de Saint- Etienne, 10Service des Maladies Infectieuses et
    [Show full text]
  • Clinical and Laboratory Findings in Hyper-Igm Syndrome with Novel CD40L and AICDA Mutations
    J Clin Immunol (2009) 29:769–776 DOI 10.1007/s10875-009-9315-7 Clinical and Laboratory Findings in Hyper-IgM Syndrome with Novel CD40L and AICDA Mutations Asghar Aghamohammadi & Nima Parvaneh & Nima Rezaei & Kasra Moazzami & Sara Kashef & Hassan Abolhassani & Amir Imanzadeh & Javad Mohammadi & Lennart Hammarström Received: 25 April 2009 /Accepted: 16 June 2009 /Published online: 3 July 2009 # Springer Science + Business Media, LLC 2009 Abstract over a period of 17 years, were studied. Fourteen of the 23 Background Hyper-immunoglobulin M (HIGM) syndromes patients were screened for CD40L, AICDA, UNG, and are a heterogeneous group of primary immunodeficiency CD40 gene mutations, using polymerase chain reaction disorders, characterized by recurrent infections associated followed by direct sequencing. with decreased serum levels of immunoglobulin G (IgG) and Results All patients, except one, initially presented with IgA and normal to increased serum levels of IgM. These infectious diseases; the most common manifestations were patients have immunoglobulin class switch recombination respiratory tract infections. Six different CD40L mutations defects, caused by mutations in several genes. were identified, five were novel, one splicing (IVS1+2T>C), Methods In order to investigate clinical and immunological three missense (T254M, G167R, L161P), and two frame manifestations of HIGM in Iran, 23 Iranian patients with an shift deletions (T29fsX36 and D62fsX79). In addition, one age range of 5 months to 35 years, who were followed up novel AICDA mutation (E122X) was detected. No mutation was found in six out of 14 analyzed patients. Conclusion CD40L mutations comprise the most common A. Aghamohammadi : N. Parvaneh : N. Rezaei Center of Excellence for Pediatrics, Children’s Medical Center, type of immunoglobulin class switch recombination defects.
    [Show full text]
  • Fourth Update on the Iranian National Registry of Primary Immunodeficiencies: Integration of Molecular Diagnosis
    Journal of Clinical Immunology (2018) 38:816–832 https://doi.org/10.1007/s10875-018-0556-1 ORIGINAL ARTICLE Fourth Update on the Iranian National Registry of Primary Immunodeficiencies: Integration of Molecular Diagnosis Hassan Abolhassani1,2,3 & Fatemeh Kiaee1,3 & Marzieh Tavakol4 & Zahra Chavoshzadeh5 & Seyed Alireza Mahdaviani6 & Tooba Momen7 & Reza Yazdani1,3 & Gholamreza Azizi8 & Sima Habibi1,3 & Mohammad Gharagozlou9 & Masoud Movahedi9 & Amir Ali Hamidieh10 & Nasrin Behniafard11 & Mohammamd Nabavi12 & Mohammad Hassan Bemanian12 & Saba Arshi12 & Rasol Molatefi13 & Roya Sherkat14 & Afshin Shirkani15 & Reza Amin16 & Soheila Aleyasin16 & Reza Faridhosseini17 & Farahzad Jabbari-Azad17 & Iraj Mohammadzadeh18 & Javad Ghaffari19 & Alireza Shafiei20 & Arash Kalantari21 & Mahboubeh Mansouri22 & Mehrnaz Mesdaghi22 & Delara Babaie5 & Hamid Ahanchian17 & Maryam Khoshkhui17 & Habib Soheili 23 & Mohammad Hossein Eslamian24 & Taher Cheraghi25 & Abbas Dabbaghzadeh18,43 & Mahmoud Tavassoli26 & Rasoul Nasiri Kalmarzi27 & Seyed Hamidreza Mortazavi28 & Sara Kashef16 & Hossein Esmaeilzadeh16 & Javad Tafaroji29 & Abbas Khalili30 & Fariborz Zandieh20 & Mahnaz Sadeghi-Shabestari31 & Sepideh Darougar6 & Fatemeh Behmanesh16 & Hedayat Akbari16 & Mohammadreza Zandkarimi17 & Farhad Abolnezhadian32 & Abbas Fayezi32 & Mojgan Moghtaderi17 & Akefeh Ahmadiafshar33 & Behzad Shakerian26 & Vahid Sajedi34 & Behrang Taghvaei35 & Mojgan Safari24 & Marzieh Heidarzadeh36 & Babak Ghalebaghi25 & Seyed Mohammad Fathi37 & Behzad Darabi38 & Saeed Bazregari15 & Nasrin Bazargan39
    [Show full text]
  • X-Linked Hyper-Igm Syndrome with Bronchiectasis
    Published online: 2020-04-19 X‑linked Hyper‑IgM Syndrome with Bronchiectasis Devki Nandan, Vimal Kumar Nag, Nitin Trivedi, Sarman Singh1 Report Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Dr. Ram Manohar Lohia Hospital, 1Department of Clinical Microbiology, All India Institute of Medical Sciences, New Delhi, India Address for correspondence: Dr. Devki Nandan, E-mail: [email protected] Case ABSTRACT The X-linked hyper-immunoglobulin M syndrome (HIGM-1) is a rare genetic disorder characterized by elevated serum IgM levels and low to undetectable levels of serum IgG, IgA and IgE. These patients characteristically present with recurrent sinopulmonary infections and recurrent diarrhea. They also have high susceptibility for Pneumocystis jiroveci (PJ) pneumonia. Herein, we report a case of HGM-1 in a 5-year-old boy who presented with bronchiectasis and, possibly, PJ pneumonia. The diagnosis was established on the basis of clinical features, immune profile, whole blood flow cytometry and history of two male sibling’s death due to recurrent pneumonia and diarrhea. Key words: Bronchiectasis, children, Pneumocystis jiroveci, X-linked hyper-IgM syndrome INTRODUCTION CASE REPORT yper‑immunoglobulin M syndrome (HIGM) A 5‑year‑old boy, born of consanguineous (4th degree) H is a rare heterogeneous group of marriage, presented with complaints of productive disorders, 70% of which are due to CD40‑ligand cough and right ear discharge since 1 year, fever and deficiency.[1] These patients are susceptible to respiratory distress for 25 days and oral thrush since recurrent sinopulmonary infections and opportunistic 20 days. infections, especially Pneumocystis jiroveci pneumonia. Bronchiectasis is characterized by abnormal He had a history of five admissions in various hospitals dilated thick‑walled bronchi that are inflamed and for pneumonia since the age of 1 year.
    [Show full text]
  • Primary Immunodeficiency Disorders in Iran: Update and New Insights from the Third Report of the National Registry
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Golestan University of Medical Sciences Repository J Clin Immunol DOI 10.1007/s10875-014-0001-z ORIGINAL RESEARCH Primary Immunodeficiency Disorders in Iran: Update and New Insights from the Third Report of the National Registry Asghar Aghamohammadi & Payam Mohammadinejad & Hassan Abolhassani & Babak Mirminachi & Masoud Movahedi & Mohammad Gharagozlou & Nima Parvaneh & Va h e i d Z e i a e e & Bahram Mirsaeed-Ghazi & Zahra Chavoushzadeh & Alireza Mahdaviani & Mahboubeh Mansouri & Sedigheh Yousefzadegan & Bahareh Sharifi & Fariborz Zandieh & Ehsan Hedayat & Ali Nadjafi & Roya Sherkat & Behzad Shakerian & Mahnaz Sadeghi-Shabestari & Reza Farid Hosseini & Farahzad Jabbari-Azad & Hamid Ahanchian & Fatemeh Behmanesh & Mohammadreza Zandkarimi & Afshin Shirkani & Ta h e r C h e r a g h i & Abbas Fayezi & Iraj Mohammadzadeh & Reza Amin & Soheila Aleyasin & Mojgan Moghtaderi & Javad Ghaffari & Saba Arshi & Naser Javahertrash & Mohammad Nabavi & Mohammad Hassan Bemanian & Alireza Shafiei & Najmedin Kalantari & Akefeh Ahmadiafshar & Hossein Ali Khazaei & Lida Atarod & Nima Rezaei Received: 22 December 2013 /Accepted: 12 February 2014 # Springer Science+Business Media New York 2014 Abstract conditions. National registries of PID disorders provide epi- Background Primary immunodeficiency disorders (PID) are a demiological data and increase the awareness of medical group of heterogeneous disorders mainly characterized by personnel as well as health care providers. severe and recurrent infections and increased susceptibility Methods This study presents the demographic data and clin- to malignancies, lymphoproliferative and autoimmune ical manifestations of Iranian PID patients who were A. Aghamohammadi (*) : P. Mohammadinejad : H. Abolhassani : R. Sherkat : B. Shakerian B. Mirminachi : N. Parvaneh : S.
    [Show full text]
  • Comprehensive Review of Autoantibodies in Patients with Hyper-Igm Syndrome
    Cellular and Molecular Immunology (2018) 15, 610–617 & 2018 CSI and USTC All rights reserved 2042-0226/18 $32.00 www.nature.com/cmi RESEARCH ARTICLE Comprehensive review of autoantibodies in patients with hyper-IgM syndrome Mohamed-Ridha Barbouche1, Qubo Chen2,3, Marco Carbone4, Imen Ben-Mustapha1, Zakera Shums5, Mehdi Trifa6, Federica Malinverno4, Francesca Bernuzzi4, Haiyan Zhang2,4,7, Nourhen Agrebi1, Gary L Norman5, Christopher Chang8, M Eric Gershwin8 and Pietro Invernizzi2,4 Hyper-immunoglobulin M syndrome is an X-linked primary immunodeficiency disease caused by mutations in the CD40 ligand gene. The CD40 ligand has been recently highlighted as playing a key role in the pathogenesis of primary biliary cholangitis. In the present study, we assessed an extensive set of serum autoantibodies in a series of well-defined patients with hyper-immunoglobulin M syndrome. Serum, liver-related and liver-not-related autoantibodies IgG, IgM and IgA were tested by ELISA and standard indirect immunofluorescence in HEp-2 cells in 13 Tunisian patients (8 males and 5 females, aged 1–12 years) with hyper-immunoglobulin M syndrome during 1995–2012 and, as controls, 21 age- and gender-matched blood donors. The level of IgM antibody against MIT3 was significantly higher in patients than in controls (35.8 vs 10.7, P = 0.002). Half of the hyperimmunoglobulin M syndrome patients were found to be anti-MIT3 IgM positive vs none of the controls (Po0.0001). Twenty-three percent of patients were found to be anti-sp100 antibody positive vs only 0.05% of controls. By immunofluorescence, 92.3% of patients were MIT3 IgM positive vs none of the controls.
    [Show full text]