Globe Latitudes and Longitudes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
North America Other Continents
Arctic Ocean Europe North Asia America Atlantic Ocean Pacific Ocean Africa Pacific Ocean South Indian America Ocean Oceania Southern Ocean Antarctica LAND & WATER • The surface of the Earth is covered by approximately 71% water and 29% land. • It contains 7 continents and 5 oceans. Land Water EARTH’S HEMISPHERES • The planet Earth can be divided into four different sections or hemispheres. The Equator is an imaginary horizontal line (latitude) that divides the earth into the Northern and Southern hemispheres, while the Prime Meridian is the imaginary vertical line (longitude) that divides the earth into the Eastern and Western hemispheres. • North America, Earth’s 3rd largest continent, includes 23 countries. It contains Bermuda, Canada, Mexico, the United States of America, all Caribbean and Central America countries, as well as Greenland, which is the world’s largest island. North West East LOCATION South • The continent of North America is located in both the Northern and Western hemispheres. It is surrounded by the Arctic Ocean in the north, by the Atlantic Ocean in the east, and by the Pacific Ocean in the west. • It measures 24,256,000 sq. km and takes up a little more than 16% of the land on Earth. North America 16% Other Continents 84% • North America has an approximate population of almost 529 million people, which is about 8% of the World’s total population. 92% 8% North America Other Continents • The Atlantic Ocean is the second largest of Earth’s Oceans. It covers about 15% of the Earth’s total surface area and approximately 21% of its water surface area. -
TYPHOONS and DEPRESSIONS OVER the FAR EAST Morning Observation, Sep Teinber 6, from Rasa Jima Island by BERNARDF
SEPTEMBER1940 MONTHLY WEATHER REVIEW 257 days west of the 180th meridian. In American coastal appear to be independent of the typhoon of August 28- waters fog was noted on 10 days each off Washington and September 5, are the following: The S. S. Steel Exporter California; on 4 days off Oregon; and on 3 days off Lower reported 0700 G. C. T. September 6, from latitude 20'18' California. N., longitude 129'30'E.) a pressure of 744.8 mm. (993.0 nib.) with west-northwest winds of force 9. Also, the TYPHOONS AND DEPRESSIONS OVER THE FAR EAST morning observation, Sep teinber 6, from Rasa Jima Island By BERNARDF. DOUCETTE, J. (one of the Nansei Island group) was 747.8 mm. (997.0 5. mb.) for pressure and east-northeast, force 4, for winds. [Weather Bureau, Manila, P. I.] Typhoon, September 11-19) 1940.-A depression, moving Typhoon, August %!-September 6,1940.-A low-pressure westerly, passed about 200 miles south of Guam and area far to the southeast of Guam moved west-northwest, quickly inclined to the north, intensifying to typhoon rapidly developing to typhoon intensity as it proceeded. strength, September 11 to 13. It was stationary, Sep- When the center reached the regions about 250 miles tember 13 and 14, about 150 miles west-northwest of west of Guam, the direction changed to the northwest, Guam, and then began a northwesterly and northerly and the storm continued along this course until it reached course to the ocean regions about 300 miles west of the the latitude of southern Formosa. -
2. Disc Resources
An early map of the world Resource D1 A map of the world drawn in 1570 shows ‘Terra Australis Nondum Cognita’ (the unknown south land). National Library of Australia Expeditions to Antarctica 1770 –1830 and 1910 –1913 Resource D2 Voyages to Antarctica 1770–1830 1772–75 1819–20 1820–21 Cook (Britain) Bransfield (Britain) Palmer (United States) ▼ ▼ ▼ ▼ ▼ Resolution and Adventure Williams Hero 1819 1819–21 1820–21 Smith (Britain) ▼ Bellingshausen (Russia) Davis (United States) ▼ ▼ ▼ Williams Vostok and Mirnyi Cecilia 1822–24 Weddell (Britain) ▼ Jane and Beaufoy 1830–32 Biscoe (Britain) ★ ▼ Tula and Lively South Pole expeditions 1910–13 1910–12 1910–13 Amundsen (Norway) Scott (Britain) sledge ▼ ▼ ship ▼ Source: Both maps American Geographical Society Source: Major voyages to Antarctica during the 19th century Resource D3 Voyage leader Date Nationality Ships Most southerly Achievements latitude reached Bellingshausen 1819–21 Russian Vostok and Mirnyi 69˚53’S Circumnavigated Antarctica. Discovered Peter Iøy and Alexander Island. Charted the coast round South Georgia, the South Shetland Islands and the South Sandwich Islands. Made the earliest sighting of the Antarctic continent. Dumont d’Urville 1837–40 French Astrolabe and Zeelée 66°S Discovered Terre Adélie in 1840. The expedition made extensive natural history collections. Wilkes 1838–42 United States Vincennes and Followed the edge of the East Antarctic pack ice for 2400 km, 6 other vessels confirming the existence of the Antarctic continent. Ross 1839–43 British Erebus and Terror 78°17’S Discovered the Transantarctic Mountains, Ross Ice Shelf, Ross Island and the volcanoes Erebus and Terror. The expedition made comprehensive magnetic measurements and natural history collections. -
QUICK REFERENCE GUIDE Latitude, Longitude and Associated Metadata
QUICK REFERENCE GUIDE Latitude, Longitude and Associated Metadata The Property Profile Form (PPF) requests the property name, address, city, state and zip. From these address fields, ACRES interfaces with Google Maps and extracts the latitude and longitude (lat/long) for the property location. ACRES sets the remaining property geographic information to default values. The data (known collectively as “metadata”) are required by EPA Data Standards. Should an ACRES user need to be update the metadata, the Edit Fields link on the PPF provides the ability to change the information. Before the metadata were populated by ACRES, the data were entered manually. There may still be the need to do so, for example some properties do not have a specific street address (e.g. a rural property located on a state highway) or an ACRES user may have an exact lat/long that is to be used. This Quick Reference Guide covers how to find latitude and longitude, define the metadata, fill out the associated fields in a Property Work Package, and convert latitude and longitude to decimal degree format. This explains how the metadata were determined prior to September 2011 (when the Google Maps interface was added to ACRES). Definitions Below are definitions of the six data elements for latitude and longitude data that are collected in a Property Work Package. The definitions below are based on text from the EPA Data Standard. Latitude: Is the measure of the angular distance on a meridian north or south of the equator. Latitudinal lines run horizontal around the earth in parallel concentric lines from the equator to each of the poles. -
AIM: Latitude and Longitude
AIM: Latitude and Longitude Latitude lines run east/west but they measure north or south of the equator (0°) splitting the earth into the Northern Hemisphere and Southern Hemisphere. Latitude North Pole 90 80 Lines of 70 60 latitude are 50 numbered 40 30 from 0° at 20 Lines of [ 10 the equator latitude are 10 to 90° N.L. 20 numbered 30 at the North from 0° at 40 Pole. 50 the equator ] 60 to 90° S.L. 70 80 at the 90 South Pole. South Pole Latitude The North Pole is at 90° N 40° N is the 40° The equator is at 0° line of latitude north of the latitude. It is neither equator. north nor south. It is at the center 40° S is the 40° between line of latitude north and The South Pole is at 90° S south of the south. equator. Longitude Lines of longitude begin at the Prime Meridian. 60° W is the 60° E is the 60° line of 60° line of longitude west longitude of the Prime east of the W E Prime Meridian. Meridian. The Prime Meridian is located at 0°. It is neither east or west 180° N Longitude West Longitude West East Longitude North Pole W E PRIME MERIDIAN S Lines of longitude are numbered east from the Prime Meridian to the 180° line and west from the Prime Meridian to the 180° line. Prime Meridian The Prime Meridian (0°) and the 180° line split the earth into the Western Hemisphere and Eastern Hemisphere. Prime Meridian Western Eastern Hemisphere Hemisphere Places located east of the Prime Meridian have an east longitude (E) address. -
Why Do We Use Latitude and Longitude? What Is the Equator?
Where in the World? This lesson teaches the concepts of latitude and longitude with relation to the globe. Grades: 4, 5, 6 Disciplines: Geography, Math Before starting the activity, make sure each student has access to a globe or a world map that contains latitude and longitude lines. Why Do We Use Latitude and Longitude? The Earth is divided into degrees of longitude and latitude which helps us measure location and time using a single standard. When used together, longitude and latitude define a specific location through geographical coordinates. These coordinates are what the Global Position System or GPS uses to provide an accurate locational relay. Longitude and latitude lines measure the distance from the Earth's Equator or central axis - running east to west - and the Prime Meridian in Greenwich, England - running north to south. What Is the Equator? The Equator is an imaginary line that runs around the center of the Earth from east to west. It is perpindicular to the Prime Meridan, the 0 degree line running from north to south that passes through Greenwich, England. There are equal distances from the Equator to the north pole, and also from the Equator to the south pole. The line uniformly divides the northern and southern hemispheres of the planet. Because of how the sun is situated above the Equator - it is primarily overhead - locations close to the Equator generally have high temperatures year round. In addition, they experience close to 12 hours of sunlight a day. Then, during the Autumn and Spring Equinoxes the sun is exactly overhead which results in 12-hour days and 12-hour nights. -
The Controversy Over Slavery 3
The Controversy Over Slavery 3 Lesson Objectives Core Content Objectives Students will: Demonstrate familiarity with slavery and the controversy over slavery in the United States Describe the life and contributions of Harriet Tubman Differentiate between the North and the South Language Arts Objectives The following language arts objectives are addressed in this lesson. Objectives aligning with the Common Core State Standards are noted with the corresponding standard in parentheses. Refer to the Alignment Chart for additional standards addressed in all lessons in this domain. Students will: Interpret information from the North and the South T-Chart to explain the differences between the North and the South as described in the read-aloud “The Controversy Over Slavery” (RI.2.7) Compare and contrast the North and the South (RI.2.9) Write simple sentences to represent details or information from “The Controversy Over Slavery” (W.2.2) With assistance, categorize and organize facts and information about the North and the South to answer questions (W.2.8) Interpret information presented, and then ask a question beginning with the word what to clarify information in “The Controversy Over Slavery” (SL.2.3) Share writing with others 40 The U.S. Civil War 3 | The Controversy Over Slavery © 2013 Core Knowledge Foundation Core Vocabulary abolitionists, n. People who worked to abolish, or end, slavery Example: The abolitionists met together often to talk about their plans to end slavery. Variation(s): abolitionist agriculture, n. The science of producing crops; farming Example: Joey studied agriculture in college so he could learn how to produce more food on his family farm. -
Impacts of Four Northern-Hemisphere Teleconnection Patterns on Atmospheric Circulations Over Eurasia and the Pacific
Theor Appl Climatol DOI 10.1007/s00704-016-1801-2 ORIGINAL PAPER Impacts of four northern-hemisphere teleconnection patterns on atmospheric circulations over Eurasia and the Pacific Tao Gao 1,2 & Jin-yi Yu2 & Houk Paek2 Received: 30 July 2015 /Accepted: 31 March 2016 # Springer-Verlag Wien 2016 Abstract The impacts of four teleconnection patterns on at- in summer could be driven, at least partly, by the Atlantic mospheric circulation components over Eurasia and the Multidecadal Oscillation, which to some degree might trans- Pacific region, from low to high latitudes in the Northern mit the influence of the Atlantic Ocean to Eurasia and the Hemisphere (NH), were investigated comprehensively in this Pacific region. study. The patterns, as identified by the Climate Prediction Center (USA), were the East Atlantic (EA), East Atlantic/ Western Russia (EAWR), Polar/Eurasia (POLEUR), and 1 Introduction Scandinavian (SCAND) teleconnections. Results indicate that the EA pattern is closely related to the intensity of the sub- As one of the major components of teleconnection patterns, tropical high over different sectors of the NH in all seasons, atmospheric extra-long waves influence climatic evolutionary especially boreal winter. The wave train associated with this processes. Abnormal oscillations of these extra-long waves pattern serves as an atmospheric bridge that transfers Atlantic generally result in regional or wider-scale irregular atmo- influence into the low-latitude region of the Pacific. In addi- spheric circulations that can lead to abnormal climatic tion, the amplitudes of the EAWR, SCAND, and POLEUR events elsewhere in the world. Therefore, because of their patterns were found to have considerable control on the importance in climate research, considerable attention is given “Vangengeim–Girs” circulation that forms over the Atlantic– to teleconnection patterns on various timescales. -
The Mesa Site: Paleoindians Above the Arctic Circle
U. S. Department of the Interior BLM-Alaska Open File Report 86 Bureau of Land Management BLM/AK/ST-03/001+8100+020 April 2003 Alaska State Office 222 West 7th Avenue Anchorage Alaska 99513 The Mesa Site: Paleoindians above the Arctic Circle Michael Kunz, Michael Bever, Constance Adkins Cover Photo View of Mesa from west with Iteriak Creek in foreground. Photo: Dan Gullickson Disclaimer The mention of trade names or commercial products in this report does not constitute endorsement or recommendation for use by the federal government. Authors Michael Kunz is an Archaeologist, Bureau of Land Management (BLM), Northern Field Office, 1150 University Avenue, Fairbanks, Alaska 99709. Michael Bever is a project supervisor for Pacific Legacy Inc., 3081 Alhambra Drive, Suite 208, Cameron Park, CA 95682. Constance Adkins is an Archaeologist, Bureau of Land Management (BLM), Northern Field Office, 1150 University Avenue, Fairbanks, Alaska 99709. Open File Reports Open File Reports issued by the Bureau of Land Management-Alaska present the results of invento- ries or other investigations on a variety of scientific and technical subjects that are made available to the public outside the formal BLM-Alaska technical publication series. These reports can include preliminary or incomplete data and are not published and distributed in quantity. The reports are available while supplies last from BLM External Affairs, 222 West 7th Avenue #13, Anchorage, Alaska 99513 and from the Juneau Minerals Information Center, 100 Savikko Road, Mayflower Island, Douglas, AK 99824, (907) 364-1553. Copies are also available for inspection at the Alaska Resource Library and Information Service (Anchorage), the USDI Resources Library in Washington, D. -
The Baader Planetarium
1 THE BAADER PLANETARIUM INSTRUCTION MANUAL BAADER PLANETARIUM Zur Sternwarte M 82291 Mammendorf M Tel. 08145/8802 M Fax 08145/8805 www.baader-planetarium.de M [email protected] M www.celestron-deutschland.de 2 HINTS/TECHNICAL 1. YOUR PLANETARIUM OPERATES BY A DC MINIATUR MOTOR. IT'S LIFETIME IS THEREFORE LIMITED. PLEASE HAVE THE MOTOR USUALLY RUN IN THE SLOWEST SPEED POSSIBLE. FOR EXHIBITIONS OR PERMANENT DISPLAY A TIME LIMIT SWITCH IS A MUST. 2. DON'T HAVE THE SUNBULB WORKING IN THE HIGHEST STEP CONTINUOUSLY. THIS STEP IS FORSEEN ONLY FOR PROJECTING THE HEAVENS IF THE PLASTIC SUNCAP IS REMOVED. 3. CLOSE THE SPHERE AT ANY TIME POSSIBLE. HINTS/THEORETICAL 1. ESPECIALLY GIVE ATTENTION TO PAGE 5-3.F OF THE MANUAL. 2. CLOSE THE SPHERE SO THAT THE ORBIT LINES OF THE PLANETS INSIDE FIT CORRECTLY PAGE 6-5.A. 3. USUALLY DEMONSTRATE BY KEEPING THE EARTH'S ORBIT HORIZONTAL. 4. A SPECIAL EXPLANTATION FOR THE SEASONS IS POSSIBLE IF YOU TURN THE SPHERE TO A HORIZONTAL CELESTIAL EQUATOR. NOW THE EARTH MOVES UP AND DOWN ON ITS WAY AROUND THE SUN. MENTION THE APPEARING LIGHTPHASES. 5. REMEMBER THE GREATEST FINDING OF COPERNICUS: THE DISTANCE EARTH - SUN IS NEARLY ZERO COMPARED TO THE DISTANCE OF THE FIXED STARS. IN REALITY THE WHOLE SOLAR SYSTEM IN THE CELESTIAL SPHERE WOULD BE A PINPOINT IN THE CENTER. THIS HELPS TO UNDERSTAND THE MINUTE STELLAR PARALLAXE AND THE "FIXED" POSITION OF THE STARS COMPARED TO THE SUN'S CHANGING HEIGHT OVER THE HORIZON DURING THE YEAR. 3 INTRODUCTION For countless centuries the stars have been objects of mystery. -
K-12 Oysters in the Chesapeake Bay
K-12 Oysters in the Chesapeake Bay Module I Grade Level : Middle School Teaching Time : 2-3 class periods Materials: Student handouts 1-3 For each group doing the Trilateration activity: • 4 pieces of different colored string • pencil or pen • large map GPS receivers or smart phones II. Where Am I? Activity Summary This activity explores geospatial systems so that students can create waypoints and record latitude and longitude of places in a watershed as a first step in monitoring a local waterway. These skills are basic to understanding how locations are found on earth with the use of maps, coordinates, and technology. Learning Objectives: Students will be able to: • Explain the concept of locating a site on Earth with 3 satellites. • Use latitude and longitude coordinates to identify features on a map. 1 Oceanservice.noaa.gov • Use a GPS receiver or a smart phone to locate the waypoint of a local feature on the school grounds. Background Information Humans have looked to the skies to find their way since ancient times. Ancient sailors used the constellations in the night sky to figure out where they were and where they were going. Today, all we need is a simple hand-held GPS (short for Global Positioning System) receiver to figure out exactly where we are anywhere in the world. However, we still need instruments high in the sky to figure out where we are and how we get to other places. Instead of stars, we use Global Positioning System (GPS) satellites, to help determine a location on the planet. The concepts behind GPS positioning are very simple, but the application and implementation require amazing precision. -
The Magic of the Atwood Sphere
The magic of the Atwood Sphere Exactly a century ago, on June Dr. Jean-Michel Faidit 5, 1913, a “celestial sphere demon- Astronomical Society of France stration” by Professor Wallace W. Montpellier, France Atwood thrilled the populace of [email protected] Chicago. This machine, built to ac- commodate a dozen spectators, took up a concept popular in the eigh- teenth century: that of turning stel- lariums. The impact was consider- able. It sparked the genesis of modern planetariums, leading 10 years lat- er to an invention by Bauersfeld, engineer of the Zeiss Company, the Deutsche Museum in Munich. Since ancient times, mankind has sought to represent the sky and the stars. Two trends emerged. First, stars and constellations were easy, especially drawn on maps or globes. This was the case, for example, in Egypt with the Zodiac of Dendera or in the Greco-Ro- man world with the statue of Atlas support- ing the sky, like that of the Farnese Atlas at the National Archaeological Museum of Na- ples. But things were more complicated when it came to include the sun, moon, planets, and their apparent motions. Ingenious mecha- nisms were developed early as the Antiky- thera mechanism, found at the bottom of the Aegean Sea in 1900 and currently an exhibi- tion until July at the Conservatoire National des Arts et Métiers in Paris. During two millennia, the human mind and ingenuity worked constantly develop- ing and combining these two approaches us- ing a variety of media: astrolabes, quadrants, armillary spheres, astronomical clocks, co- pernican orreries and celestial globes, cul- minating with the famous Coronelli globes offered to Louis XIV.