Saturn System Gas Giant: Smaller Than Jupiter… About 95 Earth Masses

Total Page:16

File Type:pdf, Size:1020Kb

Saturn System Gas Giant: Smaller Than Jupiter… About 95 Earth Masses Saturn system Satellites of Saturn Gas giant: smaller than Jupiter… about Large number ~60 moons 95 Earth masses Enceladus: 500km diameter moon, orbital radius 240,000km Titan: 5150km diameter - second largest moon in the Solar system after Ganymede • orbital radius 1.2 million km • orbital period (Saturn) 16 days • rings: extend from 6,000-120,000 km above the equator • orbital period of Saturn ~30 years of Saturn… made up of mostly small icy particles • orbital radius is 9.6 AU - planet formed in a still colder Solar flux ~1% of value at Earth part of the protoplanetary disk in which hydrocarbon ices as well as water ice were present Temperature in absence of greenhouse effect ~80K Extraterrestrial Life: Spring 2008 Extraterrestrial Life: Spring 2008 Both satellites are of interest for astrobiology: Atmospheric properties Titan atmosphere: Enceladus: possible existence of liquid water in the subsurface - plumes mean that it is easily Dense atmosphere extends several hundred km high accessible to measurements! Surface pressure is ~1.5 times Earth pressure, surface Titan: no evidence for liquid water, but many similarities temperature ~90K to the early Earth - may provide information on the chemistry that preceded life on Earth P " #T The ESA Huygens probe landed on Titan early in the 1.5 times higher 3 times lower than Earth Cassini mission than Earth (90K rather than 300K) Solv!ing : density at Titan’s surface is about 5 times the terrestrial value Extraterrestrial Life: Spring 2008 Extraterrestrial Life: Spring 2008 Differences between Titan and Ganymede Atmosphere: Jovian moon Ganymede is similar in size to Titan, but • 98% nitrogen N has no atmosphere… 2 • 2% methane CH4 • small amount of H Temperature in the protoplanetary disk: 2 Atmospheric haze is due to • Jupiter - water ices hydrocarbons - literally smog • Saturn - hydrocarbon ices Appears Titan started with a large reservoir of material that can survive (in modified form) in the atmosphere Interpretation: methane and ammonia (NH3) released from for a long time the surface are broken up in the high atmosphere… hydrogen escapes whereas N2 is retained. Short lifetime of CH4 (10s of millions of years) in the atmosphere suggests reservoir: lakes, seas, ocean Extraterrestrial Life: Spring 2008 Extraterrestrial Life: Spring 2008 1 Cycle with methane Atmosphere largely obscures Titan’s surface in the optical and other or infra-red - surface maps from Cassini’s radar and from hydrocarbons camera on the Huygens probe playing the same Radar image colored to role that water does emphasize smooth areas on the Earth of terrain near the pole - these may be lakes of hydrocarbons Release of carbon in the upper atmosphere from destruction of methane leads to formation of heavier organic compounds which then rain out of the atmosphere Low sunlight means desert-like conditions - lots of methane in the atmosphere but ~1cm precipitates out per year Extraterrestrial Life: Spring 2008 Extraterrestrial Life: Spring 2008 Surface from River channels an altitude of Sand dunes about 10km Impact craters Lakes during the … Huygens probe descent Topography looks Dry river quite a lot like channels? Earth No very clear sign of volcanic activity Extraterrestrial Life: Spring 2008 Extraterrestrial Life: Spring 2008 View from the surface: dry Liquid water? at the Huygens landing site, No evidence for liquid water - much too cold on the with icy pebbles surface. Atmosphere contains: Speculations: • simple molecules (HCN, C2H6) • subsurface lakes or oceans, heated by internal heat • polymers of quite from radioactive decay uncertain make-up • liquid water in volcanic hotspots (`tholins’) - maybe • transient (~1000 years) water in regions heated by polymers of HCN impacts Gas phase reactions seem Unless life without water is possible, seems unlikely that to occur at high altitude, conditions for habitability are satisfied on Titan. with condensed materials in the lower atmosphere and on the surface Extraterrestrial Life: Spring 2008 Extraterrestrial Life: Spring 2008 2 Pre-biological chemistry Future exploration possibilities In increasing complexity: Numerous more Cassini flybys • simple organic molecules 4 candidate `flagship’ missions to the • complex molecules (polymers) outer planets: • amino acids • Europa orbiter • replicating molecules • Jupiter orbiter • life • Enceladus orbiter • Titan explorer First three are either definitely present on Titan or seem probable - opportunity to study these processes on another world Titan proposal includes an orbiter, a lander, and possibly a balloon to study the surface chemistry in detail If selected, launch from 2015 onwards… Extraterrestrial Life: Spring 2008 Extraterrestrial Life: Spring 2008 3.
Recommended publications
  • Lecture 3 - Minimum Mass Model of Solar Nebula
    Lecture 3 - Minimum mass model of solar nebula o Topics to be covered: o Composition and condensation o Surface density profile o Minimum mass of solar nebula PY4A01 Solar System Science Minimum Mass Solar Nebula (MMSN) o MMSN is not a nebula, but a protoplanetary disc. Protoplanetary disk Nebula o Gives minimum mass of solid material to build the 8 planets. PY4A01 Solar System Science Minimum mass of the solar nebula o Can make approximation of minimum amount of solar nebula material that must have been present to form planets. Know: 1. Current masses, composition, location and radii of the planets. 2. Cosmic elemental abundances. 3. Condensation temperatures of material. o Given % of material that condenses, can calculate minimum mass of original nebula from which the planets formed. • Figure from Page 115 of “Physics & Chemistry of the Solar System” by Lewis o Steps 1-8: metals & rock, steps 9-13: ices PY4A01 Solar System Science Nebula composition o Assume solar/cosmic abundances: Representative Main nebular Fraction of elements Low-T material nebular mass H, He Gas 98.4 % H2, He C, N, O Volatiles (ices) 1.2 % H2O, CH4, NH3 Si, Mg, Fe Refractories 0.3 % (metals, silicates) PY4A01 Solar System Science Minimum mass for terrestrial planets o Mercury:~5.43 g cm-3 => complete condensation of Fe (~0.285% Mnebula). 0.285% Mnebula = 100 % Mmercury => Mnebula = (100/ 0.285) Mmercury = 350 Mmercury o Venus: ~5.24 g cm-3 => condensation from Fe and silicates (~0.37% Mnebula). =>(100% / 0.37% ) Mvenus = 270 Mvenus o Earth/Mars: 0.43% of material condensed at cooler temperatures.
    [Show full text]
  • Transcript-Life-Beyond-Earth-Mind-Man
    Video Transcript for Archival Research Catalog (ARC) Identifier 649452 Life Beyond Earth and the Mind of Man – 1975 Ashley Montagu: When we speak of life beyond Earth, what we generally mean is of course intelligent life, something resembling our noble selves. It is highly probable that there are such intelligent forms of life in other galaxies in the universe. And it is even more probable that many of these forms are vastly more intelligent than we. Philip Morrison: It is conceivable that a spherical ship will land in front of the Washington Monument and a figure with four antennas and otherwise looking like a professional football player will walk out and demand to see our leader. But I hope very much that the universe of circumstance is wider than the rather shoddy imaginations of science fiction writers for 30 or 40 years. And I’m pretty convinced it is. We’ve not found their guidance so great in any but the most modest activities, like going to the Moon, which is not very much. George Wald: May I reply to that one. Narrator: Life Beyond Earth – George Wald: You see, this is a beautiful exposition of the myths we live with. Narrator: – and the Mind of Man, a symposium on extraterrestrial life and some of its implications for us all. Sponsored jointly by NASA and Boston University and chaired by Professor Richard Berendzen. Richard Berendzen: Let me briefly introduce the panel. On the far side is Dr. Ashley Montagu who’s a world-renowned anthropologist and social biologist. Next to him is Dr.
    [Show full text]
  • Protoplanetary Disks, Jets, and the Birth of the Stars
    Spanish SKA White Book, 2015 Anglada et al. 169 Protoplanetary disks, jets, and the birth of the stars G. Anglada1, M. Tafalla2, C. Carrasco-Gonz´alez3, I. de Gregorio-Monsalvo4, R. Estalella5, N. Hu´elamo6, O.´ Morata7, M. Osorio1, A. Palau3, and J.M. Torrelles8 1 Instituto de Astrof´ısica de Andaluc´ıa,CSIC, E-18008 Granada, Spain 2 Observatorio Astron´omicoNacional-IGN, E-28014 Madrid, Spain 3 Centro de Radioastronom´ıay Astrof´ısica,UNAM, 58090 Morelia, Michoac´an,Mexico 4 Joint ALMA Observatory, Santiago de Chile, Chile 5 Departament d'Astronomia i Meteorologia, Univ. de Barcelona, E-08028 Barcelona, Spain 6 Centro de Astrobiolog´ıa(INTA-CSIC), E-28691 Villanueva de la Ca~nada,Spain 7 Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 106, Taiwan 8 Instituto de Ciencias del Espacio (CSIC)-UB/IEEC, E-08028 Barcelona, Spain Abstract Stars form as a result of the collapse of dense cores of molecular gas and dust, which arise from the fragmentation of interstellar (parsec-scale) molecular clouds. Because of the initial rotation of the core, matter does not fall directly onto the central (proto)star but through a circumstellar accretion disk. Eventually, as a result of the evolution of this disk, a planetary system will be formed. A fraction of the infalling matter is ejected in the polar direction as a collimated jet that removes the excess of mass and angular momentum, and allows the star to reach its final mass. Thus, the star formation process is intimately related to the development of disks and jets. Radio emission from jets is useful to trace accurately the position of the most embedded objects, from massive protostars to proto-brown dwarfs.
    [Show full text]
  • Critique on Vindication of Panspermia
    CRITIQUE ON VINDICATION OF PANSPERMIA Pushkar Ganesh Vaidya Indian Astrobiology Research Centre (IARC) [email protected] Abstract In January 2001, air samples were collected from Earth’s stratosphere. From these air samples, cultures of three microorganisms were obtained. It was reasoned that these microorganisms are of cometary origin and thereby cometary panspermia stood vindicated. The fact that these microorganisms had essentially the same characteristics as terrestrial microorganisms was explained using cometary panspermia. Here, the findings are reinterpreted in the light of niche ecology and adaptations. It is asserted that the microorganisms captured from the stratosphere cannot be of cometary origin as they are contrary to the kind of microorganisms one would expect to find in a cometary niche. Keywords Adaptations, Balloon experiment, Cometary niche, Cometary panspermia, Ecological niche, Extremophiles i 1. Cometary Panspermia The hypothesis of cometary panspermia needs a small fraction of microorganisms present in the interstellar cloud from which the solar system formed to have retained viability, or to be capable of revival after being incorporated into newly formed comets. This fraction could be exceedingly small (N.C. Wickramasinghe et al. 2003). It has been suggested that radioactive heat sources like 26AL served to maintain a warm liquid interior in the young comets for about a million years (Hoyle, F. & Wickramasinghe, N.C. 1985) and this time period was adequate for microorganisms present in the young comets to replicate and occupy a significant volume of a comet. Some comets owing to orbital disruptions get deflected towards the inner solar system thus carrying microorganisms onto the Earth and other inner planets.
    [Show full text]
  • Problems with Panspermia Or Extraterrestrial Origin of Life Scenarios As Found on the IDEA Center Website At
    Problems with Panspermia or Extraterrestrial Origin of Life Scenarios As found on the IDEA Center website at http://www.ideacenter.org Panspermia is the theory that microorganisms or biochemical compounds from outer space are responsible for originating life on Earth and possibly in other parts of the universe where suitable atmospheric conditions exist. Essentially, it is a hypothesis which states that life on earth came from outer space. It has been popularized in countless science fiction works, however some scientists, including the discoverer of the structure of DNA, Francis Crick, have advocated panspermia. There are generally about 3 different "flavors" of panspermia: 1. Naturalistic Panspermia where life evolves on another planet, and naturally gets ejected off the planet and come to rest on earth. 2. Directed Panspermia where intelligent life on other planets intentionally seeded other planets with their own form of life. 3. Intelligent Design Panspermia, where intelligent beings from another planet came to earth and designed life here. Each type of panspermia will be briefly discussed below: 1. Naturalistic Panspermia where life evolves on another planet, and naturally gets ejected off the planet and come to rest on earth. Naturalistic panspermia has gained popularity because some have recognized that life on earth appears very soon after the origin of conditions which would allow it to exist. Many scientists believed that if life had originated on earth it would have taken many hundreds of millions, or even billions of years to do so. Life appears perhaps less than 200 million after the origin of conditions at which life could exist.
    [Show full text]
  • Terrestrial Planets in High-Mass Disks Without Gas Giants
    A&A 557, A42 (2013) Astronomy DOI: 10.1051/0004-6361/201321304 & c ESO 2013 Astrophysics Terrestrial planets in high-mass disks without gas giants G. C. de Elía, O. M. Guilera, and A. Brunini Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata and Instituto de Astrofísica de La Plata, CCT La Plata-CONICET-UNLP, Paseo del Bosque S/N, 1900 La Plata, Argentina e-mail: [email protected] Received 15 February 2013 / Accepted 24 May 2013 ABSTRACT Context. Observational and theoretical studies suggest that planetary systems consisting only of rocky planets are probably the most common in the Universe. Aims. We study the potential habitability of planets formed in high-mass disks without gas giants around solar-type stars. These systems are interesting because they are likely to harbor super-Earths or Neptune-mass planets on wide orbits, which one should be able to detect with the microlensing technique. Methods. First, a semi-analytical model was used to define the mass of the protoplanetary disks that produce Earth-like planets, super- Earths, or mini-Neptunes, but not gas giants. Using mean values for the parameters that describe a disk and its evolution, we infer that disks with masses lower than 0.15 M are unable to form gas giants. Then, that semi-analytical model was used to describe the evolution of embryos and planetesimals during the gaseous phase for a given disk. Thus, initial conditions were obtained to perform N-body simulations of planetary accretion. We studied disks of 0.1, 0.125, and 0.15 M.
    [Show full text]
  • Volatiles in Protoplanetary Disks
    Volatiles in Protoplanetary Disks Thesis by Ke Zhang In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2015 (Defended May 15, 2015) ii c 2015 Ke Zhang All Rights Reserved iii Acknowledgements First and foremost, I would like to thank my advisor, Geoffrey Blake, for his patience, guidance, support, and inspiration that made this thesis possible. In retrospect, I am so grateful to have chosen Geoff as my mentor. He is a very special kind of advisor, so rare in the fast-paced world, who can be incredibly patient, waiting for a student to find her passion. But once the student has made up her mind, and starts to ask for resources, opportunities, and attention, he is so supportive and resourceful that the only limitation for the student is herself. It was a great privilege working with Geoff, who is ingeniously creative and vastly knowledgeable. Thank you for all the lessons, support, and, most importantly, for believing in and encouraging me. I'm also thankful for John Carpenter who opened for me the wonderful door of (sub)mm-wave interferometry and gave me a very first opportunity to work with ALMA data. John, you are my role model as a rigorous scientist who understands his field profoundly and is dedicated to getting things right. I would also like to thank Colette Salyk for being such a great mentor and a supportive friend during my years in graduate school. Thanks for taking me to the summit of Mauna Kea and beautiful Charlottesville.
    [Show full text]
  • Arxiv:1910.06396V4 [Physics.Pop-Ph] 12 Jun 2021 ∗ Rmtv Ieeitdi H R-Oa Eua(Vni H C System)
    Nebula-Relay Hypothesis: Primitive Life in Nebula and Origin of Life on Earth Lei Feng1,2, ∗ 1Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023 2Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing University – Purple Mountain Observatory, Nanjing 210093, China Abstract A modified version of panspermia theory, named Nebula-Relay hypothesis or local panspermia, is introduced to explain the origin of life on Earth. Primitive life, acting as the seeds of life on Earth, originated at pre-solar epoch through physicochemical processes and then filled in the pre- solar nebula after the death of pre-solar star. Then the history of life on the Earth can be divided into three epochs: the formation of primitive life in the pre-solar epoch; pre-solar nebula epoch; the formation of solar system and the Earth age of life. The main prediction of our model is that primitive life existed in the pre-solar nebula (even in the current nebulas) and the celestial body formed therein (i.e. solar system). arXiv:1910.06396v4 [physics.pop-ph] 12 Jun 2021 ∗Electronic address: [email protected] 1 I. INTRODUCTION Generally speaking, there are several types of models to interpret the origin of life on Earth. The two most persuasive and popular models are the abiogenesis [1, 2] and pansper- mia theory [3]. The modern version of abiogenesis is also known as chemical origin theory introduced by Oparin in the 1920s [1], and Haldane proposed a similar theory independently [2] at almost the same time. In this theory, the organic compounds are naturally produced from inorganic matters through physicochemical processes and then reassembled into much more complex living creatures.
    [Show full text]
  • Evidence to Clinch the Theory of Extraterrestrial Life
    obiolog str y & f A O u o l t a r e n a Chandra Wickramasinghe, Astrobiol Outreach 2015, 3:2 r c u h o J Journal of Astrobiology & Outreach DOI: 10.4172/2332-2519.1000e107 ISSN: 2332-2519 EditorialResearch Article OpenOpen Access Access Evidence to Clinch the Theory of Extraterrestrial Life Chandra Wickramasinghe N1,2,3 1Buckingham Centre for Astrobiology (BCAB), Buckingham University, UK 2Institute for the Study of Panspermia and Astroeconomics, Gifu, Japan 3University of Peradeniya, Peradeniya, Sri Lanka New data may serve to bring about the long overdue paradigm probe) appears to have been finally vindicated, both by the discovery of shift from theories of Earth-centred life to life being a truly cosmic organic molecules on the surface, and more dramatically by the recent phenomenon. The theory that bacteria and viruses similar to those discovery of time-variable spikes in methane observed by the Curiosity on Earth exist in comets, other planets and generally throughout the galaxy was developed as a serious scientific discipline from the early 1980’s [1-4]. Throughout the past three decades this idea has often been Relectivity Spectrum the subject of criticism, denial or even ridicule. Even though many discoveries in astronomy, geology and biology continued to provide supportive evidence for the theory of cosmic life, the rival theory of Earth-centered biology has remained deeply rooted in scientific culture. However, several recent developments are beginning to strain the credibility of the standard point of view. The great abundance of highly complex organic molecules in interstellar clouds [5], the plentiful existence of habitable planets in the galaxy numbering over 100 billion and separated one from another just by a few light years [6], the extreme space-survival properties of bacteria and viruses -make it exceedingly difficult to avoid the conclusion that the entire galaxy is a single connected biosphere.
    [Show full text]
  • Drake's Equation
    Drake’s equation: estimating the number of extraterrestrial civilizations in our galaxy Raphaëlle D. Haywood This activity was largely inspired from an outreach project developed by Exscitec members at Imperial College London, UK. Goals In this workshop, we estimate the number of communicating civilizations in our galaxy! In this first session you will go through the different ingredients required. You will make estimates for each of the variables using both results from recent scientific studies and your best guesses. Next week we will go over each variable in more detail -- make a note of any questions you may have so that we can discuss them. We will compare and discuss everyone’s estimates of N, and will discuss their implications for finding life as well as for the survival of our own species. Outline Estimating the number of extraterrestrial civilizations out there may at first seem like a daunting task, but in 1961 Prof. Frank Drake found a way to break this problem down into a series of much more manageable steps. This is neatly summarized in the following equation, where each of the variables relates to a specific topic: R⁎: Number of Sun-type stars that form each year in our galaxy fp: Fraction of Sun-type stars that host planets ne: Number of Earth-like planets per planetary system, so that fp x ne is the fraction of Sun-type stars that have Earth-like planets fl: Fraction of Earth-like planets where life develops fi: Fraction of life-bearing planets where intelligent life evolves fc: Fraction of planets hosting intelligent life where a communicative, technological civilization arises L: Lifetime (in years) of technologically-advanced, communicating civilizations To obtain N, we simply estimate each of these parameters separately and then we multiply them together.
    [Show full text]
  • Origin of Water Ice in the Solar System 309
    Lunine: Origin of Water Ice in the Solar System 309 Origin of Water Ice in the Solar System Jonathan I. Lunine Lunar and Planetary Laboratory The origin and early distribution of water ice and more volatile compounds in the outer solar system is considered. The origin of water ice during planetary formation is at least twofold: It condenses beyond a certain distance from the proto-Sun — no more than 5 AU but perhaps as close as 2 AU — and it falls in from the surrounding molecular cloud. Because some of the infalling water ice is not sublimated in the ambient disk, complete mixing between these two sources was not achieved, and at least two populations of icy planetesimals may have been present in the protoplanetary disk. Added to this is a third reservoir of water ice planetesimals representing material chemically processed and then condensed in satellite-forming disks around giant planets. Water of hydration in silicates inward of the condensation front might be a sepa- rate source, if the hydration occurred directly from the nebular disk and not later in the parent bodies. The differences among these reservoirs of icy planetesimals ought to be reflected in diverse composition and abundance of trapped or condensed species more volatile than the water ice matrix, although radial mixing may have erased most of the differences. Possible sources of water for Earth are diverse, and include Mars-sized hydrated bodies in the asteroid belt, smaller “asteroidal” bodies, water adsorbed into dry silicate grains in the nebula, and comets. These different sources may be distinguished by their deuterium-to-hydrogen ratio, and by pre- dictions on the relative amounts of water (and isotopic compositional differences) between Earth and Mars.
    [Show full text]
  • Formation and Evolution of Exoplanets
    Formation and Evolution of Exoplanets Edited by Rory Barnes Astronomy Department University of Washington Box 351580 Seattle, WA 98195-1850, USA Chapter 1 { Exoplanet Observations, Jacob L. Bean Chapter 2 { Pinpointing Planets in Circumstellar Disks, Alice C. Quillen Chapter 3 { Planet-Planet Interactions, Rory Barnes Chapter 4 { Formation Via Disk Instability, Lucio Mayer Chapter 5 { Core Accretion Model, Olenka Hubickyj Chapter 6 { Formation of Terrestrial Planets, Sean N. Raymond Chapter 7 { Brown Dwarfs, Kevin Luhman Chapter 8 { Exoplanet Chemistry, Katharina Lodders Chapter 9 { Migration and Multiplicity E ects During Giant Planet Formation, Edward W. Thommes Chapter 10 { Planets in Mean Motion Resonance, Wilhelm Kley Chapter 11 { Planet{Planet Gravitational Scattering, Francesco Marzari Chapter 12 { Tides and Exoplanets, Brian Jackson, Rory Barnes & Richard Greenberg Chapter 1 { Exoplanet Observations Jacob L. Bean Institut furAstrophysik Friedrich-Hund-Platz 1 37077 Gottingen Germany The discovery and characterization of planets around other stars has revolutionized our view of planetary system formation and evolution. In this chapter, we summarize the main results from the observational study of exoplanetary systems in the context of how they constrain theory. We focus on the robust ndings that have emerged from examining the orbital, physical, and host star properties of large samples of detected exoplanets. We also describe the limitations and biases of current observational methods and potential overinterpretations of the data that should be avoided. In addition, we discuss compelling individual results that o er views beyond the well explored parameter spaces. Chapter 2 { Pinpointing Planets in Circumstellar Disks Alice C. Quillen Dept. of Physics and Astronomy University of Rochester Rochester, NY 14627 USA Recent observations of circumstellar disks have revealed a variety of interesting morphology: clearings, pu ed up disk edges, gaps, spiral-like features, warps, clumps, and lopsidedness.
    [Show full text]