Magnetic Data Recovery 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CERIAS Tech Report 2017-5 Deceptive Memory Systems by Christopher N
CERIAS Tech Report 2017-5 Deceptive Memory Systems by Christopher N. Gutierrez Center for Education and Research Information Assurance and Security Purdue University, West Lafayette, IN 47907-2086 DECEPTIVE MEMORY SYSTEMS ADissertation Submitted to the Faculty of Purdue University by Christopher N. Gutierrez In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2017 Purdue University West Lafayette, Indiana ii THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF DISSERTATION APPROVAL Dr. Eugene H. Spa↵ord, Co-Chair Department of Computer Science Dr. Saurabh Bagchi, Co-Chair Department of Computer Science Dr. Dongyan Xu Department of Computer Science Dr. Mathias Payer Department of Computer Science Approved by: Dr. Voicu Popescu by Dr. William J. Gorman Head of the Graduate Program iii This work is dedicated to my wife, Gina. Thank you for all of your love and support. The moon awaits us. iv ACKNOWLEDGMENTS Iwould liketothank ProfessorsEugeneSpa↵ord and SaurabhBagchi for their guidance, support, and advice throughout my time at Purdue. Both have been instru mental in my development as a computer scientist, and I am forever grateful. I would also like to thank the Center for Education and Research in Information Assurance and Security (CERIAS) for fostering a multidisciplinary security culture in which I had the privilege to be part of. Special thanks to Adam Hammer and Ronald Cas tongia for their technical support and Thomas Yurek for his programming assistance for the experimental evaluation. I am grateful for the valuable feedback provided by the members of my thesis committee, Professor Dongyen Xu, and Professor Math ias Payer. -
File Scavenger User Guide
File Scavenger® Version 3.2 Comprehensive Data Recovery Tool For Microsoft® Windows® 7, Vista, XP, 2008, 2003, 2000 and NT User’s Guide Revision: 4 Date: September 2010 QueTek® Consulting Corporation COPYRIGHT © Copyright 1998-2010. This document contains materials protected by International Copyright Laws. All rights reserved. No part of this manual may be reproduced, transmitted or transcribed in any form and for any purpose without the express written permission of QueTek® Consulting Corporation. TRADEMARKS Companies and products mentioned in this manual are for identification purpose only. Product names or brand names appearing in this manual may or may not be registered trademarks or copyrights of their respective companies. NOTICE Reasonable effort has been made to ensure that the information in this manual is accurate. QueTek® Consulting Corporation assumes no liability for technical inaccuracies, typographical, or other errors contained herein. QueTek® Consulting Corporation provides this manual “as is” without warranty of any kind, either express or implied, including, but not limited to the implied warranties or conditions of merchantability or fitness for a particular purpose. In no event shall QueTek® Consulting Corporation be liable for any loss of profits, or for direct, indirect, special, incidental or consequential damages arising from any defect or error in QueTek® Consulting Corporation’s products or manuals. Information in this manual is subject to change without notice and does not represent a commitment on the part of QueTek® Consulting Corporation. User Guide - ii LICENSE AGREEMENT AND LIMITED WARRANTY READ THE FOLLOWING TERMS AND CONDITIONS CAREFULLY PRIOR TO PURCHASING THE LICENSE CODE TO UNLOCK FILE SCAVENGER®. -
User's Manual Undelete® for Windows
User’s Manual Undelete® for Windows® Up-to-the-minute Data Protection® July 2007 This document describes the installation and operation of the Undelete file recovery solutions. It applies to the Server, Desktop Client, Professional and Home Editions of Undelete and is intended for Windows users and system managers. Revision/Update Information: This is a revised manual Software Versions: Undelete 5.0 Server Edition Undelete 5.0 Professional Edition Undelete 5.0 Home Edition Undelete 5.0 Desktop Client Operating Systems: Windows Server 2003 Windows XP Windows 2000 Diskeeper Corporation, Burbank, California ________________________ July 2007 _________ © 2000 — 2007 by Diskeeper Corporation The Software described in this document is owned by Diskeeper Corporation and is protected by United States copyright laws and international treaty provisions. Therefore, you must treat the Software like any other copyrighted material (e.g. a book or musical recording) except that you may either (a) make one copy of the Software solely for backup or archival purposes, or (b) transfer the Software to a single hard disk provided you keep the original solely for backup or archival purposes. You may not copy the user documentation provided with the Software, except for your own authorized use. RESTRICTED RIGHTS LEGEND The software and documentation are provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of the Commercial Computer Software-Restricted Rights at 48 CFR 52.227-19 as applicable. -
The 2006 Analysis of Information Remaining on Disks Offered for Sale on the Second Hand Market
Journal of Digital Forensics, Security and Law Volume 1 Number 3 Article 2 2006 The 2006 Analysis of Information Remaining on Disks Offered for Sale on the Second Hand Market Andy Jones Security Research Center, British Telecommunicationsand Edith Cowan University Craig Valli Edith Cowan University Iain Sutherland University of Glamorgan Paula Thomas University of Glamorgan Follow this and additional works at: https://commons.erau.edu/jdfsl Part of the Computer Engineering Commons, Computer Law Commons, Electrical and Computer Engineering Commons, Forensic Science and Technology Commons, and the Information Security Commons Recommended Citation Jones, Andy; Valli, Craig; Sutherland, Iain; and Thomas, Paula (2006) "The 2006 Analysis of Information Remaining on Disks Offered for Sale on the Second Hand Market," Journal of Digital Forensics, Security and Law: Vol. 1 : No. 3 , Article 2. DOI: https://doi.org/10.15394/jdfsl.2006.1008 Available at: https://commons.erau.edu/jdfsl/vol1/iss3/2 This Article is brought to you for free and open access by the Journals at Scholarly Commons. It has been accepted for inclusion in Journal of Digital Forensics, Security and Law by an authorized administrator of (c)ADFSL Scholarly Commons. For more information, please contact [email protected]. Journal of Digital Forensics, Security and Law, Vol. 1(3) The 2006 Analysis of Information Remaining on Disks Offered for Sale on the Second Hand Market Andy Jones Security Research Center, British Telecommunications and Edith Cowan University [email protected] Phone: +44 1473 646133 Fax: +44 1473 644385 Craig Valli Edith Cowan University Iain Sutherland University of Glamorgan Paula Thomas University of Glamorgan ABSTRACT All organisations, whether in the public or private sector, use computers for the storage and processing of information relating to their business or services, their employees and their customers. -
How Blancco Helps Mobile Resellers & Recyclers Achieve Compliance
How Blancco Helps Mobile Resellers & Recyclers Achieve Compliance with the R2 Standard Mobile resellers and recyclers must comply with several standards and certifications before reselling, remarketing or recycling their devices. Following these rules helps mobile organizations ensure that they are protected from potential data remanence that could expose sensitive information. One of the most prominent certifications is called R2. The latest version of the Standard is the R2:2013. Each provision of the R2 Standard is designed to help ensure the transparency, quality, social and environmental responsibility of R2 Certified electronics facilities such as mobile resellers and recyclers. R2:2013 was developed through a transparent multi-stakeholder process, consistent with ANSI essential requirements. R2 undergoes consistent review to advance the requirements in-line with the needs of the industry. Blancco Mobile Diagnostics & Erasure solutions supply mobile resellers around the globe a certified process so that they can meet (and even exceed) the R2 standard for device testing and data sanitization. Blancco solutions exceed the requirements presented in the Standard, with verification and certification of each data erasure. This ensures that data does not remain on mobile devices following processing and prior to moving into the secondary market via reverse/forward logistics. Section of the Standard How Blancco Helps 1. Tested and Full Functions, R2/Ready for Reuse Blancco Mobile Solutions enables mobile resellers and retailers to (A) “Use effective test methods to confirm that all functions quickly and accurately find the source of mobile device issues and for equipment and components are working properly resolve them. and ready for reuse, including properly configured with appropriate legally licensed software where required for operation of equipment and components, and device specific drivers within the product’s hardware…” 2. -
(Electronic) Trash: True Deletion Would Soothe E-Discovery Woes
Minnesota Journal of Law, Science & Technology Volume 7 Issue 2 Article 13 2006 Throwing Out the (Electronic) Trash: True Deletion Would Soothe E-Discovery Woes Andrew Moerke Mason Follow this and additional works at: https://scholarship.law.umn.edu/mjlst Recommended Citation Andrew M. Mason, Throwing Out the (Electronic) Trash: True Deletion Would Soothe E-Discovery Woes, 7 MINN. J.L. SCI. & TECH. 777 (2006). Available at: https://scholarship.law.umn.edu/mjlst/vol7/iss2/13 The Minnesota Journal of Law, Science & Technology is published by the University of Minnesota Libraries Publishing. MASON_FINAL_UPDATED 6/7/2006 6:39:12 PM Throwing Out the (Electronic) Trash: True Deletion Would Soothe E-Discovery Woes * Andrew Moerke Mason Electronic discovery (e-discovery) consumes time, money, and resources like few other aspects of modern-day litigation. Deleted data, metadata, backup data, and other intangible forms of information make e-discovery more complex and contentious than traditional discovery.1 Computer users generate and retain electronic documents with ease, leading to significantly greater amounts of data than in a paper-only world.2 E-discovery’s volume and complexity increase litigation costs and complicate discovery disputes between parties, draining both party and judicial resources. More vexing than other areas of e-discovery, e-discovery of deleted data demands expensive forensic techniques, dampens business productivity, and holds no guarantee of yielding evidence. Parties anguish over whether deleted files on a computer hard drive could contain information critical to a © 2006 Andrew Moerke Mason. * J.D. expected 2007, University of Minnesota Law School; B.S. 1999, University of California, Berkeley. -
Counter-Forensic Privacy Tools a Forensic Evaluation
Counter-Forensic Privacy Tools A Forensic Evaluation Matthew Geiger, Lorrie Faith Cranor June 2005 CMU-ISRI-05-119 Institute for Software Research, International, Carnegie Mellon University School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213-3890 Abstract Modern operating systems and the applications that run on them generate copious amounts of data about their users’ activity. Users are increasingly aware of their privacy exposure from these records and from digital artifacts that linger after files are “deleted” on computers they use. Efforts to redress this privacy exposure have spawned a range of counter-forensic privacy tools – software designed to irretrievably eliminate records of computer system usage and other sensitive data. In this paper, we use forensic tools and techniques to evaluate the effectiveness of six counter-forensic software packages. The results highlight some significant shortfalls in the implementation and approach of these tools, leading to privacy concerns about the exposure of sensitive data. The findings also raise questions about the level of privacy protection that is realistic to expect from these tools, and others that take a similar approach. TABLE OF CONTENTS Introduction ........................................................................................3 Background.........................................................................................5 Testing Methodology.............................................................................7 Privacy tool testing...............................................................................9 -
Data Remanence in Flash Memory Devices
Data Remanence in Flash Memory Devices Sergei Skorobogatov University of Cambridge, Computer Laboratory, 15 JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom [email protected] Abstract. Data remanence is the residual physical representation of data that has been erased or overwritten. In non-volatile programmable devices, such as UV EPROM, EEPROM or Flash, bits are stored as charge in the floating gate of a transistor. After each erase operation, some of this charge remains. Security protection in microcontrollers and smartcards with EEPROM/Flash memories is based on the assumption that information from the memory disappears completely after erasing. While microcontroller manufacturers successfully hardened already their designs against a range of attacks, they still have a common problem with data remanence in floating-gate transistors. Even after an erase operation, the transistor does not return fully to its initial state, thereby allowing the attacker to distinguish between previously programmed and not programmed transistors, and thus restore information from erased memory. The research in this direction is summarised here and it is shown how much information can be extracted from some microcontrollers after their memory has been ‘erased’. 1 Introduction Data remanence as a problem was first discovered in magnetic media [1,2]. Even if the information is overwritten several times on disks and tapes, it can still be possible to extract the initial data. This led to the development of special methods for reliably removing confidential information from magnetic media. Semiconductor memory in security modules was found to have similar prob- lems with reliable data deletion [3,4]. Data remanence affects not only SRAM, but also memory types like DRAM, UV EPROM, EEPROM and Flash [5]. -
Encase Forensic Version 6.18.0.59
EnCase Forensic Version 6.18.0.59 Test Results for Deleted File Recovery and Active File Listing Tool (Revised) June 23, 2014 This report was prepared for the Department of Homeland Security Science and Technology Directorate Cyber Security Division by the Office of Law Enforcement Standards of the National Institute of Standards and Technology. For additional information about the Cyber Security Division and ongoing projects, please visit www.cyber.st.dhs.gov. June 2014 Test Results for Deleted File Recovery and Active File Listing Tool: EnCase Forensic Version 6.18.0.59 Revised Contents Introduction ......................................................................................................................... 1 How to Read This Report ................................................................................................... 1 1 Results Summary .......................................................................................................... 2 1.1 FAT ........................................................................................................................ 3 1.2 ExFat ...................................................................................................................... 3 1.3 NTFS ...................................................................................................................... 3 1.4 ext ........................................................................................................................... 3 1.5 HFS+ ..................................................................................................................... -
Blancco Drive Eraser Free Download Top 5 Best Free Data Wipe Software for Windows [Pros & Cons] | 2021 Recommendation
blancco drive eraser free download Top 5 Best Free Data Wipe Software for Windows [Pros & Cons] | 2021 Recommendation. How do I wipe my hard drive clean for free ? Do you know what is the best way for data destruction in 2021? Applying Diskpart clean command indeed works. However, it's not the smartest solution for data removal on Windows hard drive, SSD, or external hard drive. To erase data and wipe hard drive for free, you have a better option which is turning to reliable data and hard disk wipe software for help. Here on this page, you are about to learn the top 5 best free data wipe software in Windows 11/10/8/7. Select one and follow its tutorial to learn how to completely wipe computer data on your own now. List of Top 5 Best Free Hard Drive Data Wipe Software | 2021 Recommendation. So what is the best software to wipe a hard drive? When you search hard disk eraser or data wipe software on Google, you'll get too many results from the searching page. To find a suitable one, you'll have to download and try each data eraser or disk wipe software one by one. Taken days and nights, we tested over 50 disk wipe tools, and we listed 5 best of these tools here to help. Check the pros and cons information of each data wipe software and select one to follow its tutorial guide to shred all files and reset your hard drive to its original state immediately: Wipe partition data. -
Data Spillage Remediation Techniques in Hadoop
Data Spillage Remediation Techniques in Hadoop Srinivas Jantali, Sunanda Mani College of Computer and Information Science Northeastern University Boston, USA {jantali.s, mani.s}@husky.neu.edu Abstract— Hadoop implements its own file system HDFS to different Hadoop clusters. A situation may arise where the (Hadoop Distributed File System) designed to run on commodity employee accidentally places a classified piece of data on the hardware to store and process large data sets. Data Spillage is a cluster meant for unclassified data. This situation is called data condition where a data set of higher classification is accidentally spillage and threatens the confidentiality of the classified data. stored on a system of lower classification. When deleted, the spilled Hadoop further augments the situation by replicating the data data remains forensically retrievable due to the fact that file across multiple data nodes, since it is designed to do so. The systems implement deletion by merely resetting pointers and spilled data is generally referred to as “dirty data” and the data marking corresponding space as available. The problem is nodes on which the dirty data resides are referred to as “dirty augmented in Hadoop as it is designed to create and store multiple nodes”. copies of same data to ensure high availability, thereby increasing risk to confidentiality of data. This paper proposes three approaches to eliminate such risk. In the first approach, the spilled data is securely overwritten with zero and random fills multiple times at the OS level, to render it forensically irretrievable. In the second approach, the Hadoop inbuilt delete function is enhanced to implement a secure deletion mechanism. -
Security Target for Entrust/Truedeleteä (Eal 1)
SECURITY TARGET FOR ENTRUST/TRUEDELETEä (EAL 1) Prepared for: Communications Security Establishment Prepared by: CGI Information Systems and Management Consultants Inc. 31 March 1999 Author: CGI Senior Consultant, Mr. Mike Riley Valid: 31 March 1999 CGI File number: CGI-ITSETF-99-01-ST-04 CB File number: 1999-CGI-02 Issue Number: 1.3 Page Count: 16 Security Target - CGI-ITSETF-99-01-ST-04 EAL 1 Trial Evaluation of Entrust/TrueDelete Document Change Log ST Section Change Reason for Change Date Changed Sec 5.1 Conformance to FDP_RIP OR CGI-1999-02-01 28 Feb 1999 Title Page CB Reference Number and Version OR CGI-1999-02-02 16 Feb 1999 Number Sec 5.1 Clarify description of “file clearing” OR CGI-1999-02-02 16 Feb 1999 Sec 5.3 Amend security requirements for the IT OR CGI-1999-02-03 20 Feb 1999 environment Sec 6.1 Clarify TOE Summary Specification OR CGI-1999-02-04 20 Feb 1999 Sec 6.1 TSS for the assurance requirements OR CGI-1999-02-05 20 Feb 1999 Sec 6.1 Description of TOE Security Functions OR CGI-1999-02-11 28 Feb 1999 Sec 1.1 Include Windows ’95 in ST ST Evaluation 7 March 1999 Identification Sec 1.2 Clarify file clearing (overwrite) ST Evaluation 7 March 1999 Sec 2 Clarify file clearing (overwrite) ST Evaluation 7 March 1999 Sec 3.1 Expand Assumptions ST Evaluation 7 March 1999 Sec 4.2 Trace Back to Threat ST Evaluation 7 March 1999 Sec 5.1 Clarify file clearing (overwrite) ST Evaluation 7 March 1999 Sec 6.1 Added to improve Certifier comments 7 March 1999 Sec 6.2 Re-numbered from 6.1 and revised to Addition of 6.1 7 March 1999 clarify file clearing (overwrite) Sec 6.3 Re-numbered from 6.2 Addition of 6.1 7 March 1999 Sec 8.2 Added Mapping ST Evaluation 7 March 1999 Sec 8.4 Added Mapping ST Evaluation 7 March 1999 CGI Information Systems and 31 March 1999 Management Consultants Inc.