Final Version

Total Page:16

File Type:pdf, Size:1020Kb

Final Version The Ecology and Conservation of Juliana’s Golden Mole (Neamblysomus julianae) by Craig Ryan Jackson Submitted in fulfilment of the requirements for the degree Master of Science (Zoology) in the Faculty of Natural and Agricultural Sciences, University of Pretoria. February 2007 Supervisor: Dr M.P. Robertson Co-supervisor: Prof N.C. Bennett © University of Pretoria I declare that this thesis, which I hereby submit for the degree Master of Science (Zoology) at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution. Craig Ryan Jackson 21 February 2007 i The Ecology and Conservation of Juliana’s Golden Mole (Neamblysomus julianae) By Craig Ryan Jackson Supervisor: Dr M.P. Robertson Department of Zoology and Entomology University of Pretoria Pretoria 0002 Co-supervisor: Prof N.C. Bennett Mammal Research Institute Department of Zoology and Entomology University of Pretoria Pretoria 0002 Abstract Despite an IUCN conservation status of critically endangered, Juliana’s golden mole (Neamblysomus julianae) has received no ecological research attention to date. The species urgently requires conservation attention, but a poor understanding its biology, ecology and distribution makes effective conservation planning almost impossible. In light of this, a thorough understanding of the habitat requirements for this habitat specific species was needed. Additionally, the cryptic lifestyle of Juliana’s golden mole has resulted in very few distribution records for the species. Little was known about the animals’ daily and seasonal activity patterns or movement patterns. This study revealed that Juliana’s golden mole is range restricted on account of sandy soils that have a uniform particle size distribution. This feature limits substrate compaction, making tunnelling far easier for these small mammals. In comparison to uninhabited areas, occupied habitat had greater vegetation cover provided by trees and shrubs, and this would be expected to provide a cooler and moister microenvironment. The ecological parameters associated with the species presence were then used, in addition to existing GIS data, to predict regions of potentially suitable habitat. This process revealed large potentially inhabitable areas in the northern parts of South Africa. Preliminary ground-truthing has shown the model to be relatively accurate with three potentially new populations having been identified. Contrary to what ii has been reported in the literature, Juliana’s golden mole does not appear to be strictly nocturnal. Instead, an adaptive pattern of activity was observed, governed by soil temperature. Body temperature was found to fluctuate to some degree with that of the soil temperature, but fluctuations were regulated by behavioural thermoregulation. Seasonal activity is highly correlated with rainfall. Rain moistens the soil making it significantly softer and far easier to tunnel through. Using this and other information acquired through the course of the study, the thesis culminates with an evaluation of conservation concerns and proposed conservation management actions. Keywords Juliana’s golden mole, Neamblysomus julianae, Chrysochloridae, habitat requirements, conservation planning, activity pattern, species distribution model, torpor, conservation management plan. Acknowledgements Prof Nigel Bennett has taught me so much over the past five years, and certainly played a major part in shaping my career as a biologist. Not only has he provided me with several opportunities, but he has also been a good friend throughout. Nigel has a genuine interest in his students and only gives his best in mentoring them. Dr Mark Robertson has given an immense amount of time and effort to this project, and I have learnt an incredible amount from him during the course of my MSc. Mark is a good friend and always willing to assist his students, making time to get out into the field. We have had many good times on fieldtrips and this thesis would definitely not have been the same without his professional input. Dr Sarita Maree and Kim Young are thanked for there input and comments during the planning phases of this project. To my very special girlfriend Trine, thank you for all your assistance, both in the field and with the statistical analysis in this thesis! Your love, support and contribution to this thesis have been invaluable, and I am truly grateful for that. A special thanks to my parents, who have always given their offspring only the best. Through the ups and downs of my early university years, they remained strong, although perhaps somewhat disillusioned! Thank you for everything that you have done for my siblings and me! iii This project was kindly sponsored by The Green Trust, a partnership between WWF and Nedbank (South Africa). Without their financial contribution this work would not have been possible. Foreword Prior to this project, knowledge about the biology and ecology of Juliana’s golden mole was comprised almost exclusively from anecdotal observations. The only aspects investigated rigorously were morphological and taxonomic in nature, although these were based on small sample sizes. Chapter one provides an introduction to the Chrysochloridae (golden moles) and, more specifically, Juliana’s golden mole. The three isolated populations from which the species is described are discussed. Soil and vegetation properties at each of the three populations were investigated and presented in Chapter 2. In an attempt to highlight any consistent differences between ecological variables in suitable and unsuitable habitat, sampling design employed a presence-absence approach. The findings were used to reclassify existing GIS layers in Chapter 3. Manipulating these layers produced a map indicating where potentially suitable habitat may be located in the northern parts of South Africa. Insights into daily and seasonal patterns of activity were gained in Chapter 4, and conservation recommendations are presented in the fifth and final chapter. Table of Contents Contents Page Abstract..............................................................................................................................................i Keywords ..........................................................................................................................................ii Acknowledgements ..........................................................................................................................ii Foreword.......................................................................................................................................... iii Table of Contents ............................................................................................................................ iii List of Tables ...................................................................................................................................vi List of Figures ..................................................................................................................................vi Chapter 1.........................................................................................................................................vi List of Appendices ...........................................................................................................................ix Chapter 1 - An Introduction to the Ecology and Conservation of Juliana’s Golden Mole…………..1 1.1 Background and Justification..................................................................................................... 1 1.1.1 Golden moles...................................................................................................................... 1 1.1.2 Phylogenetic relationships .................................................................................................. 2 1.1.3 Life below the soil ............................................................................................................... 3 1.1.4 Threats and Conservation Issues ....................................................................................... 3 1.2. The Juliana’s golden mole (Neamblysomus julianae).............................................................. 6 1.2.1 Threatened status and biogeography................................................................................. 6 1.2.2 Biology and Ecology ........................................................................................................... 8 1.2.3 Habitat............................................................................................................................... 10 1.3 Aims of the thesis .................................................................................................................... 11 1.3.1 Study Areas ...................................................................................................................... 12 iv 1.3.1.1 Bronberg Ridge (BR).................................................................................................. 14 1.3.1.2 Nylsvley Nature Reserve (NNR) ................................................................................ 16 1.3.1.3 Kruger National Park (KNP) ....................................................................................... 18 1.4 References .............................................................................................................................. 21 Chapter 2 - A Quantitative Habitat Description
Recommended publications
  • Species List
    Mozambique: Species List Birds Specie Seen Location Common Quail Harlequin Quail Blue Quail Helmeted Guineafowl Crested Guineafowl Fulvous Whistling-Duck White-faced Whistling-Duck White-backed Duck Egyptian Goose Spur-winged Goose Comb Duck African Pygmy-Goose Cape Teal African Black Duck Yellow-billed Duck Cape Shoveler Red-billed Duck Northern Pintail Hottentot Teal Southern Pochard Small Buttonquail Black-rumped Buttonquail Scaly-throated Honeyguide Greater Honeyguide Lesser Honeyguide Pallid Honeyguide Green-backed Honeyguide Wahlberg's Honeyguide Rufous-necked Wryneck Bennett's Woodpecker Reichenow's Woodpecker Golden-tailed Woodpecker Green-backed Woodpecker Cardinal Woodpecker Stierling's Woodpecker Bearded Woodpecker Olive Woodpecker White-eared Barbet Whyte's Barbet Green Barbet Green Tinkerbird Yellow-rumped Tinkerbird Yellow-fronted Tinkerbird Red-fronted Tinkerbird Pied Barbet Black-collared Barbet Brown-breasted Barbet Crested Barbet Red-billed Hornbill Southern Yellow-billed Hornbill Crowned Hornbill African Grey Hornbill Pale-billed Hornbill Trumpeter Hornbill Silvery-cheeked Hornbill Southern Ground-Hornbill Eurasian Hoopoe African Hoopoe Green Woodhoopoe Violet Woodhoopoe Common Scimitar-bill Narina Trogon Bar-tailed Trogon European Roller Lilac-breasted Roller Racket-tailed Roller Rufous-crowned Roller Broad-billed Roller Half-collared Kingfisher Malachite Kingfisher African Pygmy-Kingfisher Grey-headed Kingfisher Woodland Kingfisher Mangrove Kingfisher Brown-hooded Kingfisher Striped Kingfisher Giant Kingfisher Pied
    [Show full text]
  • Amblysomus Robustus – Robust Golden Mole
    Amblysomus robustus – Robust Golden Mole continuing decline and possible severe fragmentation of habitat. Currently known from only five locations but probably more widespread. Further field surveys and molecular data are needed to accurately delimit its range. The Highveld grasslands favoured by this species are being degraded by mining for shallow coal deposits to fuel numerous power stations that occur in the preferred high-altitude grassland habitats of this species, which is an inferred major threat. Rehabilitation attempts at these sites appear to have been largely ineffective. These power stations form the backbone of South Africa's electricity network, and disturbance is likely to increase as human populations grow and the demand for power increases. While no mining sites and power generation plants occur at the five localities where this species has been collected, an environmental authorisation application to mine coal at a site near Belfast, close to where this species occurs, is Gary Bronner currently being assessed. Given the ubiquity of mines and power stations in the Mpumalanga grasslands, impacts on this species are likely if it is more widespread than current Regional Red List status (2016) Vulnerable B1ab(iii)* records indicate, which seems probable. Farming, tourism National Red List status (2004) Endangered resort developments and agro-forestry (exotic pine and B1,2ab(i-iv) eucalyptus plantations) have also transformed habitat, but less dramatically; these do not appear to pose a major Reasons for change Non-genuine: threat. More data is required on the distribution limits, New information ecology, densities and reproduction of this species. Global Red List status (2015) Vulnerable B1ab(iii) TOPS listing (NEMBA) None Distribution CITES listing None Endemic to South Africa, this species is known from only the Steenkampsberg Mountain Plateau and in the Endemic Yes Dullstroom and Belfast areas of Mpumalanga (Figure 1), extending eastwards to Lydenburg and possibly *Watch-list Data southwards towards the Ermelo district where A.
    [Show full text]
  • Afrotherian Conservation – Number 16
    AFROTHERIAN CONSERVATION Newsletter of the IUCN/SSC Afrotheria Specialist Group Number 16 Edited by PJ Stephenson September 2020 Afrotherian Conservation is published annually by the measure the effectiveness of SSC’s actions on biodiversity IUCN Species Survival Commission Afrotheria Specialist conservation, identification of major new initiatives Group to promote the exchange of news and information needed to address critical conservation issues, on the conservation of, and applied research into, consultations on developing policies, guidelines and aardvarks, golden moles, hyraxes, otter shrews, sengis and standards, and increasing visibility and public awareness of tenrecs. the work of SSC, its network and key partners. Remarkably, 2020 marks the end of the current IUCN Published by IUCN, Gland, Switzerland. quadrennium, which means we will be dissolving the © 2020 International Union for Conservation of Nature membership once again in early 2021, then reassembling it and Natural Resources based on feedback from our members. I will be in touch ISSN: 1664-6754 with all members at the relevant time to find out who wishes to remain a member and whether there are any Find out more about the Group people you feel should be added to our group. No one is on our website at http://afrotheria.net/ASG.html automatically re-admitted, however, so you will all need to and on Twitter @Tweeting_Tenrec actively inform me of your wishes. We will very likely need to reassess the conservation status of all our species during the next quadrennium, so get ready for another round of Red Listing starting Message from the Chair sometime in the not too distant future.
    [Show full text]
  • Informes Individuales IUCN 2018.Indd
    IUCN SSC Afrotheria Specialist Group 2018 Report Galen Rathbun Andrew Taylor Co-Chairs Mission statement of golden moles in species where it is neces- Galen Rathbun (1) The IUCN SSC Afrotheria Specialist Group (ASG) sary (e.g., Amblysomus and Neamblysomus Andrew Taylor (2) facilitates the conservation of hyraxes, aard- species); (3) collect basic data for 3-4 golden varks, elephant-shrews or sengis, golden moles, mole species, including geographic distributions Red List Authority Coordinator tenrecs and their habitats by: (1) providing and natural history data; (4) conduct surveys to determine distribution and abundance of Matthew Child (3) sound scientific advice and guidance to conser- vationists, governments, and other inter- five hyrax species; (5) revise taxonomy of five hyrax species; (6) develop and assess field trials Location/Affiliation ested groups; (2) raising public awareness; for standardised camera trapping methods (1) California Academy of Sciences, and (3) developing research and conservation to determine population estimates for giant California, US programmes. sengis; (7) conduct surveys to assess distribu- (2) The Endangered Wildlife Trust, tion, abundance, threats and taxonomic status Modderfontein, Johannesburg, South Africa Projected impact for the 2017-2020 of the Data Deficient sengi species; (8) build on (3) South African National Biodiversity Institute quadrennium current research to determine the systematics (SANBI), Kirstenbosch National Botanical If the ASG achieved all of its targets, it would be of giant sengis, especially Rhynchocyon Garden, Newlands Cape Town, South Africa able to deliver more accurate, data-driven Red species; (9) survey Aardvark (Orycteropus afer) List assessments for more Afrotherian species populations to determine abundance, distribu- Number of members and, therefore, be in a better position to move tion and trends; (10) conduct taxonomic studies 34 to conservation planning, especially for priority to determine the systematics of aardvarks, with species.
    [Show full text]
  • The Adapted Ears of Big Cats and Golden Moles: Exotic Outcomes of the Evolutionary Radiation of Mammals
    FEATURED ARTICLE The Adapted Ears of Big Cats and Golden Moles: Exotic Outcomes of the Evolutionary Radiation of Mammals Edward J. Walsh and JoAnn McGee Through the process of natural selection, diverse organs and organ systems abound throughout the animal kingdom. In light of such abundant and assorted diversity, evolutionary adaptations have spawned a host of peculiar physiologies. The anatomical oddities that underlie these physiologies and behaviors are the telltale indicators of trait specialization. Following from this, the purpose of this article is to consider a number of auditory “inventions” brought about through natural selection in two phylogenetically distinct groups of mammals, the largely fossorial golden moles (Order Afrosoricida, Family Chrysochloridae) and the carnivorous felids of the genus Panthera along with its taxonomic neigh- bor, the clouded leopard (Neofelis nebulosa). In the Beginning The first vertebrate land invasion occurred during the Early Carboniferous period some 370 million years ago. The primitive but essential scaffolding of what would become the middle and inner ears of mammals was present at this time, although the evolution of the osseous (bony) middle ear system and the optimization of cochlear fea- tures and function would play out over the following 100 million years. Through natural selection, the evolution of the middle ear system, composed of three small articu- lated bones, the malleus, incus, and stapes, and a highly structured and coiled inner ear, came to represent all marsupial and placental (therian) mammals on the planet Figure 1. Schematics of the outer, middle, and inner ears (A) and thus far studied. The consequences of this evolution were the organ of Corti in cross section (B) of a placental mammal.
    [Show full text]
  • Zeitschrift Für Säugetierkunde)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Mammalian Biology (früher Zeitschrift für Säugetierkunde) Jahr/Year: 1990 Band/Volume: 55 Autor(en)/Author(s): Bronner G., Jones Elizabeth, Coetzer D. Artikel/Article: Hyoid-dentary articulations in golden moles (Mammalia: Insectivora; Chrysochloridae) 11-15 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/ Z. Säugetierkunde 55 (1990) 11-15 © 1990 Verlag Paul Parey, Hamburg und Berlin ISSN 0044-3468 Hyoid-dentary articulations in golden moles (Mammalia: Insectivora; Chrysochloridae) By G. Bronner, Elizabeth Jones and D. J. Coetzer Department of Mammals, Transvaal Museum, and Department of Anatomy, University of Pretoria, Pretoria, South Africa Receipt of Ms. 14. 4. 1988 Abstract Studied the general structure, topography and possible functions of the hyoid region in nine golden mole species. Unusual in-situ articulations between the enlarged stylohyal bones, and the dentaries, were found in all specimens examined. Osteological evidence suggests that hyoid-dentary articulation is an unique anatomical feature characteristic of all chrysochlorids. Its apparent functions are to enhance manipulatory action of, and support for, the tongue during prey handling and mastication, but this remains to be confirmed. Introduction Hyoid-mandible articulations occur in some osteichthyian fishes (de Beer 1937; Hilde- brand 1974), but have never been recorded in higher vertebrates. Improved museum preservation techniques recently enabled us to detect conspicuous articulation between the large stylohyal bone and the dentary in the Hottentot golden mole Amblysomus hotten- totus (A. Smith, 1829). Further investigation revealed that hyoid-dentary articulation (Fig. 1) in situ is an unique characteristic of all chrysochlorids.
    [Show full text]
  • Subterranean Mammals Show Convergent Regression in Ocular Genes and Enhancers, Along with Adaptation to Tunneling
    RESEARCH ARTICLE Subterranean mammals show convergent regression in ocular genes and enhancers, along with adaptation to tunneling Raghavendran Partha1, Bharesh K Chauhan2,3, Zelia Ferreira1, Joseph D Robinson4, Kira Lathrop2,3, Ken K Nischal2,3, Maria Chikina1*, Nathan L Clark1* 1Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States; 2UPMC Eye Center, Children’s Hospital of Pittsburgh, Pittsburgh, United States; 3Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, United States; 4Department of Molecular and Cell Biology, University of California, Berkeley, United States Abstract The underground environment imposes unique demands on life that have led subterranean species to evolve specialized traits, many of which evolved convergently. We studied convergence in evolutionary rate in subterranean mammals in order to associate phenotypic evolution with specific genetic regions. We identified a strong excess of vision- and skin-related genes that changed at accelerated rates in the subterranean environment due to relaxed constraint and adaptive evolution. We also demonstrate that ocular-specific transcriptional enhancers were convergently accelerated, whereas enhancers active outside the eye were not. Furthermore, several uncharacterized genes and regulatory sequences demonstrated convergence and thus constitute novel candidate sequences for congenital ocular disorders. The strong evidence of convergence in these species indicates that evolution in this environment is recurrent and predictable and can be used to gain insights into phenotype–genotype relationships. DOI: https://doi.org/10.7554/eLife.25884.001 *For correspondence: [email protected] (MC); [email protected] (NLC) Competing interests: The Introduction authors declare that no The subterranean habitat has been colonized by numerous animal species for its shelter and unique competing interests exist.
    [Show full text]
  • And Paraechinus Aethiopicus (Erinaceomorpha) Daniella L. Pereira
    Pereira 1 The Comparative Gastrointestinal Morphology of Jaculus jaculus (Rodentia) and Paraechinus aethiopicus (Erinaceomorpha) Daniella L. Pereira1, Jacklynn Walters1, Nigel C. Bennett2,3, Abdulaziz N. Alagaili2,4, Osama B. Mohammed2, Sanet H. Kotzé1 1Division of Anatomy and Histology, Department of Biomedical Sciences, Stellenbosch University, Tygerberg 7505, South Africa 2KSU Mammals Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia 3Department of Zoology and Entomology, University Of Pretoria, Pretoria 0002, South Africa 4Saudi Wildlife Authority, Riyadh 11575, Saudi Arabia Editorial correspondence: Prof S. H. Kotzé Email: [email protected] Physical address: F 208 FISAN Building, Tygerberg Campus, Fransie van Zijl Drive Parow Abstract Jaculus jaculus (Lesser Egyptian jerboa) and Paraechinus aethiopicus (Desert hedgehog) are small mammals which thrive in desert conditions and are found, amongst others, in the Arabian Peninsula. J. jaculus is omnivorous while P. aethiopicus is described as being insectivorous. The study aims to describe the gastrointestinal tract (GIT) morphology of these animals which differ in diet and phylogeny. The GITs of J. Pereira 2 jaculus (n=8) and P. aethiopicus (n=7) were weighed, photographed, and the length, basal surface areas and luminal surface areas of each of the anatomically distinct gastrointestinal segments were determined. The internal aspects of each area were examined and photographed while representative histological sections of each area were processed to wax and stained using haematoxylin and eosin. Both species had a simple unilocular stomach which was confirmed as wholly glandular on histology sections. P. aethiopicus had a relatively simple GIT which lacked a caecum. The caecum of J.
    [Show full text]
  • A New Chrysochlorid from Makapansgat
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Wits Institutional Repository on DSPACE A NEW CHRYSOCHLORID FROM MAKAPANSGAT By G. DE GRAAFF ABSTRACf In this paper a new species of golden m:ole Chrysotricha hamiltoni sp. nov. from Limeworks, Makapansgat, is described. This is the first occurrence of a fossil golden mole at this site; two fossil forms (Proamblysomus antiquus Broom and Chlorotalpa spelea Broom) have previously been recorded from Sterkfontein. INTRODUCfION During a visit to the fossil-yielding dumps at Limeworks in the Makapansgat valley near Potgietersrus in the Central Transvaal in April 1957, Mr. J. W. Kitching of the Bernard Price Institute for Palaeontological Research discovered a small skull embedded in a piece of yellowish grey breccia. The exposed portion was the dorsal part of a cranium from which the parietals had been flaked off leaving a well preserved endocranial cast in position within the remainder of the skull. On development the specimen proved to be the virtually complete skull of a new species of golden mole. Hitherto only two genera have been found as fossils in the dolomite caves of the Transvaal. These were both discovered in the Sterkfontein valley near Krugersdorp. These two fossil types, Proamblysomus antiquus Broom, from the locality known as Bolts Farm, and Chlorotalpa spelea Broom from the Plesianthropus cave at the Sterkfontein site were identified and described by Broom (1941). A third golden mole fossil skull has been found at Kromdraai: it possibly belongs to the species Proamblysomus antiquus but its identity is uncertain owing to the damaged condition of the palate and the teeth.
    [Show full text]
  • Loss of RXFP2 and INSL3 Genes in Afrotheria Shows That Testicular Descent Is the Ancestral Condition in Placental Mammals
    SHORT REPORTS Loss of RXFP2 and INSL3 genes in Afrotheria shows that testicular descent is the ancestral condition in placental mammals Virag Sharma1,2,3, Thomas Lehmann4, Heiko Stuckas5, Liane Funke1, Michael Hiller1,2,3* 1 Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany, 2 Max Planck Institute for the Physics of Complex Systems, Dresden, Germany, 3 Center for Systems Biology Dresden, Germany, 4 Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany, 5 Museum of Zoology, Senckenberg Dresden, Germany a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract Descent of testes from a position near the kidneys into the lower abdomen or into the scro- tum is an important developmental process that occurs in all placental mammals, with the OPEN ACCESS exception of five afrotherian lineages. Since soft-tissue structures like testes are not pre- Citation: Sharma V, Lehmann T, Stuckas H, Funke served in the fossil record and since key parts of the placental mammal phylogeny remain L, Hiller M (2018) Loss of RXFP2 and INSL3 genes controversial, it has been debated whether testicular descent is the ancestral or derived con- in Afrotheria shows that testicular descent is the dition in placental mammals. To resolve this debate, we used genomic data of 71 mamma- ancestral condition in placental mammals. PLoS lian species and analyzed the evolution of two key genes (relaxin/insulin-like family peptide Biol 16(6): e2005293. https://doi.org/10.1371/ journal.pbio.2005293 receptor 2 [RXFP2] and insulin-like 3 [INSL3]) that induce the development of the guberna- culum, the ligament that is crucial for testicular descent.
    [Show full text]
  • Cryptochloris Zyli – Van Zyl's Golden Mole
    Cryptochloris zyli – Van Zyl’s Golden Mole not conspecific (Meester 1974). Recent (but unpublished) phylogenetic analyses based on both morphological and genetic data support the allocation of these taxa to separate species, and justify synonymizing Cryptochloris as a subgenus of Chrysochloris, corroborating the close phylogenetic association of these taxa reported by Asher et al. (2010). Assessment Rationale Until recently this species was known only from a single location, but in 2003 a second location near Groenriviermond was recorded. This suggests that the range of this species is more widespread than previously recognized. The extent of occurrence is estimated to be c. 5,000 km2 and area of occupancy is estimated to be 32 km2 (assuming a grid cell area of 16 km2). Further field surveys are needed to discover other potential subpopulations. Dramatic habitat alteration owing to mining of coastal sands for alluvial diamonds could be impacting on the coastal dune habitats of this species, as Jennifer Jarvis this has been identified as a threat to Eremitalpa granti with which this species coexists. Additionally, large-scale Regional Red List status (2016) Endangered alluvial diamond mines occur at Hondeklipbaai (c. 60 km B1ab(iii)+2ab(iii)* from the Groenriviermond subpopulation) and are undergoing expansion. Habitat alteration owing to the National Red List status (2004) Critically Endangered erection of wind farms near the type locality is a potential B1ab(iii)+2ab(iii)+D emerging, but localized, threat. The species is therefore Reasons for change Non-genuine change: confirmed as Endangered under criterion B1ab(iii)+2ab(iii). New information Global Red List status (2015) Endangered Distribution B1ab(iii)+2ab(iii) Until recently this species was recorded from only the type TOPS listing (NEMBA) None locality near Lambert's Bay, South Africa (Helgen & Wilson 2001).
    [Show full text]
  • List of 28 Orders, 129 Families, 598 Genera and 1121 Species in Mammal Images Library 31 December 2013
    What the American Society of Mammalogists has in the images library LIST OF 28 ORDERS, 129 FAMILIES, 598 GENERA AND 1121 SPECIES IN MAMMAL IMAGES LIBRARY 31 DECEMBER 2013 AFROSORICIDA (5 genera, 5 species) – golden moles and tenrecs CHRYSOCHLORIDAE - golden moles Chrysospalax villosus - Rough-haired Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus – Lowland Streaked Tenrec 3. Microgale dobsoni - Dobson’s Shrew Tenrec 4. Tenrec ecaudatus – Tailless Tenrec ARTIODACTYLA (83 genera, 142 species) – paraxonic (mostly even-toed) ungulates ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BOVIDAE (46 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Impala 3. Alcelaphus buselaphus - Hartebeest 4. Alcelaphus caama – Red Hartebeest 5. Ammotragus lervia - Barbary Sheep 6. Antidorcas marsupialis - Springbok 7. Antilope cervicapra – Blackbuck 8. Beatragus hunter – Hunter’s Hartebeest 9. Bison bison - American Bison 10. Bison bonasus - European Bison 11. Bos frontalis - Gaur 12. Bos javanicus - Banteng 13. Bos taurus -Auroch 14. Boselaphus tragocamelus - Nilgai 15. Bubalus bubalis - Water Buffalo 16. Bubalus depressicornis - Anoa 17. Bubalus quarlesi - Mountain Anoa 18. Budorcas taxicolor - Takin 19. Capra caucasica - Tur 20. Capra falconeri - Markhor 21. Capra hircus - Goat 22. Capra nubiana – Nubian Ibex 23. Capra pyrenaica – Spanish Ibex 24. Capricornis crispus – Japanese Serow 25. Cephalophus jentinki - Jentink's Duiker 26. Cephalophus natalensis – Red Duiker 1 What the American Society of Mammalogists has in the images library 27. Cephalophus niger – Black Duiker 28. Cephalophus rufilatus – Red-flanked Duiker 29. Cephalophus silvicultor - Yellow-backed Duiker 30. Cephalophus zebra - Zebra Duiker 31. Connochaetes gnou - Black Wildebeest 32. Connochaetes taurinus - Blue Wildebeest 33. Damaliscus korrigum – Topi 34.
    [Show full text]