A Faster FPT Algorithm and a Smaller Kernel for Block Graph Vertex Deletion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Unified Polynomial-Time Algorithm for Feedback Vertex Set on Graphs
A Unified Polynomial-Time Algorithm for Feedback Vertex Set on Graphs of Bounded Mim-Width Lars Jaffke Department of Informatics, University of Bergen, Norway lars.jaff[email protected] O-joung Kwon Logic and Semantics, Technische Universität Berlin, Berlin, Germany [email protected] Jan Arne Telle Department of Informatics, University of Bergen, Norway [email protected] Abstract We give a first polynomial-time algorithm for (Weighted) Feedback Vertex Set on graphs of bounded maximum induced matching width (mim-width). Explicitly, given a branch decom- position of mim-width w, we give an nO(w)-time algorithm that solves Feedback Vertex Set. This provides a unified algorithm for many well-known classes, such as Interval graphs and Permutation graphs, and furthermore, it gives the first polynomial-time algorithms for other classes of bounded mim-width, such as Circular Permutation and Circular k-Trapezoid graphs for fixed k. In all these classes the decomposition is computable in polynomial time, as shown by Belmonte and Vatshelle [Theor. Comput. Sci. 2013]. We show that powers of graphs of tree-width w − 1 or path-width w and powers of graphs of clique-width w have mim-width at most w. These results extensively provide new classes of bounded mim-width. We prove a slight strengthening of the first statement which implies that, surprisingly, Leaf Power graphs which are of importance in the field of phylogenetic studies have mim-width at most 1. Given a tree decomposition of width w − 1, a path decomposition of width w, or a clique-width w-expression of a graph G, one can for any value of k find a mim-width decomposition of its k-power in polynomial time, and apply our algorithm to solve Feedback Vertex Set on the k-power in time nO(w). -
A Fixed-Parameter Algorithm for the Directed Feedback Vertex Set Problem
A Fixed-Parameter Algorithm for the Directed Feedback Vertex Set Problem Jianer Chen, Yang Liu, Songjian Lu Barry O’Sullivan and Igor Razgon Department of Computer Science Cork Constraint Computation Centre Texas A&M University Computer Science Department College Station, TX 77843, USA University College Cork, Ireland {chen,yangliu,sjlu}@cs.tamu.edu {b.osullivan,i.razgon}@cs.ucc.ie ABSTRACT played an essential role in the study of deadlock recovery in database systems and in operating systems [30, 14]. In such The (parameterized) feedback vertex set problem on di- a system, the status of system resource allocations can be rected graphs, which we refer to as the dfvs problem, is defined as follows: given a directed graph G and a param- represented as a directed graph G (i.e., the system resource- eter k, either construct a feedback vertex set of at most k allocation graph), and a directed cycle in G represents a vertices in G or report that no such set exists. Whether or deadlock in the system. Therefore, in order to recover from deadlocks, we need to abort a set of processes in the system, not the dfvs problem is fixed-parameter tractable has been a well-known open problem in parameterized computation i.e., to remove a set of vertices in the graph G, so that all and complexity, i.e., whether the problem can be solved in directed cycles in G are broken. Equivalently, we need to time f(k)nO(1) for some function f. In this paper we develop find a FVS in the graph G. -
FPT Algorithms for Diverse Collections of Hitting Sets
algorithms Article FPT Algorithms for Diverse Collections of Hitting Sets Julien Baste 1,* , Lars Jaffke 2,*, Tomáš Masaˇrík 3,4,* , Geevarghese Philip 5,6,* and Günter Rote 7,* 1 Institute of Optimization and Operations Research, Ulm University, 89081 Ulm, Germany 2 Department of Informatics, University of Bergen, 5008 Bergen, Norway 3 Department of Applied Mathematics of the Faculty of Mathematics and Physics, Charles University, 11800 Prague, Czech Republic 4 Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warszawa, Poland 5 Chennai Mathematical Institute, Chennai 603103, India 6 International Joint Unit Research Lab in Computer Science (UMI ReLaX), Chennai 603103, India 7 Fachbereich Mathematik und Informatik, Freie Universität Berlin, D-14195 Berlin, Germany * Correspondence: [email protected] (J.B.); [email protected] (L.J.); [email protected] (T.M.); [email protected] (G.P.); [email protected] (G.R.) Received: 25 October 2019; Accepted: 23 November 2019; Published: 27 November 2019 Abstract: In this work, we study the d-HITTING SET and FEEDBACK VERTEX SET problems through the paradigm of finding diverse collections of r solutions of size at most k each, which has recently been introduced to the field of parameterized complexity. This paradigm is aimed at addressing the loss of important side information which typically occurs during the abstraction process that models real-world problems as computational problems. We use two measures for the diversity of such a collection: the sum of all pairwise Hamming distances, and the minimum pairwise Hamming distance. We show that both problems are fixed-parameter tractable in k + r for both diversity measures. -
On Computing Longest Paths in Small Graph Classes
On Computing Longest Paths in Small Graph Classes Ryuhei Uehara∗ Yushi Uno† July 28, 2005 Abstract The longest path problem is to find a longest path in a given graph. While the graph classes in which the Hamiltonian path problem can be solved efficiently are widely investigated, few graph classes are known to be solved efficiently for the longest path problem. For a tree, a simple linear time algorithm for the longest path problem is known. We first generalize the algorithm, and show that the longest path problem can be solved efficiently for weighted trees, block graphs, and cacti. We next show that the longest path problem can be solved efficiently on some graph classes that have natural interval representations. Keywords: efficient algorithms, graph classes, longest path problem. 1 Introduction The Hamiltonian path problem is one of the most well known NP-hard problem, and there are numerous applications of the problems [17]. For such an intractable problem, there are two major approaches; approximation algorithms [20, 2, 35] and algorithms with parameterized complexity analyses [15]. In both approaches, we have to change the decision problem to the optimization problem. Therefore the longest path problem is one of the basic problems from the viewpoint of combinatorial optimization. From the practical point of view, it is also very natural approach to try to find a longest path in a given graph, even if it does not have a Hamiltonian path. However, finding a longest path seems to be more difficult than determining whether the given graph has a Hamiltonian path or not. -
Vertex Deletion Problems on Chordal Graphs∗†
Vertex Deletion Problems on Chordal Graphs∗† Yixin Cao1, Yuping Ke2, Yota Otachi3, and Jie You4 1 Department of Computing, Hong Kong Polytechnic University, Hong Kong, China [email protected] 2 Department of Computing, Hong Kong Polytechnic University, Hong Kong, China [email protected] 3 Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan [email protected] 4 School of Information Science and Engineering, Central South University and Department of Computing, Hong Kong Polytechnic University, Hong Kong, China [email protected] Abstract Containing many classic optimization problems, the family of vertex deletion problems has an important position in algorithm and complexity study. The celebrated result of Lewis and Yan- nakakis gives a complete dichotomy of their complexity. It however has nothing to say about the case when the input graph is also special. This paper initiates a systematic study of vertex deletion problems from one subclass of chordal graphs to another. We give polynomial-time algorithms or proofs of NP-completeness for most of the problems. In particular, we show that the vertex deletion problem from chordal graphs to interval graphs is NP-complete. 1998 ACM Subject Classification F.2.2 Analysis of Algorithms and Problem Complexity, G.2.2 Graph Theory Keywords and phrases vertex deletion problem, maximum subgraph, chordal graph, (unit) in- terval graph, split graph, hereditary property, NP-complete, polynomial-time algorithm Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2017.22 1 Introduction Generally speaking, a vertex deletion problem asks to transform an input graph to a graph in a certain class by deleting a minimum number of vertices. -
Parity Systems and the Delta-Matroid Intersection Problem
Parity Systems and the Delta-Matroid Intersection Problem Andr´eBouchet ∗ and Bill Jackson † Submitted: February 16, 1998; Accepted: September 3, 1999. Abstract We consider the problem of determining when two delta-matroids on the same ground-set have a common base. Our approach is to adapt the theory of matchings in 2-polymatroids developed by Lov´asz to a new abstract system, which we call a parity system. Examples of parity systems may be obtained by combining either, two delta- matroids, or two orthogonal 2-polymatroids, on the same ground-sets. We show that many of the results of Lov´aszconcerning ‘double flowers’ and ‘projections’ carry over to parity systems. 1 Introduction: the delta-matroid intersec- tion problem A delta-matroid is a pair (V, ) with a finite set V and a nonempty collection of subsets of V , called theBfeasible sets or bases, satisfying the following axiom:B ∗D´epartement d’informatique, Universit´edu Maine, 72017 Le Mans Cedex, France. [email protected] †Department of Mathematical and Computing Sciences, Goldsmiths’ College, London SE14 6NW, England. [email protected] 1 the electronic journal of combinatorics 7 (2000), #R14 2 1.1 For B1 and B2 in and v1 in B1∆B2, there is v2 in B1∆B2 such that B B1∆ v1, v2 belongs to . { } B Here P ∆Q = (P Q) (Q P ) is the symmetric difference of two subsets P and Q of V . If X\ is a∪ subset\ of V and if we set ∆X = B∆X : B , then we note that (V, ∆X) is a new delta-matroid.B The{ transformation∈ B} (V, ) (V, ∆X) is calledB a twisting. -
The Generalized Deadlock Resolution Problem
The Generalized Deadlock Resolution Problem Kamal Jain¤ Mohammad T. Hajiaghayiy Kunal Talwarz Abstract In this paper we initiate the study of the AND-OR directed feedback vertex set problem from the view- point of approximation algorithms. This AND-OR feedback vertex set problem is motivated by a practical deadlock resolution problem that appears in the development of distributed database systems1. This prob- lem also turns out be a natural generalization of the directed feedback vertex set problem. Awerbuch and Micali [1] gave a polynomial time algorithm to find a minimal solution for this problem. Unfortunately, a minimal solution can be arbitrarily more expensive than the minimum cost solution. We show that finding the minimum cost solution is as hard as the directed steiner tree problem (and thus (log2n) hard to ap- proximate). On the positive side, we give algorithms which work well when the number of writers (AND nodes) or the number of readers (OR nodes) are small. We also consider a variant that we call permanent deadlock resolution where we cannot specify an execution order for the surviving processes; they should get completed even if they were scheduled adver- sarially. When all processes are writers (AND nodes), we give an O(log n log log n) approximation for this problem. Finally we give an LP-rounding approach and discuss some other natural variants. 1 Introduction One of the best ways to understand deadlocks in databases is the dining philosophers problem. Say there are five philosophers sitting on a circular table to eat spaghetti, with a fork between every two of them. -
Oasics-SOSA-2019-14.Pdf (0.4
Simple Greedy 2-Approximation Algorithm for the Maximum Genus of a Graph Michal Kotrbčík Department of Computer Science, Comenius University, 842 48 Bratislava, Slovakia [email protected] Martin Škoviera1 Department of Computer Science, Comenius University, 842 48 Bratislava, Slovakia [email protected] Abstract The maximum genus γM (G) of a graph G is the largest genus of an orientable surface into which G has a cellular embedding. Combinatorially, it coincides with the maximum number of disjoint pairs of adjacent edges of G whose removal results in a connected spanning subgraph of G. In this paper we describe a greedy 2-approximation algorithm for maximum genus by proving that removing pairs of adjacent edges from G arbitrarily while retaining connectedness leads to at least γM (G)/2 pairs of edges removed. As a consequence of our approach we also obtain a 2-approximate counterpart of Xuong’s combinatorial characterisation of maximum genus. 2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms → Graph algorithms analysis, Mathematics of computing → Graph algorithms, Mathematics of computing → Graphs and surfaces Keywords and phrases maximum genus, embedding, graph, greedy algorithm Digital Object Identifier 10.4230/OASIcs.SOSA.2019.14 Acknowledgements The authors would like to thank Rastislav Královič and Jana Višňovská for reading preliminary versions of this paper and making useful suggestions. 1 Introduction One of the paradigms in topological graph theory is the study of all surface embeddings of a given graph. The maximum genus γM (G) parameter of a graph G is then the maximum integer g such that G has a cellular embedding in the orientable surface of genus g.A result of Duke [12] implies that a graph G has a cellular embedding in the orientable surface of genus g if and only if γ(G) ≤ g ≤ γM (G) where γ(G) denotes the (minimum) genus of G. -
Fixed-Parameter Tractability Results for Feedback Set Problems in Tournaments
Fixed-Parameter Tractability Results for Feedback Set Problems in Tournaments Michael Dom, Jiong Guo, Falk H¨uffner, Rolf Niedermeier, and Anke Truß Institut f¨ur Informatik, Friedrich-Schiller-Universit¨at Jena, Germany Structure of the Talk I The Feedback Vertex Set Problem in Tournaments I An Iterative Compression Algorithm I Further Results The Problem Feedback Vertex Set Definition (Feedback Vertex Set (FVS)) Input: Directed graph G = (V , E), integer k ≥ 0. Output: Is there a subset X ⊆ V of at most k vertices such that G[V \ X ] has no cycles? The Problem Feedback Vertex Set Definition (Feedback Vertex Set (FVS)) Input: Directed graph G = (V , E), integer k ≥ 0. Output: Is there a subset X ⊆ V of at most k vertices such that G[V \ X ] has no cycles? The Problem Feedback Vertex Set Definition (Feedback Vertex Set (FVS)) Input: Directed graph G = (V , E), integer k ≥ 0. Output: Is there a subset X ⊆ V of at most k vertices such that G[V \ X ] has no cycles? Complexity of Feedback Vertex Set Feedback Vertex Set is NP-complete on: I Directed graphs [Karp, 1972] I Planar directed graphs [Yannakakis, STOC 1978] I Directed graphs with in-/outdegree ≤ 2 [Garey and Johnson, Computers and Intractability, 1979] I Planar directed graphs with in-/outdegree ≤ 3 [Garey and Johnson, Computers and Intractability, 1979] I Tournaments [Speckenmeyer, WG 1989] Tournaments For each pair u, v of vertices, there is exactly one of the edges (u, v) and (v, u). Approximability of Feedback Vertex Set I Feedback Vertex Set is APX-hard on directed graphs. -
Faster Exact and Parameterized Algorithm for Feedback Vertex Set in Tournaments
Faster Exact and Parameterized Algorithm for Feedback Vertex Set in Tournaments Mithilesh Kumar1 and Daniel Lokshtanov2 1 Department of Informatics, University of Bergen Norway [email protected] 2 Department of Informatics, University of Bergen Norway [email protected] Abstract A tournament is a directed graph T such that every pair of vertices is connected by an arc. A feedback vertex set is a set S of vertices in T such that T −S is acyclic. In this article we consider the Feedback Vertex Set problem in tournaments. Here the input is a tournament T and an integer k, and the task is to determine whether T has a feedback vertex set of size at most k. We give a new algorithm for Feedback Vertex Set in Tournaments. The running time of our algorithm is upper-bounded by O(1.6181k + nO(1)) and by O(1.466n). Thus our algorithm simultaneously improves over the fastest known parameterized algorithm for the problem by Dom et al. running in time O(2kkO(1) + nO(1)), and the fastest known exact exponential-time algorithm by Gaspers and Mnich with running time O(1.674n). On the way to proving our main result we prove a strengthening of a special case of a graph partitioning theorem due to Bollobás and Scott. In particular we show that the vertices of any undirected m-edge graph of maximum degree d can be colored white or black in such a way that for each of the two colors, the number of edges with both endpoints of that color is between m/4 − d/2 and m/4+d/2. -
FPT Algorithms and Kernelization?
Noname manuscript No. (will be inserted by the editor) Structural Parameterizations of Undirected Feedback Vertex Set: FPT Algorithms and Kernelization? Diptapriyo Majumdar · Venkatesh Raman Received: date / Accepted: date Abstract A feedback vertex set in an undirected graph is a subset of vertices whose removal results in an acyclic graph. We consider the parameterized and kernelization complexity of feedback vertex set where the parameter is the size of some structure in the input. In particular, we consider parameterizations where the parameter is (instead of the solution size), the distance to a class of graphs where the problem is polynomial time solvable, and sometimes smaller than the solution size. Here, by distance to a class of graphs, we mean the minimum number of vertices whose removal results in a graph in the class. Such a set of vertices is also called the `deletion set'. In this paper, we show that k (1) { FVS is fixed-parameter tractable by an O(2 nO ) time algorithm, but is unlikely to have polynomial kernel when parameterized by the number of vertices of the graph whose degree is at least 4. This answersp a question asked in an earlier paper. We also show that an algorithm with k (1) running time O(( 2 − ) nO ) is not possible unless SETH fails. { When parameterized by k, the number of vertices, whose deletion results in a split graph, we give k (1) an O(3:148 nO ) time algorithm. { When parameterized by k, the number of vertices whose deletion results in a cluster graph (a k (1) disjoint union of cliques), we give an O(5 nO ) algorithm. -
A Tight Extremal Bound on the Lovász Cactus Number in Planar Graphs
A Tight Extremal Bound on the Lovász Cactus Number in Planar Graphs Parinya Chalermsook Aalto University, Espoo, Finland parinya.chalermsook@aalto.fi Andreas Schmid Max Planck Institute for Informatics, Saarbrücken, Germany [email protected] Sumedha Uniyal Aalto University, Espoo, Finland sumedha.uniyal@aalto.fi Abstract A cactus graph is a graph in which any two cycles are edge-disjoint. We present a constructive proof of the fact that any plane graph G contains a cactus subgraph C where C contains at least 1 a 6 fraction of the triangular faces of G. We also show that this ratio cannot be improved by showing a tight lower bound. Together with an algorithm for linear matroid parity, our bound implies two approximation algorithms for computing “dense planar structures” inside any graph: (i) 1 A 6 approximation algorithm for, given any graph G, finding a planar subgraph with a maximum 1 number of triangular faces; this improves upon the previous 11 -approximation; (ii) An alternate (and 4 arguably more illustrative) proof of the 9 approximation algorithm for finding a planar subgraph with a maximum number of edges. Our bound is obtained by analyzing a natural local search strategy and heavily exploiting the exchange arguments. Therefore, this suggests the power of local search in handling problems of this kind. 2012 ACM Subject Classification Mathematics of computing → Graph theory Keywords and phrases Graph Drawing, Matroid Matching, Maximum Planar Subgraph, Local Search Algorithms Digital Object Identifier 10.4230/LIPIcs.STACS.2019.19 Related Version Full Version: https://arxiv.org/abs/1804.03485. Funding Parinya Chalermsook: Part of this work was done while PC and AS were visiting the Simons Institute for the Theory of Computing.