Review of the Emerald Ash Borer (Coleoptera: Buprestidae), Life History, Mating Behaviours, Host Plant Selection, and Host Resistance

Total Page:16

File Type:pdf, Size:1020Kb

Review of the Emerald Ash Borer (Coleoptera: Buprestidae), Life History, Mating Behaviours, Host Plant Selection, and Host Resistance 252 Review of the emerald ash borer (Coleoptera: Buprestidae), life history, mating behaviours, host plant selection, and host resistance Therese M. Poland,1 Yigen Chen, Jennifer Koch, Deepa Pureswaran Abstract—As of summer 2014, the invasive emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), has become established in 24 states in the United States of America and has killed tens of millions of ash trees since its introduction into Michigan in the 1990s. Considerable research has been conducted on many aspects of EAB life history, natural history, ecology, and management strategies in an attempt to contain this devastating pest. In this article, we review the life history, mating behaviours, and host plant selection by EAB in North America as well as host resistance to EAB attack. Introduction 99% within a number of years of EAB infestation (Knight et al. 2013). Forest inventories report The emerald ash borer (EAB), Agrilus planipennis almost 8 billion ash trees on United States of Fairmaire (Coleoptera: Buprestidae) is an Asian (i.e., America timberlands valued at US$282.25 billion China, Japan, Korea, Mongolia, Eastern Russian) (United States Department of Agriculture, Forest flat-headed borer that is primarily a pest of ash, Service 2008). Ash is also one of the most pre- Fraxinus Linnaeus (Oleaceae), species. It was valent trees in agricultural lands, shelterbelts, and discovered near Detroit, Michigan, United States of urban areas. The projected costs to communities America and Windsor, Ontario, Canada in 2002 and landowners for treatment, removal, and (Haack et al. 2002) and is infesting and killing replacement of urban ash trees within a 25-state native North American ash at unprecedented levels. area from 2009 to 2019 was estimated at US$10.7 Based on dendrochronological evidence, EAB billion (Kovacs et al. 2010). In response to the was likely introduced to North America in the threat posed by EAB, federal, state and provincial 1990s (Siegert et al. 2014) and has been spreading agencies imposed quarantines to restrict movement rapidly through natural dispersal and human- of ash from known infested areas, implemented assisted movement of infested logs, firewood, large-scale surveys to detect new infestations, and and nursery material. As of summer 2014, it has have supported extensive research to understand become established in 24 states in the United EAB natural history, behaviour, and host interac- States of America (http://www.emeraldashborer. tions in order to develop effective management info). It has the potential to spread and kill ash strategies. trees throughout North America. Ash mortality in In this paper, we review the life history, mating some infested forested areas could reach up to behaviours, and host plant selection by EAB. Received 8 September 2014. Accepted 15 December 2014. T. M. Poland,1 United States Department of Agriculture, Forest Service, Northern Research Station, 3101 Technology Blvd., Suite F, Lansing, Michigan 48910, United States of America Y. Chen, Department of Entomology and Nematology, University of California, One Shields Avenue, Davis, California 95616, United States of America J. Koch, USDA Forest Service, Northern Research Station, 359 Main Rd. Delaware, Ohio 43015, United States of America D. Pureswaran, Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du PEPS, Québec, Québec, Canada G1V 4C7 1Corresponding author (e-mail: [email protected]). Subject editor: Krista Ryall doi:10.4039/tce.2015.4 Can. Entomol. 147: 252–262 (2015) © The Entomological Society of Canada 2015. Parts of this work are that of the US Government and therefore such parts are not subject to copyright protection in the United States. Parts of this work are that of the Canadian Government and therefore such parts are subject to Canadian Crown Copyright. Poland et al. 253 Other aspects of natural history, ecology, and and continues into May, followed by adult emer- management strategies have been reviewed else- gence approximately three weeks later (Bauer where (Crook and Mastro 2010; Herms and et al. 2004). Some EAB overwinter as young McCullough 2014). larvae in their galleries and then require a second year of development before emerging as adults Life history (Cappaert et al. 2005; Tluczek et al. 2011). Emerald ash borer generally has a one-year life Mating behaviours cycle, but may require two years to complete development in cooler climates, when attack Emerald ash borer adults become sexually densities are low, hosts are vigorous, or when mature ~10–14 days after feeding on host plants oviposition occurs in late summer (Cappaert et al. (Lelito et al. 2007; Rodriguez-Saona et al. 2007). 2005; Wei et al. 2007; Tluczek et al. 2011). In Mating behaviours are observed mostly between southern Michigan, EAB adults generally begin 10:00 and 17:00 hours during the day (Rodriguez- emerging from “D”-shaped exit holes in mid-May Saona et al. 2007) and typically take place on the at about 250 growing degree days base 10 °C host trees. Males hover around tree canopies and (DD10) (450 growing degree days base 50 °F may locate potential mates using visual cues as (DD50) (Brown-Rytlewski and Wilson 2004) and they often drop out of the air and land directly emergence continues throughout the summer. on top of females (Lelito et al. 2007). The visual Peak adult activity generally occurs in late June or cues are not sex-specific, however, since EAB early July at 514–556 DD10 (925–1000 DD50) males approach both sexes of pinned dead EAB (McCullough et al. 2009a; Poland et al. 2011) and (Lelito et al. 2007; Rodriguez-Saona et al. 2007). drops off sharply by the end of July at about 833 Olfactory cue(s) from EAB females start playing a DD10 (1500 DD50) as the initial beetles to emerge role after initial physical contact as evidenced by die off and new emergence declines (Brown- arrestment and longer copulation attempts with Rytlewski and Wilson 2004; Poland et al. 2011). females (Lelito et al. 2007) or even at a distance of Adults feed on the margins of ash leaves for up to 5 cm from EAB females (Pureswaran and 10–14 days before becoming sexually mature and Poland 2009a). Mating is prolonged, lasting mating (Rodriguez-Saona et al. 2007). They 50 minutes on average (Pureswaran and Poland continue to feed and mate throughout their life- 2009a). After mating, EAB pairs separate and time, which generally lasts three to six weeks there appears to be no mate guarding. In labora- (Bauer et al. 2004; Lyons et al. 2004). They are tory studies, EAB females mated repeatedly with most active on sunny days with air temperatures multiple males throughout their lifetime (Lyons above 25 °C (Wang et al. 2010) and often rest on et al. 2004). Routledge and Keena (2012) found leaves or in bark crevices on cool days and during that mating with multiple males is likely the best rainy weather (Rodriguez-Saona et al. 2007). strategy for EAB females to maximise fecundity. Emerald ash borer females deposit 60–80 eggs in Two contact pheromones, 3-methyltricosane nature and up to 258 eggs in the laboratory during (Lelito et al. 2009) and 9-methyl-pentacosane their life span (Lyons et al. 2004). Eggs are (Silk et al. 2009), have been isolated and identi- deposited individually or in clusters in bark cracks fied from cuticles of EAB females. Application or crevices (Bauer et al. 2004). of 3-methyltricosane solution to dead and Eggs hatch within two weeks at 25 °C and the dichloromethane-washed EAB females increased larvae feed in the inner phloem, outer xylem, and time male EAB spent in contact with females cambium creating serpentine-shaped galleries that as well as time spent attempting copulation. are packed with frass. Larvae have four develop- However, EAB males spent less time on washed mental instars (Cappaert et al. 2005) and most females and females on which the compound was larvae complete feeding in October or November reapplied compared with unwashed EAB females; in Michigan. Pre-pupae overwinter in cells about therefore, the effects of 3-methyltricosane might 1.25 cm deep in the sapwood of thin-barked trees be synergised by other compounds such as or in the outer bark of thick-barked trees. In 9-methyl-pentacosane (9-Me-C25), which is only southern Michigan, pupation begins in mid-April found in sexually mature females (Silk et al.2009). © The Entomological Society of Canada 2015. Parts of this work are that of the US Government and therefore such parts are not subject to copyright protection in the United States. Parts of this work are that of the Canadian Government and therefore such parts are subject to Canadian Crown Copyright. 254 Can. Entomol. Vol. 147, 2015 Application of 9-Me-C25 to dead and n-hexane- Protection Organization 2013). Ash mortality washed EAB females elicited copulation attempts within stands in North America can reach up to by males similar to those observed for dead and 99% regardless of ash basal area, its relative unwashed EAB females. Furthermore, the number dominance, relative density, overall stand density, of copulation attempts and the length of arrest- stand basal area, or any measure of species ment by EAB males were similar on dead and diversity (Smith et al. 2005; Knight et al. 2013). unwashed females and on dead washed females This suggests that EAB is very efficient at locating with 9-Me-C25 reapplied (Silk et al. 2009). host trees even when they are rare within mixed One volatile pheromone, (3Z)-dodecen-12- species stands. olide [(3Z)-lactone], has been identified from sexually mature EAB adults (Bartelt et al. 2007; Visual orientation Silk et al. 2011). (3Z)-Lactone was detected from EAB preferentially attacks open grown ash both sexes by Bartelt et al.
Recommended publications
  • Beetle Appreciation Diversity and Classification of Common Beetle Families Christopher E
    Beetle Appreciation Diversity and Classification of Common Beetle Families Christopher E. Carlton Louisiana State Arthropod Museum Coleoptera Families Everyone Should Know (Checklist) Suborder Adephaga Suborder Polyphaga, cont. •Carabidae Superfamily Scarabaeoidea •Dytiscidae •Lucanidae •Gyrinidae •Passalidae Suborder Polyphaga •Scarabaeidae Superfamily Staphylinoidea Superfamily Buprestoidea •Ptiliidae •Buprestidae •Silphidae Superfamily Byrroidea •Staphylinidae •Heteroceridae Superfamily Hydrophiloidea •Dryopidae •Hydrophilidae •Elmidae •Histeridae Superfamily Elateroidea •Elateridae Coleoptera Families Everyone Should Know (Checklist, cont.) Suborder Polyphaga, cont. Suborder Polyphaga, cont. Superfamily Cantharoidea Superfamily Cucujoidea •Lycidae •Nitidulidae •Cantharidae •Silvanidae •Lampyridae •Cucujidae Superfamily Bostrichoidea •Erotylidae •Dermestidae •Coccinellidae Bostrichidae Superfamily Tenebrionoidea •Anobiidae •Tenebrionidae Superfamily Cleroidea •Mordellidae •Cleridae •Meloidae •Anthicidae Coleoptera Families Everyone Should Know (Checklist, cont.) Suborder Polyphaga, cont. Superfamily Chrysomeloidea •Chrysomelidae •Cerambycidae Superfamily Curculionoidea •Brentidae •Curculionidae Total: 35 families of 131 in the U.S. Suborder Adephaga Family Carabidae “Ground and Tiger Beetles” Terrestrial predators or herbivores (few). 2600 N. A. spp. Suborder Adephaga Family Dytiscidae “Predacious diving beetles” Adults and larvae aquatic predators. 500 N. A. spp. Suborder Adephaga Family Gyrindae “Whirligig beetles” Aquatic, on water
    [Show full text]
  • The World at the Time of Messel: Conference Volume
    T. Lehmann & S.F.K. Schaal (eds) The World at the Time of Messel - Conference Volume Time at the The World The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment and the History of Early Primates 22nd International Senckenberg Conference 2011 Frankfurt am Main, 15th - 19th November 2011 ISBN 978-3-929907-86-5 Conference Volume SENCKENBERG Gesellschaft für Naturforschung THOMAS LEHMANN & STEPHAN F.K. SCHAAL (eds) The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference Frankfurt am Main, 15th – 19th November 2011 Conference Volume Senckenberg Gesellschaft für Naturforschung IMPRINT The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference 15th – 19th November 2011, Frankfurt am Main, Germany Conference Volume Publisher PROF. DR. DR. H.C. VOLKER MOSBRUGGER Senckenberg Gesellschaft für Naturforschung Senckenberganlage 25, 60325 Frankfurt am Main, Germany Editors DR. THOMAS LEHMANN & DR. STEPHAN F.K. SCHAAL Senckenberg Research Institute and Natural History Museum Frankfurt Senckenberganlage 25, 60325 Frankfurt am Main, Germany [email protected]; [email protected] Language editors JOSEPH E.B. HOGAN & DR. KRISTER T. SMITH Layout JULIANE EBERHARDT & ANIKA VOGEL Cover Illustration EVELINE JUNQUEIRA Print Rhein-Main-Geschäftsdrucke, Hofheim-Wallau, Germany Citation LEHMANN, T. & SCHAAL, S.F.K. (eds) (2011). The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates. 22nd International Senckenberg Conference. 15th – 19th November 2011, Frankfurt am Main. Conference Volume. Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main. pp. 203.
    [Show full text]
  • Managing the Emerald Ash Borer
    Managing the Emerald Ash Borer Hunterdon County Division of Parks and Recreation Do you have an ash tree on your property? Opposite Branching Compound leaves 5-9 Diamond-patterned bark White Ash trees grow up to 80 feet tall and have a crown spread of about 50 feet. What is the Emerald Ash Borer? The EAB is an invasive flying beetle. Adult beetles are an emerald green brighter than any other beetle in North America It is the size of a penny The adult beetle nibbles on the leaves of an ash tree. Larvae are cream color and have a 10 segmented abdomen The larvae burrow into tree bark and eat the cambium and phloem of a tree Adult beetles are attracted to the colors purple and green How the EAB kills the Ash tree Larvae feed on the cambium and phloem of a tree, critical for nutrient and water transport. The tree starves death 99.9% of untreated ash trees are killed once infested with the EAB Pictured: A sample from the cambium of an ash tree once the bark is removed. Signs of the EAB Vertical split in Epicormic Crown die off D shaped holes Serpentine tracks bark sprouting Can you save your trees? Begin treatment of high value ash trees throughout NJ NOW. Healthy and vigorously growing, with more than half their leaves. Homeowners can treat trees with trunks less than 20 in. at breast They enhance your landscape. height with 1.47% imidacloprid Valuable to the owner Professionals can treat trees with Showing minimal outward signs of a diameter at breast height EAB infestation greater than 20 in.
    [Show full text]
  • Emerald Ash Borer Biological Control
    Forest Health Technology Enterprise Team http://www.fs.fed.us/foresthealth/technology PROVIDING TECHNOLOGY FOR FOREST HEALTH PROTECTION Emerald Ash Borer Biological Control The emerald ash borer, Agrilus planipennis Fairmaire (EAB) is an exotic invasive wood-boring beetle native to Asia (China, Korea, Japan, and Mongolia) and the Russian Far East and Taiwan. EAB is threatening all species of North America’s ash trees: green ash (Fraxinus pennsylvanica), white ash (F. americana) and black ash (F. nigra). It was first discovered in the United States in Michigan in 2002. It is believed that EAB was accidently introduced in shipping crate materials. By 2008, EAB had been discovered in seven states (Indiana, Illinois, Maryland, Michigan, Ohio, Pennsylvania and West Virginia) as well as parts of Canada. EAB is well suited to US climate conditions and as of 2013, it has Biology and Nature of Ecological Damage now spread to an additional fifteen states. (See map.) Emerald ash borer adults are bright metallic green and about 7.5 to 13.5 mm long and 1.6 mm wide, with the female slightly larger than the male. The adults feed on the leaves of ash trees, but cause little damage. EAB adults mate shortly after emerging. Each female beetle lays 60–90 eggs in their lifetime and the eggs typically hatch in 7–10 days. The dorso-ventrally flattened larvae reach a length of 26 to 32 mm, and are white to cream colored with a brown head. The small larvae bore through the bark and feed on the phloem and young sapwood which inhibits the tree’s ability to transport water and nutrients.
    [Show full text]
  • Communication on Cultural and Environmental Implications of the Emerald Ash Borer Invasion in Maine
    The University of Maine DigitalCommons@UMaine Honors College Spring 5-2020 Communication on Cultural and Environmental Implications of the Emerald Ash Borer Invasion in Maine Salvatore Magnano III University of Maine, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/honors Part of the Entomology Commons, and the Indigenous Studies Commons Recommended Citation Magnano, Salvatore III, "Communication on Cultural and Environmental Implications of the Emerald Ash Borer Invasion in Maine" (2020). Honors College. 613. https://digitalcommons.library.umaine.edu/honors/613 This Honors Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Honors College by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. COMMUNICATION ON CULTURAL AND ENVIRONMENTAL IMPLICATIONS OF THE EMERALD ASH BORER INVASION IN MAINE by Salvatore Magnano III A Thesis Submitted in Partial Fulfillment of the Requirements for a Degree with Honors (Ecology and Environmental Sciences) The Honors College University of Maine May 2020 Advisory Committee: John Daigle, Professor of Forest Recreation Management, Advisor François Amar, Dean of the Honors College and Professor of Chemistry Robert Northington, Lecturer and Post-Doctoral Research Associate in the School of Biology and Ecology Darren Ranco, Associate Professor of Anthropology and Coordinator of Native American Research Abigail Roche, Doctoral Student and Lecturer in Communication and Journalism Kate Ruskin, Lecturer in Ecology and Environmental Sciences ABSTRACT The introduction of the Emerald Ash Borer (EAB), Agrilus planipennis, in the United States in the early 1990’s, has resulted in a wave of ecological, economic, and cultural impacts that will forever leave a scar in the forests of North America.
    [Show full text]
  • The Evolution and Genomic Basis of Beetle Diversity
    The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State
    [Show full text]
  • Lilac (Ash) Borer Pupal Skins Extrude from Trunk
    Lilac (Ash) Borer Pupal skins extrude from trunk Name and Description—Podosesia syringae (Harris) [Lepidoptera: Sesiidae] Adult lilac (ash) borers are moths that vary in color from brown to yel- low to orange. They have clear wings with a span of about 1-1 1/8 inches (26-28 mm) and appear wasp-like (fig. 1). Larvae are about 1 inch (2.5 cm) long and are white with brown heads (fig. 2). Hosts—Ash and lilac Life Cycle—There is one generation per year. Mature borer larvae over- winter in tunnels under the bark. Adult moths emerge from March through June to lay eggs on the bark of host trees. The larvae bore into trunks and branches of the sapwood of trees during the summer. Galleries can be up to 6 inches (15 cm) long. Figure 1. Adult ash borer. Photo: Daniel Herms, Ohio State University, Bugwood.org. Damage—The mining of the larvae causes branch dieback (fig. 3). It can also lead to broken branches. The leaves on affected branches turn brown as the branch dies. Extensive mining can also lead to tree death. Entrances to lar- val mines often appear as sunken or cankered areas on the bark of the trunk or branch. Dark, moist sawdust can be found around the Figure 2. Ash borer larva. Photo: James Solomon, USDA Forest gallery entrance (fig. 4). Pupal Service, Bugwood.org. skin remaining in the bark is often also observed (fig. 5). Management—Avoid damaging trees—maintaining trees in good health reduces their susceptibil- ity to attack. There are chemical sprays that are highly effective at Figure 3.
    [Show full text]
  • Exploring How Stakeholders May Respond to Emerald Ash Borer Management in Europe
    Review Lessons from the Frontline: Exploring How Stakeholders May Respond to Emerald Ash Borer Management in Europe Mariella Marzano 1,* , Clare Hall 1, Norman Dandy 2, Cherie LeBlanc Fisher 3, Andrea Diss-Torrance 4 and Robert G. Haight 5 1 Forest Research, Northern Research Station, Roslin, Midlothian, Scotland EH25 9SY, UK; [email protected] 2 Sir William Roberts Centre for Sustainable Land Use, School of Natural Sciences, Bangor University, Bangor, Wales LL57 2DG, UK; [email protected] 3 USDA Forest Service, Northern Research Station, Evanston, IL 60201, USA; cherie.l.fi[email protected] 4 Bureau of Forest Management, Wisconsin Department of Natural Resources, Madison, WI 53707-7921, USA; [email protected] 5 USDA Forest Service, Northern Research Station, St. Paul, MN 55108, USA; [email protected] * Correspondence: [email protected] Received: 3 May 2020; Accepted: 26 May 2020; Published: 1 June 2020 Abstract: The emerald ash borer (EAB) has caused extensive damage and high mortality to native ash trees (Fraxinus; sp.) in North America. As European countries battle with the deadly pathogen Hymenoscyphus fraxineus (ash dieback) affecting European ash (Fraxinus excelsior), there is concern that the arrival of EAB will signal the demise of this much-loved tree. While Europe prepares for EAB it is vital that we understand the social dimensions that will likely influence the social acceptability of potential management measures, and experiences from the USA can potentially guide this. We draw on differing sources including a literature review, documentary analysis, and consultation with key informants from Chicago and the Twin Cities of Minneapolis and St.
    [Show full text]
  • Beetles (Coleoptera) of the Shell Picture Card Series: Buprestidae by Dr Trevor J
    Calodema Supplementary Paper No. 30 (2007) Beetles (Coleoptera) of the Shell Picture Card series: Buprestidae by Dr Trevor J. Hawkeswood* *PO Box 842, Richmond, New South Wales, Australia, 2753 (www.calodema.com) Hawkeswood, T.J. (2007). Beetles (Coleoptera) of the Shell Picture Card series: Buprestidae. Calodema Supplementary Paper No. 30 : 1-7. Abstract: Cards depicting Buprestidae species (Coleoptera) from Australia in the Shell Picture Card series entitled Australian Beetles (1965) are reviewed in this paper. The original cards are supplied as illustrations with the original accompanying data. Comments on these data are provided wherever applicable. Introduction During the early to mid 1960’s the Shell Petroleum Company issued a number of Picture Card series dealing with the fauna and flora of Australia. The cards were handed out free at Shell service stations across the country (when petrol stations did give proper service!) and were housed in an album which was purchased separately. This paper reviews the Buprestidae (Coleoptera) of the Australian Beetles series (card numbers 301-360)(1965). The other beetle groups will be dealt with in other papers. The reason for these papers is to provide the illustrations and data for future workers since the Shell Picture Card series are rare and have seldom been referred to as a result. The nomenclature used here generally follows that of Bellamy (2003). Species Card no. 315 - Regal Jewel Beetle, Calodema regale (Laporte & Gory) [as Calodema regalis L.& G.] Card data: “This magnificent insect is extremely well named because it is one of the most beautiful members of the Jewel Beetle family (Buprestidae).
    [Show full text]
  • Forest Health Conditions in Ontario, 2017
    Forest Health Conditions in Ontario, 2017 Ministry of Natural Resources and Forestry Forest Health Conditions in Ontario, 2017 Compiled by: • Ontario Ministry of Natural Resources and Forestry, Science and Research Branch © 2018, Queen’s Printer for Ontario Printed in Ontario, Canada Find the Ministry of Natural Resources and Forestry on-line at: <http://www.ontario.ca>. For more information about forest health monitoring in Ontario visit the natural resources website: <http://ontario.ca/page/forest-health-conditions> Some of the information in this document may not be compatible with assistive technologies. If you need any of the information in an alternate format, please contact [email protected]. Cette publication hautement spécialisée Forest Health Conditions in Ontario, 2017 n'est disponible qu'en anglais en vertu du Règlement 671/92 qui en exempte l’application de la Loi sur les services en français. Pour obtenir de l’aide en français, veuillez communiquer avec le ministère des Richesses naturelles au <[email protected]>. ISSN 1913-617X (Online) ISBN 978-1-4868-2275-1 (2018, pdf) Contents Contributors ........................................................................................................................ 4 État de santé des forêts 2017 ............................................................................................. 5 Introduction......................................................................................................................... 6 Contributors Weather patterns ...................................................................................................
    [Show full text]
  • Hymenoscyphus Fraxineus
    Hymenoscyphus fraxineus Synonyms: Chalara fraxinea Kowalski (anamorph), Hymenoscyphus pseudoalbidus (teleomorph). Common Name(s) Ash dieback, ash decline Type of Pest Fungal pathogen Taxonomic Position Class: Leotiomycetes, Order: Helotiales, Family: Helotiaceae Reason for Inclusion in Figure 1. Mature Fraxinus excelsior showing Manual extensive shoot, twig, and branch dieback. CAPS Target: AHP Prioritized Epicormic shoot formation is also present. Photo Pest List – 2010-2016 credit: Andrin Gross. Background An extensive dieback of ash (Fig. 1) was observed from 1996 to 2006 in Lithuania and Poland. Trees were dying in all age classes, irrespective of site conditions and regeneration conditions. A fungus, described as a new species Chalara fraxinea, was isolated from shoots and some roots (Kowalski, 2006). The fungal pathogen varied from other species of Chalara by its small, short cylindrical conidia extruded in chains or in slimy droplets, morphological features of the phialophores, and by colony characteristics. Initial taxonomic studies concerning Chalara fraxinea established that its perfect state was the ascomycete Hymenoscyphus albidus (Gillet) W. Phillips, a fungus that has been known from Europe since 1851. Kowalski and Holdenrieder (2009b) provide a description and photographs of the teleomorphic state, Hymenoscyphus albidus. A molecular taxonomic study of Hymenoscyphus albidus indicated that there was significant evidence for the existence of two morphologically very similar taxa, H. albidus, and a new species, Hymenoscyphus pseudoalbidus (Queloz et al., 2010). Furthermore, studies suggested that H. albidus was likely a non-pathogenic species, whereas H. pseudoalbidus was the virulent species responsible for the current ash dieback epidemic in Europe (Queloz et al., 2010). A survey in Denmark showed that expansion of H.
    [Show full text]
  • Emerald Ash Borer Fact Sheet
    Symptoms of EAB Infestation WhatWhat to doDo if if you You suspectSuspect a Etreemerald has emeraldAsh ashBorer: borer: If your ash tree exhibits Emerald Ash Borer dieback,If your ashrefer tree to all exhibits possible BE AWISE ASH bioticdieback, and referabiotic to issues all in thispossible guide. biotic For further and abiotichelp, issues in this guide. contact a certified arborist in your area. If you suspect EAB For further help, contact a Emerald Ash Borer, Agrilus planipennis Damage from woodpeckers Thinning in upper D-shaped exit holes in trunk24 on your property or have a feeding on EAB larvae22 canopy23 certified arborist in your area.suspected If you suspectEAB insect EAB on The emerald ash borer (EAB) is a destructive wood- sample,your property contact oryour have local a boring insect that has killed millions of ash trees in suspectedextension EAB agent, insect the North America. It was first discovered in Detroit, Schuttersample, Diagnosticcontact your Lab local at Michigan in 2002, and it likely came from wood Montana State University extension agent, the packaging material imported from Asia. It has become Schutter(406-994-5704), Diagnostic or the Lab at widely established in 35 states and five Canadian MontanaMontana DepartmentState University of provinces. As of March 2020, it has not been detected Agriculture(406-994-5704), (406-444-3790). or the Montana Department of in Montana. Unfortunately, it is easily transported on Bark splitting from EAB Serpentine galleries under Epicormic branches and Agriculture firewood so Montana is always just one visitor’s 27 infestation25 the bark26 shoots at base of tree (406-444-3790).
    [Show full text]