The Recent State of Endohedral Fullerene Research

Total Page:16

File Type:pdf, Size:1020Kb

The Recent State of Endohedral Fullerene Research a Sc2C2 carbide cluster is included in a D2d-C84 cage (Fig. 2a). Meanwhile, dimetallofullerenes of scandium often reduce the larger cage size by forming a 6 Sc2C2 cluster. As the existence of such a carbide cluster fullerene was also proved 7,8 for a diyttrium structure with Y2C2, one asks whether only scandium and yttrium metals can form such carbides. Nevertheless the structures isolated so far show that metal carbide endohedral fullerenes represent a type of endohedral fullerenes with a cluster inside. Cages other than C82 demonstrably also encase the metal carbide inside. Among the multimetallofullerenes, the Sc3@C82 structure was important as the three metal ions were shown by electron spin resonance (ESR) spectroscopy to be completely equivalent in the position and redox The Recent State of state of each of the scandium ions.9 Furthermore the position of the Endohedral Fullerene Research scandium ions inside the cage can be changed at lower temperatures as by Lothar Dunsch and Shangfeng Yang detected by ESR spectroscopy.10 As the equivalence of the three scandium ions inside the cage seemed ince the last general reviews in cages have been isolated. This group to point to a balanced ordering of them, the field of endohedral fullerenes of multimetallofullerenes considerably it was surprising that in a recent study by Shinohara in 20001 and by extended the scope of the field by S a carbide endohedral fullerene was Akasaka and Nagase in 2002,2 the giving rise to completely new types of proposed by the group of Akasaka.11 variety of endohedral structures has endohedral fullerenes. By NMR spectroscopy the authors have been extended tremendously. With shown that a Sc C @C fullerene may the turn of the millennium the world The Non-IPR World 3 2 80 exist with icosahedral cage symmetry of endohedral fullerenes has changed With the discovery of the (Fig. 2b). In this way the existence of in all respects. The research on the dimetallofullerene, Sc2@C66, it was a five atomic cluster in an endohedral conventional endohedral fullerenes was shown for the first time by Shinohara’s fullerene has been proved. The question predominately focused on structures group that a dimetallo structure is arises as to how large the cluster inside with a single species such as metal sufficient to break the isolated pentagon a fullerene cage can be. Is it a matter of ions encaged in the carbon cage like rule (IPR), which is the stability rule for size or a matter of chemical structure La@C . Such structures have been 82 conventional fullerenes. As the C66 cage which determines the existence of a treated as a special type of a closed cannot form any IPR structure, there cluster inside the fullerene cage? intercalation compound characterized are fused pentagons in the non-IPR C66 by a doping process in which the 3 (C2v) cage (Fig. 1). Meanwhile, the same Extending the Cage Size electron transfer from the encaged group showed that even fullerenes being While it is expected that enlargement metal ions to the carbon structure able to form IPR cages are stabilized in a of the caged cluster could also stabilize occurs. The charge separation in the non-IPR form by a dimetallo structure: 3+ 3- larger cage sizes it was demonstrated form of La @C82 results in non- the endohedral La @C fullerene.4a 2 72 in the frame of the synthesis of cluster dissociating salts. The dissociation in The most recent non-IPR fullerene fullerenes by Yang and Dunsch that this case was blocked for sterical reasons. cage is based on a type of encaged instead, the di- and trimetallofullerenes Besides these monometallofullerenes species: the M C cluster. (Sc C )@C 2 2 2 2 68 (multimetallofullerenes) can result which have been isolated as the first as reported by Wang for which et al., in the stabilization of a large series endohedral structures, noble gases a Sc C carbide cluster is encaged in a 2 2 of higher fullerene cages. Thus from He to Kr and nonmetal atoms like non-IPR C -C cage.4b Interestingly 2v 68 they isolated for the first time the N and P also have been incorporated. the isomeric structure of the non-IPR largest fullerene cage to date, a These structures form preferably C60 C cage proposed for (Sc C )@C 68 2 2 68 stable Dy @C dimetallofullerene endohedrals, which are prepared under was different from that existing in the 2 100 at high yield as well as the largest high pressure or by ion bombardment family of nitride cluster fullerenes and is of the preformed fullerene cages. Unlike trimetallofullerene ever isolated, discussed below in detail by Wang, et al. 12 conventional metallofullerenes, all these Dy3@C98. Therefore, the extension endohedral fullerenes are uncharged. The Carbide Structure of the sizes of both the conventional multimetallofullerenes and the encaged How the charge at the fullerene cage The story of stabilizing a C2 clusters opens new avenues in fullerene can be changed by the incorporation moiety was first demonstrated for the research. By extending the fullerene of more than one metal ion as dimetallofullerene, Sc2@C86, which was cage size with large structures of metals multicharged empty fullerenes exist Sc2C2@C84 as demonstrated by a nuclear or clusters inside, another situation in strong doping reactions, e.g., by magnetic resonance (NMR) study.5 arises: the number of IPR-isomers is potassium, was important to know. The fullerene cage of (Sc C )@C was 2 2 84 increasing (for C100, there are 450 Thus many di- and trimetallofullerene first reported by Wang et al., in which isomers) and the variety of structures 34 The Electrochemical Society Interface • Summer 2006 of the metallofullerenes increases (a) (b) dramatically. Thus for Dy2@C100 at least six cage isomers must be taken into consideration (Fig. 3). While the variation of the number of cage isomers is not a preferable situation, the influence of cage size on physical properties and the behavior upon charging the fullerene is of high interest. A New World of Cluster Fullerenes A new world of cluster fullerenes was introduced by a synthesis which occurred by chance. While it was accepted in the fullerene community to avoid nitrogen as a cooling gas, the element was the key for a type of cluster fullerenes. Thus a class of endohedral fullerenes with a cluster inside was introduced as the trimetallic nitride endohedral fullerenes, with Sc3N@C80 being the first most abundant member. This structure was discovered in FIG. 1. (a) X-ray structure of the IPR-violating Sc2@C66 (C2v) 1999 at a yield higher than all other fullerene, showing a top view along the C2 axis and a side view. (b) endohedral fullerenes by introducing a Calculated Sc2@C66 structures. (Adapted from Ref. 3.) small portion of nitrogen gas into the Krätschmer-Huffman generator during vaporization of graphite rods containing metal oxides.13 This method is called (a) (b) the trimetallic nitride template (TNT) process as proposed by the authors.13 In this nitride cluster fullerene as a type of endohedral fullerenes, the carbon cage adopts a caged trimetal nitride cluster structure which is not stable as a single molecule. The carbon cage of such an endohedral fullerene has an isomeric form which has not been isolated as an empty cage so far. The icosahedral C80 cage is stabilized by the electron transfer from the nitride cluster. Therefore, the trimetal nitride cluster structure and the icosahedral carbon cage appear to be stabilized by each other. The stabilizing effect of the nitride cluster is a further subject of detailed studies on the nitride cluster fullerenes to understand why such fullerenes are stabilized in these two ways. Based on this method, several cluster fullerenes were produced like Er Sc N@C (x = 0-3)13,14 and x 3-x 80 FIG. 2. (a) Schematic representation of the (Sc2C2)@C84 (D2d) molecule. (Adapted from AxSc3-xN@C68 (x = 0-2; A = Tm, Er, Ref. 5.); (b) Structures calculated for Sc3C2@C80 with two views. (Adapted from Ref. 11.) Gd, Ho, La).15 In the latter case the trimetallic nitride is trapped in a non- 15 was made by Yang et al. on the basis of IPR C68 cage. The Sc3N@C68 with structures described in the past high-yield synthesis by the reactive gas the Sc3N cluster encapsulated in a D3 resulted in very low yields. Generally, atmosphere procedure described below (isomer 6140) non-IPR C68 cage, as endohedral metallofullerenes yield determined by X-ray crystallography and a facile isolation.20 2% or less from the fullerene soot.1,2 and NMR spectroscopy (Fig. 4a),15,16 Furthermore the following nitride The first description of the Sc3N@C80 makes this fullerene particularly cluster structures have been synthesized fullerene formation by the TNT process interesting. Besides the recent studies on by the TNT method despite the claimed to secure a higher yield of the theoretical calculations of the molecular relatively low yield of the nitride cluster cluster fullerene in the soot extract structure of Sc N@C on the basis of 21 22,23 ranging from 3 to 5%.13 While in the 3 68 fullerenes: Sc3N@C78, Lu3N@C80, 13 17-19 23 original work, air traces were used the C NMR spectrum, a detailed Lu3-xAxN@C80 (x = 0-2; A = Gd, Ho), study on its electronic and vibrational 24 as a source of nitrogen, an improved and Y3N@C80. structures (Fig. 4b) with density route for nitride cluster fullerene must The standard arc discharge functional theory (DFT) computations production of endohedral fullerene (continued on next page) The Electrochemical Society Interface • Summer 2006 35 Dunsch and Yang (continued from previous page) be searched based on other selective nitrogen sources.
Recommended publications
  • Photoionization of the Cerium Isonuclear Sequence and Cerium Endohedral Fullerene
    University of Nevada, Reno Photoionization of the Cerium Isonuclear Sequence and Cerium Endohedral Fullerene A dissertation submitted in partial ful¯llment of the requirements for the degree of Doctor of Philosophy in Physics by Mustapha Habibi Prof. Ronald A. Phaneuf/Dissertation Advisor May, 2009 THE GRADUATE SCHOOL We recommend that the dissertation prepared under our supervision by MUSTAPHA HABIBI entitled Photoionization Of The Cerium Isonuclear Sequence And Cerium Endohedral Fullerene be accepted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Ronald A. Phaneuf, Ph. D., Advisor Jeffrey S. Thompson, Ph. D., Committee Member Peter Winkler, Ph. D., Committee Member Paul Neill, Ph. D., Committee Member Mohammed S. Fadali, Ph. D., Graduate School Representative Marsha H. Read, Ph. D., Associate Dean, Graduate School May, 2009 To the souls of my mother and my father, to my beloved wife and daughters, to all my family, friends and colleagues for their love and unconditional support. i Abstract This dissertation presents an experimental photoionization study of the cerium isonuclear sequence ions in the energy range of the 4d inner-shell giant resonance. In addition, single and double photoionization and photofragmentation cross sections of the cerium endohe- + dral ion Ce@C82 were also measured and studied in the 4d excitation-ionization energy range of cerium. Relative and absolute cross-section measurements were performed at un- dulator beamline 10.0.1 of the Advanced Light Source (ALS) for nine parent cerium ions: Ce+ { Ce9+. Double-to-single ionization cross-section ratios were measured for photoion- + + ization of the endohedral Ce@C82 and empty fullerene C82 molecular ions.
    [Show full text]
  • Synthesis and Characterization of Non-IPR Monometallic Actinide
    Article Cite This: J. Am. Chem. Soc. XXXX, XXX, XXX−XXX pubs.acs.org/JACS Synthesis and Characterization of Non-Isolated-Pentagon-Rule C ‑ Actinide Endohedral Metallofullerenes U@ 1(17418) C76, C ‑ C ‑ U@ 1(28324) C80, and Th@ 1(28324) C80: Low-Symmetry Cage Selection Directed by a Tetravalent Ion † § ⊥ ‡ ⊥ † ⊥ † ∥ † Wenting Cai, , , Laura Abella, , Jiaxin Zhuang, , Xingxing Zhang, Lai Feng, Yaofeng Wang, ‡ § # § Roser Morales-Martínez, Ronda Esper, Mauro Boero, Alejandro Metta-Magaña, ‡ ‡ § † Antonio Rodríguez-Fortea, Josep M. Poblet,*, Luis Echegoyen,*, and Ning Chen*, † Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China ‡ Departament de Química Física i Inorganica,̀ Universitat Rovira i Virgili, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain § Department of Chemistry, University of Texas at El Paso, 500 W University Avenue, El Paso, Texas 79968, United States # University of Strasbourg, CNRS, Institut de Physique et Chimie des Materiaux́ de Strasbourg UMR 7504, 23 rue du Loess, F-67034 Strasbourg, France ∥ Soochow Institute for Energy and Materials InnovationS (SIEMIS), College of Physics, Optoelectronics and Energy & Collaborative, Soochow University, Suzhou, Jiangsu 215006, PR China *S Supporting Information ABSTRACT: For the first time, actinide endohedral metal- lofullerenes (EMFs) with non-isolated-pentagon-rule (non-IPR) carbon cages, U@C80,Th@C80,andU@C76, have been successfully synthesized and fully characterized by mass spectrometry, single crystal X-ray diffractometry, UV−vis−NIR and Raman spectroscopy, and cyclic voltammetry. Crystallo- graphic analysis revealed that the U@C80 and Th@C80 share the same non-IPR cage of C1(28324)-C80, and U@C76 was assigned to non-IPR U@C1(17418)-C76.
    [Show full text]
  • 1. INTRODUCTION Geometric Structure
    1. INTRODUCTION Clusters, in general, are aggregates of atoms that are too large compared to atoms and molecules and too small compared to small pieces of crystals (bulk materials). Generally, clusters does not have the same structure or atomic arrangements as a bulk solid and can change its structure with the addition of just one or few atoms. As the number of atoms in the cluster increase, the bulk structure is established and the addition of atoms has no more effect on the structure. Of course there will be some rearrangement of the atoms on the surface of this bulk structure, but since the surface to volume ratio is very low in bulk material it can be neglected with a good approximation. However, in case of clusters, most of the atoms lie on the surface (extremely high surface to volume ratio) and such rearrangement produce a drastic effect. Owning to their high surface to volume ratio, the surface science from both chemical and physical point of view has become crucial in order to collect data and information about such systems. The ways to study such small cluster is nearly the same as the way they have been fabricated. With Bottom-up approach (chemical point of view) these clusters are formed from atoms and/or molecules by assembling it together to form the cluster, and there were many calculation based on this view point. Also these clusters can be fabricated, starting from the bulk material by reducing its dimension somehow, which is the Top-down approach. Geometric structure Usually the crystal structure of a large nanocluster is the same as the bulk structure of the material, with somewhat different lattice parameters (in general clusters are slightly contracted as compared to bulk).
    [Show full text]
  • Structure of Endohedral Fullerene Eu@C74 W
    View Online / Journal Homepage / Table of Contents for this issue PAPER www.rsc.org/pccp | Physical Chemistry Chemical Physics Structure of endohedral fullerene Eu@C74w Dmitrij Rappoport* and Filipp Furche Received 2nd February 2009, Accepted 12th May 2009 First published as an Advance Article on the web 10th June 2009 DOI: 10.1039/b902098e Structure determination of endohedral fullerenes in the absence of X-ray data is difficult and often controversial. Here we show that the structure of endohedral fullerene Eu@C74 may be determined by density functional theory aided interpretation of its electronic, infrared and Raman spectra. The use of recently developed analytical polarizability gradient methods to simulate resonance-enhanced Raman spectra is crucial for this approach and allows for a nearly complete assignment of the experimental spectra. Eu@C74 is assigned a pear-shaped C2v symmetric structure and shows strong ionic interaction between the encapsulated metal and the fullerene p system. 1. Introduction spectrum of Eu@C74 to predictions from time-dependent density functional theory (TDDFT) to identify the frontier Endohedral metallofullerenes constitute a large class of molecular orbitals, specifically the electronic configuration of fullerene inner complexes with metal atoms or small metal europium. The structure of the carbon cage is inferred from an clusters.1,2 Group 2 and 3 metals and lanthanides form a assignment of infrared and Raman spectra of Eu@C74. number of endohedral fullerene complexes notable for their An important tool in the structure elucidation of endohedral electronic absorption in the near infrared and for their large fullerenes is 13C nuclear magnetic resonance (NMR) spectro- 1–3 third-order nonlinear susceptibilities.
    [Show full text]
  • Crystalline C60 Fulleride with Metal Inside
    Crystalline C60 fulleride with metal inside Ayano Nakagawa1, Makiko Nishino1, Hiroyuki Niwa1, Katsuma Ishino1, Zhiyong Wang1, Haruka Omachi1, Ko Furukawa2, Takahisa Yamaguchi3, Tatsuhisa Kato3, Shunji Bandow4, Jeremy Rio5, Chris Ewels5, Shinobu Aoyagi6 & Hisanori Shinohara1* 1Department of Chemistry and Institute for Advanced Research, Nagoya University, Nagoya 464-8602, Japan. 2Center for Coordination of Research Facilities, Institute for Research Promotion, Niigata University, Niigata 950-2181, Japan. 3Graduate School of Human and Environmental Sciences, Kyoto University, Sakyo-ku, Kyoto 606- 8501, Japan. 4Faculty of Science and Technology, Department of Applied Chemistry, Meijo University, Nagoya 468-8502, Japan. 5Institut des Materiaux Jean Rouxel (IMN), Université de Nantes, CNRS UMR6502, BP3229, 44322 Nantes, France 6Department of Information and Basic Science, Nagoya City University, Nagoya 467-8501, Japan. Endohedral metallofullerenes have been extensively studied, since the first experimental observation of La@C60 in a laser-vaporized supersonic beam in 1985. However, all of these studies have been carried out on metallofullerenes larger than C60 such as (metal)@C82, and there + - are no reported purified C60-based metallofullerenes except for [Li@C60] (SbCl6) salt. Pure (metal)@C60 has not been obtained because of their extremely high chemical reactivity. We report here the first isolation, structural determination and electromagnetic properties of crystalline C60- based metallofullerenes, Gd@C60(CF3)5 and La@C60(CF3)5. Synchrotron X-ray single-crystal diffraction reveals that La and Gd atoms are indeed encapsulated in the Ih-C60 fullerene. The HOMO-LUMO gaps of Gd@C60 and La@C60 are significantly widened by an order of magnitude with addition of CF3- groups. Magnetic measurements show the presense of a weak antiferromagnetic coupling in Gd@C60(CF3)3 crystals at low temperatures.
    [Show full text]
  • Endohedral Fullerenes: the Importance of Electronic, Size and Shape Complementarity Between the Carbon Cages and the Corresponding Encapsulated Clusters† Maira R
    Research Article Received: 6 September 2013, Revised: 24 September 2013, Accepted: 6 October 2013, Published online in Wiley Online Library: 9 January 2014 (wileyonlinelibrary.com) DOI: 10.1002/poc.3245 Endohedral fullerenes: the importance of electronic, size and shape complementarity between the carbon cages and the corresponding encapsulated clusters† Maira R. Ceróna, Fang-Fang Lia and Luis A. Echegoyena* Cage-cluster complementarity is of crucial importance in determining the sizes and structures, as well as the properties of endohedral fullerenes. The encapsulated atoms or clusters, which are typically in a positively charged state, are irreversibly, mechanically, and electrostatically trapped inside the typically negatively charged cages. These rather exotic compounds exhibit exquisitely complementary properties between their components. Here, we present a short overview to show that size and shape are crucial in determining the specific structures that are formed, and the presence of electrostatic interactions result in structural motifs that are never observed for pristine fullerene cages. Copyright © 2014 John Wiley & Sons, Ltd. Keywords: electronic properties; endohedral fullerenes; fullerene and cluster cage sizes; fullerene and cluster shapes INTRODUCTION understand the most important factors involved in determining the specific structures that are observed and their relative importance. The discovery and increased interest and to some degree, fascina- tion of trapping and studying atoms and clusters inside the carbon cages
    [Show full text]
  • Actinide-Based Endohedral Metallofullerenes
    Actinide-Based Endohedral Metallofullerenes Bailey Bouley Literature Seminar November 14th, 2019 In 1985, Smalley, Curl, and Kroto synthesized a new allotrope of carbon, C60, by laser vaporization methods under a helium atmosphere.1 The discovery of the structure that formed, deemed buckminsterfullerene by the authors, along with the discovery of fullerenes of other sizes with Cn configurations, won them the Nobel Prize in Chemistry in 1996. Two weeks after their discovery, the same authors published the first example of a metal ion encapsulated within the cavity of a fullerene, La-Cn (n = 44 – 76), where the lower carbon count Cn configurations appeared to exhibit an increase in stability with the metal ion inclusion.2 This discovery sparked interest in chemical research focused on using these so-named endohedral metallofullerenes (EMFs) as a new approach to the construction of superconductors (for alkali metal EMFs),3 and as isolated environments to study fundamental principles of poorly understood f-block elements. The first actinide-containing EMF was discovered in 1992, when the authors hypothesized an appropriately sized tetravalent ion would be able to stabilize C28, a fullerene that had been previously detected by TOF-MS, but not isolated due to poor stability.4 The low stability of this cluster was attributed to the presence of highly reactive sites centralized on fused pentagon rings, systems that violated the isolated pentagon rule (IPR), which states that fullerenes containing fused 5 pentagon rings are destabilized due to high geometric strain. It was believed, and subsequently supported by DFT calculations, that non-IPR cages can be stabilized through an ionic model in which electrons are transferred from the metal atom to the cage itself, localizing negative charge on the reactive carbon center, resulting in stabilization of these sites.6,7 Figure 1.
    [Show full text]
  • Nanotechnology - Fundamentals and Applications 1
    D. Cremer, CHEM 6342, Nanotechnology - Fundamentals and Applications 1 CHEM 6342 Nanotechnology – Fundamentals and Applications Class location: TBD Lectures, time and location: TBD Lab times and location: TBD Instructor: Dieter Cremer, 325 FOSC, ext 8-1300, [email protected] http://smu.edu/catco/ Office Hours: By appointment Units: 3 Grading: ABC Letter Grade Class number TBD 1. Rationale: Nanotechnology (NT) is a rather young discipline, which came up in the nineties. Nevertheless, NT has gained so much importance within the last years that universities at all rankings have introduced or are going to introduce NT teaching programs. Predictions say that NT will change our lives and society more than computer technology and electricity have done together. The course will provide an overview over NT. It will show that the nano regime is so different from other regimes because both classical and quantum effects can be active thus leading to unique properties of nano devices. NT is a highly interdisciplinary science, which will be reflected in the course by making reference to chemistry, physics, biology, pharmacy, and engineering. Applications of NT, as they are already in use today or as they are planned for the future, will be discussed. 2. Course Recommendations: The course is designed to reach all graduate students who had have an education in chemistry, physics, engineering or biology. It does not require special knowledge in mathematics or theoretical physics. The course contents will be presented in self-sustained modules, which make it possible to follow the course without special knowledge. The course will prepare for the interdisciplinary work in NT.
    [Show full text]
  • Transformation of Doped Graphite Into Cluster- Encapsulated Fullerene Cages
    ARTICLE DOI: 10.1038/s41467-017-01295-9 OPEN Transformation of doped graphite into cluster- encapsulated fullerene cages Marc Mulet-Gas1, Laura Abella2, Maira R. Cerón 3, Edison Castro 3, Alan G. Marshall1,4, Antonio Rodríguez-Fortea 2, Luis Echegoyen3, Josep M. Poblet 2 & Paul W. Dunk 1 An ultimate goal in carbon nanoscience is to decipher formation mechanisms of highly ordered systems. Here, we disclose chemical processes that result in formation of high- 1234567890 symmetry clusterfullerenes, which attract interest for use in applications that span biome- dicine to molecular electronics. The conversion of doped graphite into a C80 cage is shown to occur through bottom-up self-assembly reactions. Unlike conventional forms of fullerene, the iconic Buckminsterfullerene cage, Ih-C60, is entirely avoided in the bottom-up formation mechanism to afford synthesis of group 3-based metallic nitride clusterfullerenes. The effects of structural motifs and cluster–cage interactions on formation of compounds in the solvent- extractable C70–C100 region are determined by in situ studies of defined clusterfullerenes under typical synthetic conditions. This work establishes the molecular origin and mechanism that underlie formation of unique carbon cage materials, which may be used as a benchmark to guide future nanocarbon explorations. 1 National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA. 2 Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona 43007, Spain. 3 Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, USA. 4 Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA. Marc Mulet-Gas and Laura Abella contributed equally to this work.
    [Show full text]
  • Clusters: Structure, Energetics, and Dynamics of Intermediate States of Matter A
    Subscriber access provided by Johns Hopkins Libraries Article Clusters: Structure, Energetics, and Dynamics of Intermediate States of Matter A. W. Castleman, and K. H. Bowen J. Phys. Chem., 1996, 100 (31), 12911-12944• DOI: 10.1021/jp961030k • Publication Date (Web): 01 August 1996 Downloaded from http://pubs.acs.org on May 8, 2009 More About This Article Additional resources and features associated with this article are available within the HTML version: • Supporting Information • Links to the 42 articles that cite this article, as of the time of this article download • Access to high resolution figures • Links to articles and content related to this article • Copyright permission to reproduce figures and/or text from this article The Journal of Physical Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 J. Phys. Chem. 1996, 100, 12911-12944 12911 Clusters: Structure, Energetics, and Dynamics of Intermediate States of Matter A. W. Castleman, Jr.* Department of Chemistry, PennsylVania State UniVersity, 152 DaVey Laboratory, UniVersity Park, PennsylVania 16802 K. H. Bowen, Jr. Department of Chemistry, The Johns Hopkins UniVersity, 3400 N. Charles Street, Baltimore, Maryland 21218 ReceiVed: April 4, 1996; In Final Form: June 20, 1996X The field of cluster research can trace its origins back to the mid-nineteenth century when early studies of colloids, aerosols, and nucleation phenomena were reported. The field underwent a resurgence of interest several decades ago when well-defined clusters were observed in supersonic expansions that could be investigated using mass spectrometers. The advent of the laser provided a new dimension, enabling detailed spectroscopic observations through the probing of systems of varying size and degree of solvation.
    [Show full text]
  • Transformation of Doped Graphite Into Cluster- Encapsulated Fullerene Cages
    ARTICLE DOI: 10.1038/s41467-017-01295-9 OPEN Transformation of doped graphite into cluster- encapsulated fullerene cages Marc Mulet-Gas1, Laura Abella2, Maira R. Cerón 3, Edison Castro 3, Alan G. Marshall1,4, Antonio Rodríguez-Fortea 2, Luis Echegoyen3, Josep M. Poblet 2 & Paul W. Dunk 1 An ultimate goal in carbon nanoscience is to decipher formation mechanisms of highly ordered systems. Here, we disclose chemical processes that result in formation of high- 1234567890 symmetry clusterfullerenes, which attract interest for use in applications that span biome- dicine to molecular electronics. The conversion of doped graphite into a C80 cage is shown to occur through bottom-up self-assembly reactions. Unlike conventional forms of fullerene, the iconic Buckminsterfullerene cage, Ih-C60, is entirely avoided in the bottom-up formation mechanism to afford synthesis of group 3-based metallic nitride clusterfullerenes. The effects of structural motifs and cluster–cage interactions on formation of compounds in the solvent- extractable C70–C100 region are determined by in situ studies of defined clusterfullerenes under typical synthetic conditions. This work establishes the molecular origin and mechanism that underlie formation of unique carbon cage materials, which may be used as a benchmark to guide future nanocarbon explorations. 1 National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA. 2 Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona 43007, Spain. 3 Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, USA. 4 Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA. Marc Mulet-Gas and Laura Abella contributed equally to this work.
    [Show full text]
  • A Unified View of Ligand-Protected Gold Clusters As Superatom Complexes
    A unified view of ligand-protected gold clusters as superatom complexes Michael Walter†, Jaakko Akola†‡, Olga Lopez-Acevedo†, Pablo D. Jadzinsky§¶, Guillermo Calero§, Christopher J. Ackerson§ʈ, Robert L. Whetten††, Henrik Gro¨ nbeck‡‡, and Hannu Ha¨ kkinen†§§¶¶ Departments of †Physics and §§Chemistry, Nanoscience Center, University of Jyva¨skyla¨, FI-40014 Jyva¨skyla¨, Finland; ‡Institut fu¨r Festko¨rperforschung, Forschungszentrum Ju¨lich, D-52425 Ju¨lich, Germany; §Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; ¶Department of Applied Physics, Stanford University, Stanford, CA 94305; ††School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332; and ‡‡Competence Centre for Catalysis and Department of Applied Physics, Chalmers University of Technology, SE-41296, Go¨teborg, Sweden Edited by Royce W. Murray, University of North Carolina, Chapel Hill, NC, and approved April 10, 2008 (received for review January 31, 2008) Synthesis, characterization, and functionalization of self-assembled, 6s orbitals (10, 11), representing a finite-system analogy to the ligand-stabilized gold nanoparticles are long-standing issues in the bulk conduction electron states, which have 6s-character close to chemistry of nanomaterials. Factors driving the thermodynamic the Fermi surface. Exceptional stability is associated with a total stability of well documented discrete sizes are largely unknown. count of Herein, we provide a unified view of principles that underlie the stability of
    [Show full text]