Network Motif Survey

Total Page:16

File Type:pdf, Size:1020Kb

Network Motif Survey On Network Tools for Network Motif Finding: A Survey Study Elisabeth A. Wong1,2, Brittany Baur1,3 1 2010 NSF Bio-Grid REU Research Fellows at Univ of Connecticut 2Bowdoin College 3Manhattanville College Abstract. Network motifs have been called the building blocks of networks [1]. Graph theory is used to computationally represent and search networks. Many efforts have been put into developing motif discovery tools to search for and find network motifs, patterns or subgraphs within the input network that occur more frequently in the input network than in randomized networks where patterns occur by chance [2]. Complications involved with network motif discovery include the graph isomorphism problem which is NP-complete. A myriad of tools and algorithms have been developed for both full enumeration of subgraphs and methods for avoiding full enumeration in order to lessen runtimes and required computational power. Experimental data from various tools is provided in this paper including (1) runtimes for different subgraph sizes, network sizes, and number of random networks generated, (2) differences in frequencies based on different search restrictions, and (3) protein-protein interaction (PPI) network results. The limitations that still exist especially concerning size of motifs and networks that can be searched are also included. This paper presents a survey study of current network motif discovery tools; algorithms, experimental data, limitations, and pros and cons of tools are examined and discussed. Keywords: network, motif, algorithm, isomorphism 1 Introduction Networks are integral parts of many real systems and thus it has become a priority in many research fields to analyze them. Emphasis has been placed on the importance of studying small aspects of networks in order to gain a better understanding of the entire network. Recently graph theory has been used to allow for computational analysis of networks. Through graph theory, it has been found that numerous networks contain network motifs, small sub-graphs that appear more frequently than expected in randomized networks [1]. Because these motifs are statistically significant, it has been hypothesized that they are also significant to their respective networks and systems; higher frequencies of subgraphs than result by chance suggest that the motifs are present due to factors such as being conserved evolutionarily and having an important function or purpose [1]. Each network has different motifs that are more frequent and thus more important to the system or organism that they are in. For example, gene regulation transcriptional networks and neuronal connectivity networks have been found to have motifs known as ‘feed forward loops’ [2] and ‘bifans’ [2]. This suggests that these two networks are similar in some design aspects. The feed-forward loop is thought to be used in information processes where its design helps with controlling connections and signals [1]. In contrast, food web networks which do not deal with information processing have motifs unique to networks such as neuronal connectivity and gene regulation. This demonstrates how motifs are biologically significant in their ability to help analyze, explain, and classify networks. Due to the significance of network motifs many efforts have been put forth into developing tools that can detect network motifs. In order for graph theory to be applied to the study of networks and motifs, networks need to be represented by graphs. Each entity in a network (i.e. a protein, a gene, a person) is represented by a node (or vertex) while the connections between the entities (i.e. an interaction, a regulatory signal, a correspondence) are represented by edges. In some networks the nodes and edges have different characteristics (i.e. different types of genes or different signals passed from gene to gene). In these cases the nodes or edges are „colored‟ with each color representing a different kind of entity or connection. Furthermore another aspect of a network that must be considered and included in the graph representation is whether or not a connection or edge is „directed‟ or „undirected‟. Gene regulatory networks have directed connections as it is important that the signal travels from one specific gene to another. On the other hand networks such as a social network that counts handshaking as a connection is not directed because the shaking of hands is not direction specific. „Undirected‟ edges versus „directed‟ edges can be differentiated on a graph with different edge colors and node colors or by arrows. A graph can be split up into small graphs known as subgraphs. As stated before, statistically overrepresented subgraphs are defined as network motifs. The number of edges that enter and exit a node are summed to determine the node‟s „degree‟ and the number of nodes that make up a motif determine the subgraph‟s size. Tools for network motif discovery have proved very difficult to develop to be both efficient and able to find motifs of all sizes (not just small sized motifs). One of the larger obstacles in finding an efficient and thorough algorithm is the graph isomorphism problem. This problem entails determining if a bijection occurs between the nodes of two graphs and that each corresponding node is adjacent to the same corresponding nodes [3]. Two isomorphic graphs have the same number of nodes and edges and the same number of degrees for corresponding nodes. The graph isomorphism problem is computationally complex and is classified as an NP complete problem. The NAUTY algorithm is a well known and powerful algorithm that has been developed to test for graph isomorphism. It is used by multiple motif discovery tools. The NAUTY algorithm utilizes canonical labeling in order to tell which graphs are isomorphic to each other [3]. If they are isomorphic, then their canonical label should be the same. A canonical label for each graph is formed by taking the adjacency matrix of a graph and concatenating it row by row in order to form a binary number. By leaf partitioning (partitioning the graph into singleton sets) each of the vertices automorphism can be found by checking the adjacency matrix of different orderings of vertices and seeing if the matrix is the same. NAUTY then examines the automorphisms and computes a canonical label, which is the largest or smallest possible concatenated adjacency matrix [4]. Additional difficulties in developing a network motif discovery algorithm include the fact that the number of network motifs exponentially increases with increases in network size and that there is an absence of the downward closure property in many networks [5]. These difficulties make it so that full enumeration of subgraphs can be extremely time consuming and may require large amounts of computational power. In order to study a network in context, randomized networks are used for comparison. These randomized networks are developed in such a way that their structure is random and thus not a result of any constraints or significant design elements [6]. This allows for aspects of the network in question (such as motifs) to be compared to the randomized networks to see whether they are a result of the intrinsic properties of the network or if they are indicative of real world functional constraints and/or design principles due to selection [2]. Varying parameters are used to describe the network motif occurrences and to determine whether they are statistically significant. The frequency of a motif is the number of times the motif appears in a network [7]. Different tools use different restrictions for counting frequencies based off of whether or not overlapping of nodes and edges is allowed. Some motif discovery tools ask for a user input that sets a threshold of how many motif occurrences are required for a motif to be considered ‘frequent’. To determine whether a motif is significant in a specific network and not just present due to intrinsic properties of the network, a uniqueness factor is sometimes applied [7]. If the network in question has a motif with a higher frequency than in a certain amount of random networks (threshold set by the user) then the motif is considered to be ‘unique’. In addition, statistical numbers such as z-score and p- value are often used to determine whether the frequency of a motif is statistically significant. The z-score is calculated by finding the difference in the frequency of the motif in the specific target network and the mean frequency of the motif in the randomized networks divided by the standard deviation of the frequency in the randomized networks [3]. The higher the z-score corresponds with the motif being more overrepresented. The z-score threshold over which the motifs are considered overrepresented is often 2. The p-value looks at whether the probability that the number of times a motif appears in a randomized network is equal to or greater than the number of times the motif is present in the network in question [2]. The lower the p-value means the more significant the motif. The threshold under which the p-value must be to be considered significant is commonly 0.01. All of these parameters are important for setting standards to help distinguish between which subgraphs are overrepresented and which are not. Multiple algorithms and tools have been developed, each with different advantages and disadvantages, to identify network motifs. Network motif discovery is a crucial problem to solve in order to gain further insights into the important characteristics, functions, and inner workings of systems with networks. Therefore it has been the goal of many researchers to develop ways to efficiently identify network motifs. It is our goal in this paper to summarize, collect experimental data about, and analyze the various network motif discovery tools and algorithms that have been created. 2 Methodology Major aspects of motif discovery tools that must be considered when examining these tools are the methods of determining frequencies of motifs, the ways of developing randomized networks, the algorithms used for full enumeration, the strategies of identifying motifs without full enumeration, , and the data sets the tools can be applied to.
Recommended publications
  • A Novel Neuronal Network Approach to Express Network Motifs
    Introduction to NeuraBASE: A Novel Neuronal Network Approach to Express Network Motifs Robert Hercus Choong-Ming Chin Kim-Fong Ho Introduction Since the discovery by Alon et al. [1-3], network motifs are now at the forefront of unravelling complex networks, ranging from biological issues to managing the traffic on the Internet. Network motifs are used, in general, as a technique to detect recurring patterns featured in networks. This is based on the assumption that information flows in distinct networks and, hence, common causal associations between nodal networks can be surmised statistically. In essence, the motif discovery algorithm [1-4] begins with a list of variable-information of a particular network and, their connections to other network variables. An analysis is subsequently made on the most prevalent causal relationships in the network based on the frequency of occurrences. These are then compared with a randomised network with the same number of variables and directed edges. Finally, the algorithm lists out statistically significant patterns of associations that occur more frequently than they would at random. In the paper by Alon et al. [2], it was reported that most of the networks analysed demonstrate identical motifs, even though they belong to disparate network families. For example, the said literature discovered that gene regulation in genetics, neuronal connectivity network and electronic circuit systems share two identical network motifs, which involved less than four variables. This observation implies that some similarities exist in these three network architectures. Besides the MFinder tool [1], researchers have also developed other network motif discovery tools. However, MAVisto [6] was found to be as computationally costly with long run-time periods as the MFinder tool uses the same network search for the same subgraph sizes.
    [Show full text]
  • A Meta-Analysis of Boolean Network Models Reveals Design Principles of Gene Regulatory Networks
    A meta-analysis of Boolean network models reveals design principles of gene regulatory networks Claus Kadelkaa,∗, Taras-Michael Butrieb,1, Evan Hiltonc,1, Jack Kinsetha,1, Haris Serdarevica,1 aDepartment of Mathematics, Iowa State University, Ames, Iowa 50011 bDepartment of Aerospace Engineering, Iowa State University, Ames, Iowa 50011 cDepartment of Computer Science, Iowa State University, Ames, Iowa 50011 Abstract Gene regulatory networks (GRNs) describe how a collection of genes governs the processes within a cell. Understanding how GRNs manage to consistently perform a particular function constitutes a key question in cell biology. GRNs are frequently modeled as Boolean networks, which are intuitive, simple to describe, and can yield qualitative results even when data is sparse. We generate an expandable database of published, expert-curated Boolean GRN models, and extracted the rules governing these networks. A meta-analysis of this diverse set of models enables us to identify fundamental design principles of GRNs. The biological term canalization reflects a cell's ability to maintain a stable phenotype despite ongoing environmental perturbations. Accordingly, Boolean canalizing functions are functions where the output is already determined if a specific variable takes on its canalizing input, regardless of all other inputs. We provide a detailed analysis of the prevalence of canalization and show that most rules describing the regulatory logic are highly canalizing. Independent from this, we also find that most rules exhibit a high level of redundancy. An analysis of the prevalence of small network motifs, e.g. feed-forward loops or feedback loops, in the wiring diagram of the identified models reveals several highly abundant types of motifs, as well as a surprisingly high overabundance of negative regulations in complex feedback loops.
    [Show full text]
  • Multivariate Relations Aggregation Learning in Social Networks
    Multivariate Relations Aggregation Learning in Social Networks Jin Xu1, Shuo Yu1, Ke Sun1, Jing Ren1, Ivan Lee2, Shirui Pan3, Feng Xia4 1 School of Software, Dalian University of Technology, Dalian, China 2 School of IT and Mathematical Sciences, University of South Australia, Adelaide, Australia 3 Faculty of Information Technology, Monash University, Melbourne, Australia 4 School of Science, Engineering and Information Technology, Federation University Australia, Ballarat, Australia [email protected],[email protected],[email protected],[email protected] [email protected],[email protected],[email protected] ABSTRACT 1 INTRODUCTION Multivariate relations are general in various types of networks, such We are living in a world full of relations. It is of great significance as biological networks, social networks, transportation networks, to explore existing social relationships as well as predict poten- and academic networks. Due to the principle of ternary closures tial relationships. These abundant relations generally exist among and the trend of group formation, the multivariate relationships in multiple entities; thus, these relations are also called multivariate social networks are complex and rich. Therefore, in graph learn- relations. Multivariate relations are the most fundamental rela- ing tasks of social networks, the identification and utilization of tions, containing interpersonal relations, public relations, logical multivariate relationship information are more important. Existing relations, social relations, etc [3, 37]. Multivariate relations are of graph learning methods are based on the neighborhood informa- more complicated structures comparing with binary relations. Such tion diffusion mechanism, which often leads to partial omission or higher-order structures contain more information to express inner even lack of multivariate relationship information, and ultimately relations among multiple entities.
    [Show full text]
  • Motif Aware Node Representation Learning for Heterogeneous Networks
    motif2vec: Motif Aware Node Representation Learning for Heterogeneous Networks Manoj Reddy Dareddy* Mahashweta Das Hao Yang University of California, Los Angeles Visa Research Visa Research Los Angeles, CA, USA Palo Alto, CA, USA Palo Alto, CA, USA [email protected] [email protected] [email protected] Abstract—Recent years have witnessed a surge of interest in is originally sequential in nature [35], product review graph machine learning on graphs and networks with applications constructed from reviews written by users for stores [34], ranging from vehicular network design to IoT traffic manage- credit card fraud network constructed from fraudulent and non- ment to social network recommendations. Supervised machine learning tasks in networks such as node classification and link fraudulent transaction activity data [33], etc. prediction require us to perform feature engineering that is Supervised machine learning tasks over nodes and links known and agreed to be the key to success in applied machine in networks1 such as node classification and link prediction learning. Research efforts dedicated to representation learning, require us to perform feature engineering that is known and especially representation learning using deep learning, has shown agreed to be the key to success in applied machine learning. us ways to automatically learn relevant features from vast amounts of potentially noisy, raw data. However, most of the However, feature engineering is challenging and tedious since methods are not adequate to handle heterogeneous information
    [Show full text]
  • GAMARALLAGE-THESIS-2020.Pdf
    c 2020 Anuththari Gamarallage NETWORK MOTIF PREDICTION USING GENERATIVE MODELS FOR GRAPHS BY ANUTHTHARI GAMARALLAGE THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical and Computer Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2020 Urbana, Illinois Adviser: Professor Olgica Milenkovic ABSTRACT Graphs are commonly used to represent pairwise interactions between dif- ferent entities in networks. Generative graph models create new graphs that mimic the properties of already existing graphs. Generative models are suc- cessful at retaining the pairwise interactions of the underlying networks but often fail to capture higher-order connectivity patterns between more than two entities. A network motif is one such pattern observed in various real- world networks. Different types of graphs contain different network motifs, an example of which are triangles that often arise in social and biological net- works. Motifs model important functional properties of the graph. Hence, it is vital to capture these higher-order structures to simulate real-world net- works accurately. This thesis introduces a motif-targeted graph generative model based on a generative adversarial network (GAN) architecture that generalizes and outperforms the current benchmark approach, NetGAN, at motif prediction. This model and its extension to hypergraphs are tested on real-world social and biological network data, and they are shown to be better at both capturing the underlying motif statistics in the networks as well as predicting missing motifs in incomplete networks. ii ACKNOWLEDGMENTS The work was supported by the NSF Center for Science of Information under grant number 0939370.
    [Show full text]
  • Motifs in Temporal Networks
    Motifs in Temporal Networks ∗ ∗ Ashwin Paranjape Austin R. Benson Jure Leskovec Stanford University Stanford University Stanford University [email protected] [email protected] [email protected] ABSTRACT c A b B 15s, 32s 3 Networks are a fundamental tool for modeling complex systems in 1 2 31s a variety of domains including social and communication networks 25s 17s, 28s, 30s, 35s as well as biology and neuroscience. Small subgraph patterns in networks, called network motifs, are crucial to understanding the a 14s d structure and function of these systems. However, the role of network motifs in temporal networks, which contain many times- C b c b c d a d c d c tamped links between the nodes, is not yet well understood. 32s 32s 35s 15s 32s Here we develop a notion of a temporal network motif as an ele- 25s 28s 25s 30s 31s 32s 14s 17s 14s 28s mentary unit of temporal networks and provide a general method- a a c a a ology for counting such motifs. We define temporal network motifs Figure 1: Temporal graphs and δ-temporal motifs. A: A tempo- as induced subgraphs on sequences of temporal edges, design fast ral graph with nine temporal edges. Each edge has a timestamp algorithms for counting temporal motifs, and prove their runtime (listed here in seconds). B: Example 3-node, 3-edge δ-temporal complexity. Our fast algorithms achieve up to 56.5x speedup com- motif M. The edge labels correspond to the ordering of the pared to a baseline method. Furthermore, we use our algorithms to edges.
    [Show full text]
  • Biological Network Motif Detection: Principles and Practice Elisabeth Wong, Brittany Baur, Saad Quader and Chun-Hsi Huang
    Briefings in Bioinformatics Advance Access published June 20, 2011 BRIEFINGS IN BIOINFORMATICS. page1of14 doi:10.1093/bib/bbr033 Biological network motif detection: principles and practice Elisabeth Wong, Brittany Baur, Saad Quader and Chun-Hsi Huang Submitted: 28th February 2011; Received (in revised form): 13th May 2011 Abstract Network motifs are statistically overrepresented sub-structures (sub-graphs) in a network, and have been recog- nized as ‘the simple building blocks of complex networks’. Study of biological network motifs may reveal answers to many important biological questions. The main difficulty in detecting larger network motifs in biological networks lies in the facts that the number of possible sub-graphs increases exponentially with the network or motif size Downloaded from (node counts, in general), and that no known polynomial-time algorithm exists in deciding if two graphs are topo- logically equivalent. This article discusses the biological significance of network motifs, the motivation behind solving the motif-finding problem, and strategies to solve the various aspects of this problem. A simple classification scheme is designed to analyze the strengths and weaknesses of several existing algorithms. Experimental results derived from a few comparative studies in the literature are discussed, with conclusions that lead to future research http://bib.oxfordjournals.org/ directions. Keywords: Network motifs; biological networks; graph isomorphism INTRODUCTION motifs are also studied in such other networks as the Biology of a living cell involves many intricate electronic circuits and power distribution networks, networks of interdependent events and interactions ecological networks (food web), software engineer- at Weizmann Institute of Science on May 31, 2012 among biomolecules.
    [Show full text]
  • Subgraphs and Motifs in a Dynamic Airline Network Marius Agasse-Duval, Steve Lawford
    Subgraphs and Motifs in a Dynamic Airline Network Marius Agasse-Duval, Steve Lawford To cite this version: Marius Agasse-Duval, Steve Lawford. Subgraphs and Motifs in a Dynamic Airline Network. 2019. hal-02017122 HAL Id: hal-02017122 https://hal-enac.archives-ouvertes.fr/hal-02017122 Preprint submitted on 13 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Subgraphs and Motifs in a Dynamic Airline Network∗ Marius Agasse-Duval and Steve Lawford ENAC, University of Toulouse Abstract How does the small-scale topological structure of an airline network behave as the network evolves? To address this question, we study the dynamic and spatial properties of small undirected subgraphs using 15 years of data on Southwest Airlines’ domestic route service. We find that this real-world network has much in common with random graphs, and describe a possible power-law scaling between subgraph counts and the number of edges in the network, that appears to be quite robust to changes in network density and size. We use analytic formulae to identify statistically over- and under- represented subgraphs, known as motifs and anti-motifs, and discover the existence of substantial topology transitions.
    [Show full text]
  • Efficient and Scalable Algorithms for Network Motifs Discovery
    Pedro Manuel Pinto Ribeiro Efficient and Scalable Algorithms for Network Motifs Discovery Departamento de Ciˆencia de Computadores Faculdade de Ciˆencias da Universidade do Porto 2011 Pedro Manuel Pinto Ribeiro Efficient and Scalable Algorithms for Network Motifs Discovery Tese submetida `aFaculdade de Ciˆencias da Universidade do Porto para obten¸c˜ao do grau de Doutor em Ciˆencia de Computadores Advisors: Prof. Fernando Silva and Prof. Lu´ıs Lopes Departamento de Ciˆencia de Computadores Faculdade de Ciˆencias da Universidade do Porto Junho de 2011 Thesis Committee: Prof. Ant´onio Porto, University of Porto (Chair) Prof. Arlindo Oliveira, IST - Technical University of Lisbon (Examiner) Prof. Marcus Kaiser, Newcastle University (Examiner) Prof. Jos´eCardoso e Cunha, New University of Lisbon Prof. V´ıtor Santos Costa, University of Porto Prof. Fernando Silva, University of Porto (Advisor) Prof. Lu´ıs Lopes, University of Porto (Co-Advisor) 2 To Samuel and Liliana 3 4 Acknowledgments First of all, I would like to thank my two advisors, Fernando Silva and Lu´ıs Lopes. They have always been there when I needed them, providing guidance, support and a lot of patience over the last years. Their collaboration was essential and we always had fruitful discussions on the emerging ideas on this subject. I would like to thank the financial support of FCT that was allowed me to dedicate the initial 4 years pursuing this research (PhD grant SFRH/BD/19753/2004). I would also like to thank CRACS/INESC-Porto L.A. for support on the fifth year, allowing me to further improve my work and finish my PhD.
    [Show full text]
  • Annotated Hypergraphs: Models and Applications
    Annotated hypergraphs: models and applications The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Chodrow, Philip, and Andrew Mellor. “Annotated Hypergraphs: Models and Applications.” Applied Network Science 5, 1 (December 2020): 9. © 2020 The Authors As Published http://dx.doi.org/10.1007/s41109-020-0252-y Publisher Springer Science and Business Media LLC Version Final published version Citable link https://hdl.handle.net/1721.1/124666 Terms of Use Creative Commons Attribution 4.0 International license Detailed Terms https://creativecommons.org/licenses/by/4.0/ Chodrow and Mellor Applied Network Science (2020) 5:9 Applied Network Science https://doi.org/10.1007/s41109-020-0252-y RESEARCH Open Access Annotated hypergraphs: models and applications Philip Chodrow1*† and Andrew Mellor2† *Correspondence: [email protected] Abstract †Philip Chodrow and Andrew Mellor Hypergraphs offer a natural modeling language for studying polyadic interactions contributed equally to this work. 1Operations Research Center, between sets of entities. Many polyadic interactions are asymmetric, with nodes Massachusetts Institute of playing distinctive roles. In an academic collaboration network, for example, the order Technology, 77 Massachusetts of authors on a paper often reflects the nature of their contributions to the completed Avenue, 02139 Cambridge, MA, USA Full list of author information is work. To model these networks, we introduce annotated hypergraphs as natural available at the end of the article polyadic generalizations of directed graphs. Annotated hypergraphs form a highly general framework for incorporating metadata into polyadic graph models. To facilitate data analysis with annotated hypergraphs, we construct a role-aware configuration null model for these structures and prove an efficient Markov Chain Monte Carlo scheme for sampling from it.
    [Show full text]
  • Snapshot: Network Motifs Oren Shoval and Uri Alon Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
    SnapShot: Network Motifs Oren Shoval and Uri Alon Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel 326 Cell 143, October 15, 2010 ©2010 Elsevier Inc. DOI 10.1016/j.cell.2010.09.050 See online version for legend and references. SnapShot: Network Motifs Oren Shoval and Uri Alon Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel Transcription regulation and signaling networks are composed of recurring patterns called network motifs. Network motifs are much more prevalent in biological networks than would be expected by comparison to random networks and comprise almost the entire network structure. The same small set of network motifs has been found in diverse organ- isms ranging from bacteria to plants to humans. Experiments show that each network motif can carry out specific dynamic functions in the computation done by the cell. Here we review the main classes of network motifs and their biological functions. Autoregulation Negative autoregulation (NAR) occurs when a transcription factor represses the transcription of its own gene. (We use transcription to help make examples concrete; all circuits described here could operate also in other regulatory modes, e.g., a protein inhibiting its own activity by autophosphorylation.) This occurs in about half of the repressors in E. coli and can speed up the response time of gene circuits and reduce cell–cell variation in protein levels that are due to fluctuations in production rate. Positive autoregulation occurs when a transcription factor enhances its own rate of production. Response times are slowed and variation is usually enhanced. This motif, given sufficient cooperativity, can lead to bimodal (all-or-none) distributions, where the concentration of X is low in some cells but high in others.
    [Show full text]
  • Annotated Hypergraphs: Models and Applications
    Chodrow and Mellor Applied Network Science (2020) 5:9 Applied Network Science https://doi.org/10.1007/s41109-020-0252-y RESEARCH Open Access Annotated hypergraphs: models and applications Philip Chodrow1*† and Andrew Mellor2† *Correspondence: [email protected] Abstract †Philip Chodrow and Andrew Mellor Hypergraphs offer a natural modeling language for studying polyadic interactions contributed equally to this work. 1Operations Research Center, between sets of entities. Many polyadic interactions are asymmetric, with nodes Massachusetts Institute of playing distinctive roles. In an academic collaboration network, for example, the order Technology, 77 Massachusetts of authors on a paper often reflects the nature of their contributions to the completed Avenue, 02139 Cambridge, MA, USA Full list of author information is work. To model these networks, we introduce annotated hypergraphs as natural available at the end of the article polyadic generalizations of directed graphs. Annotated hypergraphs form a highly general framework for incorporating metadata into polyadic graph models. To facilitate data analysis with annotated hypergraphs, we construct a role-aware configuration null model for these structures and prove an efficient Markov Chain Monte Carlo scheme for sampling from it. We proceed to formulate several metrics and algorithms for the analysis of annotated hypergraphs. Several of these, such as assortativity and modularity, naturally generalize dyadic counterparts. Other metrics, such as local role densities, are unique to the setting of annotated hypergraphs. We illustrate our techniques on six digital social networks, and present a detailed case-study of the Enron email data set. Keywords: Hypergraphs, Null models, Network science, Statistical inference, Community detection Introduction Many data sets of contemporary interest log interactions between sets of entities of vary- ing size.
    [Show full text]