Arthropod Colonisation of Trees in Fragmented Landscapes Depends on Species Traits
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Checklist of the Non -Acarine Arachnids
Original Research A CHECKLIST OF THE NON -A C A RINE A R A CHNIDS (CHELICER A T A : AR A CHNID A ) OF THE DE HOOP NA TURE RESERVE , WESTERN CA PE PROVINCE , SOUTH AFRIC A Authors: ABSTRACT Charles R. Haddad1 As part of the South African National Survey of Arachnida (SANSA) in conserved areas, arachnids Ansie S. Dippenaar- were collected in the De Hoop Nature Reserve in the Western Cape Province, South Africa. The Schoeman2 survey was carried out between 1999 and 2007, and consisted of five intensive surveys between Affiliations: two and 12 days in duration. Arachnids were sampled in five broad habitat types, namely fynbos, 1Department of Zoology & wetlands, i.e. De Hoop Vlei, Eucalyptus plantations at Potberg and Cupido’s Kraal, coastal dunes Entomology University of near Koppie Alleen and the intertidal zone at Koppie Alleen. A total of 274 species representing the Free State, five orders, 65 families and 191 determined genera were collected, of which spiders (Araneae) South Africa were the dominant taxon (252 spp., 174 genera, 53 families). The most species rich families collected were the Salticidae (32 spp.), Thomisidae (26 spp.), Gnaphosidae (21 spp.), Araneidae (18 2 Biosystematics: spp.), Theridiidae (16 spp.) and Corinnidae (15 spp.). Notes are provided on the most commonly Arachnology collected arachnids in each habitat. ARC - Plant Protection Research Institute Conservation implications: This study provides valuable baseline data on arachnids conserved South Africa in De Hoop Nature Reserve, which can be used for future assessments of habitat transformation, 2Department of Zoology & alien invasive species and climate change on arachnid biodiversity. -
Two Colonisation Stages Generate Two Different Patterns of Genetic Diversity Within Native and Invasive Ranges of Ulex Europaeus
Heredity (2013) 111, 355–363 & 2013 Macmillan Publishers Limited All rights reserved 0018-067X/13 www.nature.com/hdy ORIGINAL ARTICLE Two colonisation stages generate two different patterns of genetic diversity within native and invasive ranges of Ulex europaeus B Hornoy1,3, A Atlan1, V Roussel1,4, YM Buckley2 and M Tarayre1 Genetic diversity and the way a species is introduced influence the capacity of populations of invasive species to persist in, and adapt to, their new environment. The diversity of introduced populations affects their evolutionary potential, which is particularly important for species that have invaded a wide range of habitats and climates, such as European gorse, Ulex europaeus. This species originated in the Iberian peninsula and colonised Europe in the Neolithic; over the course of the past two centuries it was introduced to, and has become invasive in, other continents. We characterised neutral genetic diversity and its structure in the native range and in invaded regions. By coupling these results with historical data, we have identified the way in which gorse populations were introduced and the consequences of introduction history on genetic diversity. Our study is based on the genotyping of individuals from 18 populations at six microsatellite loci. As U. europaeus is an allohexaploid species, we used recently developed tools that take into account genotypic ambiguity. Our results show that genetic diversity in gorse is very high and mainly contained within populations. We confirm that colonisation occurred in two stages. During the first stage, gorse spread out naturally from Spain towards northern Europe, losing some genetic diversity. During the second stage, gorse was introduced by humans into different regions of the world, from northern Europe. -
Oak Woodland Litter Spiders James Steffen Chicago Botanic Garden
Oak Woodland Litter Spiders James Steffen Chicago Botanic Garden George Retseck Objectives • Learn about Spiders as Animals • Learn to recognize common spiders to family • Learn about spider ecology • Learn to Collect and Preserve Spiders Kingdom - Animalia Phylum - Arthropoda Subphyla - Mandibulata Chelicerata Class - Arachnida Orders - Acari Opiliones Pseudoscorpiones Araneae Spiders Arachnids of Illinois • Order Acari: Mites and Ticks • Order Opiliones: Harvestmen • Order Pseudoscorpiones: Pseudoscorpions • Order Araneae: Spiders! Acari - Soil Mites Characteriscs of Spiders • Usually four pairs of simple eyes although some species may have less • Six pair of appendages: one pair of fangs (instead of mandibles), one pair of pedipalps, and four pair of walking legs • Spinnerets at the end of the abdomen, which are used for spinning silk threads for a variety of purposes, such as the construction of webs, snares, and retreats in which to live or to wrap prey • 1 pair of sensory palps (often much larger in males) between the first pair of legs and the chelicerae used for sperm transfer, prey manipulation, and detection of smells and vibrations • 1 to 2 pairs of book-lungs on the underside of abdomen • Primitively, 2 body regions: Cephalothorax, Abdomen Spider Life Cycle • Eggs in batches (egg sacs) • Hatch inside the egg sac • molt to spiderlings which leave from the egg sac • grows during several more molts (instars) • at final molt, becomes adult – Some long-lived mygalomorphs (tarantulas) molt after adulthood Phenology • Most temperate -
SLAM Project
Biodiversity Data Journal 9: e69924 doi: 10.3897/BDJ.9.e69924 Data Paper SLAM Project - Long Term Ecological Study of the Impacts of Climate Change in the natural forest of Azores: I - the spiders from native forests of Terceira and Pico Islands (2012-2019) Ricardo Costa‡, Paulo A. V. Borges‡,§ ‡ cE3c – Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and Universidade dos Açores, Rua Capitão João d’Ávila, São Pedro, 9700-042, Angra do Heroismo, Azores, Portugal § IUCN SSC Mid-Atlantic Islands Specialist Group,, Angra do Heroísmo, Azores, Portugal Corresponding author: Paulo A. V. Borges ([email protected]) Academic editor: Pedro Cardoso Received: 09 Jun 2021 | Accepted: 05 Jul 2021 | Published: 01 Sep 2021 Citation: Costa R, Borges PAV (2021) SLAM Project - Long Term Ecological Study of the Impacts of Climate Change in the natural forest of Azores: I - the spiders from native forests of Terceira and Pico Islands (2012-2019). Biodiversity Data Journal 9: e69924. https://doi.org/10.3897/BDJ.9.e69924 Abstract Background Long-term monitoring of invertebrate communities is needed to understand the impact of key biodiversity erosion drivers (e.g. habitat fragmentation and degradation, invasive species, pollution, climatic changes) on the biodiversity of these high diverse organisms. The data we present are part of the long-term project SLAM (Long Term Ecological Study of the Impacts of Climate Change in the natural forest of Azores) that started in 2012, aiming to understand the impact of biodiversity erosion drivers on Azorean native forests (Azores, Macaronesia, Portugal). In this contribution, the design of the project, its objectives and the first available data for the spider fauna of two Islands (Pico and Terceira) are described. -
Insecta: Hymenoptera: Vespoidea) Türleri Üzerine Faunistic Araştirmalar Ve Ekolojik Gözlemler
ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ADANA İLİ VESPIDAE (INSECTA: HYMENOPTERA: VESPOIDEA) TÜRLERİ ÜZERİNE FAUNİSTİC ARAŞTIRMALAR VE EKOLOJİK GÖZLEMLER Samet Eray YALNIZ BİYOLOJİ ANABİLİM DALI ANKARA 2018 Her hakkı saklıdır ÖZET Yüksek Lisans Tezi ADANA İLİ VESPIDAE (INSECTA: HYMENOPTERA: VESPOIDEA) TÜRLERİ ÜZERİNE FAUNİSTİC ARAŞTIRMALAR VE EKOLOJİK GÖZLEMLER Samet Eray YALNIZ Ankara Üniversitesi Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı Danışman: Prof. Dr Ayla TÜZÜN Bu çalışma 2017 yılı Haziran - Ekim aylarında Adana il merkezi ve ilçelerinden toplanan 1296 Vespidae (Insecta: Hymenoptera) örneğine dayanmaktadır. Çalışmada, taksonların sistematik açıdan önemli olan vücut kısımları çizilmiş, yatay ve dikey dağılışları, ekolojileri ve fenolojileri ile Türkiye ve dünyadaki yayılışları verilmiştir. Çalışmada Adana ili ve çevresinden Vespinae altfamilyasına ait 5 tür: Vespa crabro Linnaeus, 1758; Vespa orientalis Linnaeus, 1771; Vespula (Paravespula) germanica (Fabricius, 1793); Vespula (Paravespula) vulgaris (Linnaeus, 1758); Dolichovespula (Metavespula) sylvestris (Scopoli, 1763); Polistinae altfamilyasından 5 tür: Polistes (Polistes) associus Kohl, 1898; Polistes (Polistes) biglumis (Linnaeus, 1758); Polistes (Polistes) dominula (Christ, 1791); Polistes (Polistes) gallicus (Linnaeus, 1767); Polistes (Polistes) nimpha (Christ, 1791) ve Eumeninae altfamilyasından 14 tür: Delta unguiculatum unguiculatum (Villers, 1789); Eumenes dubius dubius Saussure, 1852; Ancistrocerus auctus (Fabricius, 1793); Allodynerus floricola -
Biological Diversity and Conservation ISSN
www.biodicon.com Biological Diversity and Conservation ISSN 1308-8084 Online; ISSN 1308-5301 Print 12/2 (2019) 15-22 Research article/Araştırma makalesi DOI: 10.5505/biodicon.2019.09709 The faunistic studies on Vespidae species (Hymenoptera: Vespoidea) of Adana province, Turkey Samet Eray YALNIZ *1, Ayla TÜZÜN 2 ORCID: 0000000228996271; 0000000197954860 1 Ankara University, Graduate School of Natural and Applied Sciences, Department of Biology, Ankara, Turkey 2 Ankara University, Faculty of Science, Department of Biology, Ankara, Turkey Abstract This study was performed with 1296 specimens of Vespidae collected from Adana province and its districts in 2017 during June and October. At the end of the study, 24 species and subspecies were collected from the subfamilies Vespinae, Polistinae and Eumeninae. Vespa crabro Linnaeus, 1758; Vespula (Paravespula) vulgaris (Linnaeus, 1758); Polistes (Polistes) associus Kohl, 1898; Polistes (Polistes) biglumis (Linnaeus, 1758); Allodynerus floricola floricola (de Saussure, 1853); Eumenes pomiformis (Fabricius, 1781); Ancistrocerus longispinosus (de Saussure, 1855); Ancistrocerus parietum (Linnaeus, 1758) and Symmorphus (Symmorphus) gracilis (Brullé, 1833) were reported as new records for Adana province. In this study, it is aimed to contribute to the Vespidae fauna of Adana province. Key words: social wasps, systematic, Vespinae, Polistinae, Eumeninae ---------- ---------- Adana ili Vespidae türleri (Hymenoptera: Vespoidea) üzerine faunistik araştırmalar Özet Bu çalışma 2017 yılı Haziran - Ekim aylarında -
Re-Thinking Impacts of Island Colonisation
Kerry-Anne Mairs (2007) Islands and human impact... University of Edinburgh, Unpublished PhD Thesis. 398 pp. Chapter 3: Island contexts Chapter 3 Island contexts Introduction Perhaps the thing that most distinguishes islands, at least oceanic islands… is their extreme vulnerability or susceptibility to disturbance (Fosberg 1963: 559). This chapter examines the wider context of island research as introduced in the framework in Figure 1.5 with regards to the notion that islands represent a model system, from which globally occurring processes can be understood. The chapter aims to provide a brief overview of islands and what characterises them, both as islands, and as locations from which to explore human-environment interactions. Recent examples of human-environment research in some Pacific islands, where wide ranging archaeological and comparative-led research has been carried out, are also reviewed. From this research, hypotheses regarding human impacts on environments can be developed with regards to the Faroe Islands. Island contexts as models for human impact and global change The smaller, more manageable spatial scale and insularity of island environments and societies, has made islands (particularly remote islands) popular field locations for research in a variety of disciplines, including biology, ecology, biogeography, ethnography and more recently, environmental archaeology. Islands have been referred to as outdoor laboratories (Kirch 1997a, Fitzhugh and Hunt 1997), where human-environment research can be approached from a comparative -
Araneae, Araneidae)
A peer-reviewed open-access journal ZooKeys 207:A 79–84 new (2012)combination expands the range of the African araneid spider Singafrotypa... 79 doi: 10.3897/zookeys.207.3522 SHORT COMMUNICATION www.zookeys.org Launched to accelerate biodiversity research A new combination expands the range of the African araneid spider Singafrotypa (Araneae, Araneidae) Anna Šestáková1,2, Mikhail M. Omelko3,4 1 Zoological Museum, University of Turku, FI-20014, Turku, Finland 2 Department of Zoology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, 84215 Bratislava, Slovakia 3 Far Eastern Federal University, Sukhanova, 8, Vladivostok 690950 Russia 4 Gornotaezhnaya Station FEB RAS, Gornotaezhnoe Vil.,Ussuriyski Dist., Primorski Krai 692533 Russia Corresponding author: Anna Šestáková ([email protected]) Academic editor: Yuri Marusik | Received 13 June 2012 | Accepted 4 July 2012 | Published 11 July 2012 Citation: Šestáková A, Omelko MM (2012) A new combination expands the range of the African araneid spider Singafrotypa (Araneae, Araneidae). ZooKeys 207: 79–84. doi: 10.3897/zookeys.207.3522 Abstract Study of the syntype of Larinioides subinermis, a species known from Ethiopia only, revealed that it ac- tually belongs to Singafrotypa Benoit, 1962. We redescribe Singafrotypa subinermis (Caporiacco, 1940), comb. n., and provide a key to females of four species belonging to Singafrotypa. A distribution map for all species is provided. Keywords Larinioides subinermis, Singafrotypa, redescription, taxonomy, spider, Africa Introduction The small African orb-weaver genus Singafrotypa was found to be restricted to western, southern and central Africa (Fig. 14). It presently contains 3 species: S. acanthopus (Simon, 1907), S. mandela Kuntner & Hormiga, 2002 and S. okavango Kuntner & Hormiga, 2002 (Kuntner and Hormiga 2002). -
The Spider Collection (Arachnida: Araneae) of the Zoological Museum of the Iranian Research Institute of Plant Protection, with New Species Records for Iran
Arachnologische Mitteilungen 50: 11-18 Karlsruhe, November 2015 The spider collection (Arachnida: Araneae) of the Zoological Museum of the Iranian Research Institute of Plant Protection, with new species records for Iran Alireza Zamani doi: 10.5431/aramit5002 Abstract. The spider collection of the Zoological Museum of the Iranian Research Institute of Plant Protection was studied during the summer of 2014. A total of 180 specimens, belonging to 25 families, 60 genera and 77 species were documented. Of these, the following nine species could be recorded from Iran for the first time: Alopecosa schmidti (Hahn, 1835), Anyphaena accentuata (Walckenaer, 1802), Crustulina sticta (O. P.-Cambridge, 1861), Enoplo- gnatha mordax (Thorell, 1875), Ero tuberculata (De Geer, 1778), Salticus zebraneus (C. L. Koch, 1837), Pardosa aenig- matica Tongiorgi, 1966, Pardosa nebulosa (Thorell, 1872) and Tmarus piochardi (Simon, 1866). Morphological and geographical data are provided for the newly recorded species. Two species (P. aenigmatica and T. piochardi) are illustrated and a map of localities is given. Keywords: fauna, Lycosidae, museum collection, Thomisidae Zusammenfassung. Die arachnologische Sammlung (Arachnida: Araneae) des Zoologischen Museums des iranischen Forschungsinstitutes für Pflanzenschutz, mit neuen Artnachweisen für den Iran. Im Sommer 2014 wurde die arachnologische Sammlung des Zoologischen Museums des iranischen Forschungsinstitutes für Pflan- zenschutz untersucht. Insgesamt 180 Individuen, die sich auf 25 Familien, 60 Gattungen und 77 Arten verteilen, konnten dabei vorgefunden werden. Darunter befanden sich insgesamt neun Neufunde für den Iran: Alopecosa schmidti (Hahn, 1835), Anyphaena accentuata (Walckenaer, 1802), Crustulina sticta (O. P.-Cambridge, 1861), Enoplog- natha mordax (Thorell, 1875), Ero tuberculata (De Geer, 1778), Salticus zebraneus (C. L. -
A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views. -
Systematic Catalogue of the Cryptophagidae of the Madeira Archipelago and Selvagens Islands 1 (Coleoptera: Cucujoidea) TP PT
Mitt. internat. entomol. Ver. Frankfurt a.M. ISSN 1019-2808 Band 33 . Heft 1/2 Seiten 31 - 43 2. Juni 2008 Systematic Catalogue of the Cryptophagidae of the Madeira Archipelago and Selvagens Islands 1 (Coleoptera: Cucujoidea) TP PT Jens ESSER Introduction Since T. V. WOLLASTON 1847 visited for first time the Madeiran archipelago he and other entomologists collected a lot of beetles from there. WOLLASTON published a few longer and shorter papers (WOL- LASTON 1854, 1857, 1864, 1871a, 1871b) about the beetles and described a lot of beetles including a few Cryptophagidae. Later, some other authors collected and published about Cryptophagidae from the Madeiran archipelago. One further species was described by BRUCE (1940), which is no longer a valid species. So, all three endemic species from the archipelago were described by WOLLASTON. For further information about the Atlantics see ASSING & SCHÜLKE (2006). The Cryptophagidae on the Madeiras and Selvagens Today we know 17 species of Cryptophagidae recorded from the Madeiran archipelago and no species from the Selvagens Islands. Three of these species are endemic (18 %), known only from Madeira proper. There is no endemic species known from the other islands. The other 14 species are widespread in Europe or in the Mediterrian Region, the most are widespread in the Palaearctic Region, one species is cosmopolitan. There is no doubt that the most or all of the not-endemic species reached 1 TP PT This contribution is dedicated to Dieter ERBER (1933–2004), who inspirated me to this work. 31 the Madeira archipelago together with human settlement. Only Crypto- phagus laticollis P. -
The Effects of Native and Non-Native Grasses on Spiders, Their Prey, and Their Interactions
Spiders in California’s grassland mosaic: The effects of native and non-native grasses on spiders, their prey, and their interactions by Kirsten Elise Hill A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, and Management in the GRADUATE DIVISION of the University of California, Berkeley Committee in charge: Professor Joe R. McBride, Chair Professor Rosemary G. Gillespie Professor Mary E. Power Spring 2014 © 2014 Abstract Spiders in California’s grassland mosaic: The effects of native and non-native grasses on spiders, their prey, and their interactions by Kirsten Elise Hill Doctor of Philosophy in Environmental Science and Policy Management University of California, Berkeley Professor Joe R. McBride, Chair Found in nearly all terrestrial ecosystems, small in size and able to occupy a variety of hunting niches, spiders’ consumptive effects on other arthropods can have important impacts for ecosystems. This dissertation describes research into spider populations and their interactions with potential arthropod prey in California’s native and non-native grasslands. In meadows found in northern California, native and non-native grassland patches support different functional groups of arthropod predators, sap-feeders, pollinators, and scavengers and arthropod diversity is linked to native plant diversity. Wandering spiders’ ability to forage within the meadow’s interior is linked to the distance from the shaded woodland boundary. Native grasses offer a cooler conduit into the meadow interior than non-native annual grasses during midsummer heat. Juvenile spiders in particular, are more abundant in the more structurally complex native dominated areas of the grassland.