Introduction to Probability Theory and Statistics for Linguistics

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Probability Theory and Statistics for Linguistics Introduction to Probability Theory and Statistics for Linguistics Marcus Kracht Department of Linguistics, UCLA 3125 Campbell Hall 405 Hilgard Avenue Los Angeles, CA 90095–1543 [email protected] Contents 1 Preliminaries and Introduction . 5 I Basic Probability Theory 9 2 Counting and Numbers . 11 3 Some Background in Calculus . 16 4 Probability Spaces . 25 5 Conditional Probability . 32 6 Random Variables . 41 7 Expected Word Length . 48 8 The Law of Large Numbers . 57 9 Limit Theorems . 62 II Elements of Statistics 69 10 Estimators . 71 11 Tests . 77 12 Distributions . 86 13 Parameter Estimation . 93 3 4 CONTENTS 14 Correlation and Covariance . 100 15 Linear Regression I: The Simple Case . 104 16 Linear Regression II . 112 16.1 General F test . 114 16.2 Lack of Fit . 115 17 Linear Regression III: Choosing the Estimators . 117 18 Markov Chains . 120 III Probabilistic Linguistics 127 19 Probabilistic Regular Languages and Hidden Markov Models . 129 Preface 5 1 Preliminaries and Introduction Some Useful Hints. This text provides a syllabus for the course. It is hopefully needless to state that the manuscript is not claimed to be in its final form, and I am constantly revising the text and it will grow as material gets added. Older material is subject to change without warning. One principle that I have adopted is that everything is explained and proved, unless the proof is too tedious or uses higher mathematics. This means that there will be a lot of stuff that is quite difficult for someone interested in practical applications. These passages are marked by ~ in the margin, so that you know where it is safe to skip. If you notice any inconsistencies or encounter difficulties in understanding the explanations, please let me know so I can improve the manuscript. Statistics and probability theory are all about things that are not really certain. In everyday life this is the norm rather than the exception. Probability theory is the attempt to extract knowledge about what event has happened or will happen in presence of this uncertainty. It tries to quantify as best as possible the risks and benefits involved. Apart from the earliest applications of probability in gambling, numerous others exist: in science, where we make experiments and interpret them, in finance, in insurance and in weather reports. These are important areas where probabilities play a pivotal role. The present lectures will also give evidence for the fact that probability theory can be useful for linguistics, too. In everyday life we are frequently reminded of the fact that events that are predicted need not hap- pen, even though we typically do not calculate probabilities. But in science this is absolutely necessary in order to obtain reliable result. Quantitative statements of this sort can sometimes be seen, for example in weather reports, where the experts speak of the “probability of rain” and give percentages rather than saying that rain is likely or unlikely, as one would ordinarily do. Some people believe that statistics requires new mathematics, as quantum mechanics required a new kind of physics. But this is not so. The ordinary mathematics is quite enough, in fact it has often been developed for the purpose of applying it to probability. However, as we shall see, probability is actually a difficult topic. Most of the naive intuitions we have on the subject matter are either (mathematically speaking) trivial or false, so we often have to resort to computations of some sort. Moreover, to apply the theory in a correct fashion, often two things are required: extensive motivation and a lot of calculations. I give an example. To say that an event happens with the 1 probability 6 means that it happens in 1 out of 6 cases. So if we throw a die six 6 Preface times we expect a given number, say 5, to appear once, and only once. This means that in a row of six, every one of the numbers occurs exactly once. But as we all know, this need not happen at all! This does not mean that the probabilities are wrong. In fact probability theory shows us that any six term sequence of numbers between 1 and 6 may occur. Any sequence is equally likely. However, one can calculate that for 5 to occur not at all is less likely than for it to occur once, and to occur a number n > 1 of times also is less likely. Thus, it is to be expected that the number of occurrences is 1. Some of the events are therefore more likely than others. But if that is so, throwing the die 60 times will not guarantee either that 5 occurs exactly 10 times. Again it may occur less often or more. How come then that we can at all be sure that the probabilities we have assigned to the outcomes are correct? The answer lies in the so called law of the large numbers. It says that if we repeat the experiment more often than the chance of the frequency of the number 5 deviating from its assigned probability gets smaller and smaller; in the limit it is zero. Thus, the probabilities are assumed exactly in the limit. Of course, since we cannot actually perform the experiment an infinite number of times there is no way we shall actually find out whether a given die is unbiased, but at least we know that we can remove doubts to any desirable degree of certainty. This is why statisticians express themselves in such a funny way, saying that something is certain (!) to occur with such and such probability or is likely to be the case with such and such degree of confidence. Finite experiments require this type of caution. At this point it is actually useful to say something about the difference between probability theory and statistics. First, both of them are founded on the same model of reality. This means that they do not contradict each other, they just exploit that model for different purposes. The model is this: there is a certain space of events that occur more or less freely. These can be events the happen without us doing anything like “the sun is shining” or “there is a squirrel in the trashcan”. Or they can be brought about by us like “the coin shows tails” after we tossed it into the air. And, finally, it can be the result of a measurement, like “the voice onset time is 64 ms”. The model consists in a set of such events plus a so-called probability. We may picture this as an oracle that answers our question with “yes” or “no” each time we ask it. The questions we ask are predetermined, and the probabilities are the likelihood that is associated with a “yes” answer. This is a number between 0 and 1 which tells us how frequent that event is. Data is obtained by making an experiment. An experiment is in this scenario a question put to the oracle. An array of experiments yields data. Probability theory tells us Preface 7 how likely a particular data or set of data is. In real life we do not have the probabilities, we have the data. And so we want tools that allow us to estimate the probabilities given the data that we have. This is what statistics is about. The difference is therefore merely what is known and what is not. In the case of an unbiased die we already have the probabilities; and so we can make predictions about a particular experiment or series thereof. In science it is the data we have and we want to know about the probabilities. If we study a particular construction, say tag questions, we want to know what the probability is that a speaker will use a tag question (as opposed to some other type of construction). Typically, the kind of result we want to find is even more complex. If, for example, we study the voice onset time of a particular sound, then we are interested to find a number or a range thereof. Statistics will help in the latter case, too, and we shall see how. Thus, statistics is the art of guessing the model and its parameters. It is based on probability theory. Probability theory shows us why the particular formula by means of which we guess the model is good. For example, throw a die 100 times and notice how many times it shows 5. Let that number be 17. Then statistics tells you that you should guess the probability of 5 at 17/100 = .17. Probability tells you that although that might not be right, it is your best bet. What it will in fact prove is that if you assign any other probability to the outcome 5 then your experiment becomes less likely. This argument can be turned around. Probability theory tells you that the most likely probability assignment is .17. All this is wrapped up in the formula that the probability equals the frequency. And this is what you get told in statistics. Literature. The mathematical background is covered in [5] and in [2]. Both texts are mathematically demanding. As for R, there is a nice textbook by Peter Dalgaard, himself a member of the R team, [1]. This book explains how to use R to do statistical analysis and is as such a somewhat better source than the R online help. In this manuscript I shall give a few hints as to how to use R, but I shall not actually introduce R nor do I intend to give a comprehensive reference.
Recommended publications
  • Foundations of Probability Theory and Statistical Mechanics
    Chapter 6 Foundations of Probability Theory and Statistical Mechanics EDWIN T. JAYNES Department of Physics, Washington University St. Louis, Missouri 1. What Makes Theories Grow? Scientific theories are invented and cared for by people; and so have the properties of any other human institution - vigorous growth when all the factors are right; stagnation, decadence, and even retrograde progress when they are not. And the factors that determine which it will be are seldom the ones (such as the state of experimental or mathe­ matical techniques) that one might at first expect. Among factors that have seemed, historically, to be more important are practical considera­ tions, accidents of birth or personality of individual people; and above all, the general philosophical climate in which the scientist lives, which determines whether efforts in a certain direction will be approved or deprecated by the scientific community as a whole. However much the" pure" scientist may deplore it, the fact remains that military or engineering applications of science have, over and over again, provided the impetus without which a field would have remained stagnant. We know, for example, that ARCHIMEDES' work in mechanics was at the forefront of efforts to defend Syracuse against the Romans; and that RUMFORD'S experiments which led eventually to the first law of thermodynamics were performed in the course of boring cannon. The development of microwave theory and techniques during World War II, and the present high level of activity in plasma physics are more recent examples of this kind of interaction; and it is clear that the past decade of unprecedented advances in solid-state physics is not entirely unrelated to commercial applications, particularly in electronics.
    [Show full text]
  • Randomized Algorithms Week 1: Probability Concepts
    600.664: Randomized Algorithms Professor: Rao Kosaraju Johns Hopkins University Scribe: Your Name Randomized Algorithms Week 1: Probability Concepts Rao Kosaraju 1.1 Motivation for Randomized Algorithms In a randomized algorithm you can toss a fair coin as a step of computation. Alternatively a bit taking values of 0 and 1 with equal probabilities can be chosen in a single step. More generally, in a single step an element out of n elements can be chosen with equal probalities (uniformly at random). In such a setting, our goal can be to design an algorithm that minimizes run time. Randomized algorithms are often advantageous for several reasons. They may be faster than deterministic algorithms. They may also be simpler. In addition, there are problems that can be solved with randomization for which we cannot design efficient deterministic algorithms directly. In some of those situations, we can design attractive deterministic algoirthms by first designing randomized algorithms and then converting them into deter- ministic algorithms by applying standard derandomization techniques. Deterministic Algorithm: Worst case running time, i.e. the number of steps the algo- rithm takes on the worst input of length n. Randomized Algorithm: 1) Expected number of steps the algorithm takes on the worst input of length n. 2) w.h.p. bounds. As an example of a randomized algorithm, we now present the classic quicksort algorithm and derive its performance later on in the chapter. We are given a set S of n distinct elements and we want to sort them. Below is the randomized quicksort algorithm. Algorithm RandQuickSort(S = fa1; a2; ··· ; ang If jSj ≤ 1 then output S; else: Choose a pivot element ai uniformly at random (u.a.r.) from S Split the set S into two subsets S1 = fajjaj < aig and S2 = fajjaj > aig by comparing each aj with the chosen ai Recurse on sets S1 and S2 Output the sorted set S1 then ai and then sorted S2.
    [Show full text]
  • Probability Theory Review for Machine Learning
    Probability Theory Review for Machine Learning Samuel Ieong November 6, 2006 1 Basic Concepts Broadly speaking, probability theory is the mathematical study of uncertainty. It plays a central role in machine learning, as the design of learning algorithms often relies on proba- bilistic assumption of the data. This set of notes attempts to cover some basic probability theory that serves as a background for the class. 1.1 Probability Space When we speak about probability, we often refer to the probability of an event of uncertain nature taking place. For example, we speak about the probability of rain next Tuesday. Therefore, in order to discuss probability theory formally, we must first clarify what the possible events are to which we would like to attach probability. Formally, a probability space is defined by the triple (Ω, F,P ), where • Ω is the space of possible outcomes (or outcome space), • F ⊆ 2Ω (the power set of Ω) is the space of (measurable) events (or event space), • P is the probability measure (or probability distribution) that maps an event E ∈ F to a real value between 0 and 1 (think of P as a function). Given the outcome space Ω, there is some restrictions as to what subset of 2Ω can be considered an event space F: • The trivial event Ω and the empty event ∅ is in F. • The event space F is closed under (countable) union, i.e., if α, β ∈ F, then α ∪ β ∈ F. • The even space F is closed under complement, i.e., if α ∈ F, then (Ω \ α) ∈ F.
    [Show full text]
  • Effective Theory of Levy and Feller Processes
    The Pennsylvania State University The Graduate School Eberly College of Science EFFECTIVE THEORY OF LEVY AND FELLER PROCESSES A Dissertation in Mathematics by Adrian Maler © 2015 Adrian Maler Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2015 The dissertation of Adrian Maler was reviewed and approved* by the following: Stephen G. Simpson Professor of Mathematics Dissertation Adviser Chair of Committee Jan Reimann Assistant Professor of Mathematics Manfred Denker Visiting Professor of Mathematics Bharath Sriperumbudur Assistant Professor of Statistics Yuxi Zheng Francis R. Pentz and Helen M. Pentz Professor of Science Head of the Department of Mathematics *Signatures are on file in the Graduate School. ii ABSTRACT We develop a computational framework for the study of continuous-time stochastic processes with c`adl`agsample paths, then effectivize important results from the classical theory of L´evyand Feller processes. Probability theory (including stochastic processes) is based on measure. In Chapter 2, we review computable measure theory, and, as an application to probability, effectivize the Skorokhod representation theorem. C`adl`ag(right-continuous, left-limited) functions, representing possible sample paths of a stochastic process, form a metric space called Skorokhod space. In Chapter 3, we show that Skorokhod space is a computable metric space, and establish fundamental computable properties of this space. In Chapter 4, we develop an effective theory of L´evyprocesses. L´evy processes are known to have c`adl`agmodifications, and we show that such a modification is computable from a suitable representation of the process. We also show that the L´evy-It^odecomposition is computable.
    [Show full text]
  • Curriculum Vitae
    Curriculum Vitae General First name: Khudoyberdiyev Surname: Abror Sex: Male Date of birth: 1985, September 19 Place of birth: Tashkent, Uzbekistan Nationality: Uzbek Citizenship: Uzbekistan Marital status: married, two children. Official address: Department of Algebra and Functional Analysis, National University of Uzbekistan, 4, Talabalar Street, Tashkent, 100174, Uzbekistan. Phone: 998-71-227-12-24, Fax: 998-71-246-02-24 Private address: 5-14, Lutfiy Street, Tashkent city, Uzbekistan, Phone: 998-97-422-00-89 (mobile), E-mail: [email protected] Education: 2008-2010 Institute of Mathematics and Information Technologies of Uzbek Academy of Sciences, Uzbekistan, PHD student; 2005-2007 National University of Uzbekistan, master student; 2001-2005 National University of Uzbekistan, bachelor student. Languages: English (good), Russian (good), Uzbek (native), 1 Academic Degrees: Doctor of Sciences in physics and mathematics 28.04.2016, Tashkent, Uzbekistan, Dissertation title: Structural theory of finite - dimensional complex Leibniz algebras and classification of nilpotent Leibniz superalgebras. Scientific adviser: Prof. Sh.A. Ayupov; Doctor of Philosophy in physics and mathematics (PhD) 28.10.2010, Tashkent, Uzbekistan, Dissertation title: The classification some nilpotent finite dimensional graded complex Leibniz algebras. Supervisor: Prof. Sh.A. Ayupov; Master of Science, National University of Uzbekistan, 05.06.2007, Tashkent, Uzbekistan, Dissertation title: The classification filiform Leibniz superalgebras with nilindex n+m. Supervisor: Prof. Sh.A. Ayupov; Bachelor in Mathematics, National University of Uzbekistan, 20.06.2005, Tashkent, Uzbekistan, Dissertation title: On the classification of low dimensional Zinbiel algebras. Supervisor: Prof. I.S. Rakhimov. Professional occupation: June of 2017 - up to Professor, department Algebra and Functional Analysis, present time National University of Uzbekistan.
    [Show full text]
  • Discrete Mathematics Discrete Probability
    Introduction Probability Theory Discrete Mathematics Discrete Probability Prof. Steven Evans Prof. Steven Evans Discrete Mathematics Introduction Probability Theory 7.1: An Introduction to Discrete Probability Prof. Steven Evans Discrete Mathematics Introduction Probability Theory Finite probability Definition An experiment is a procedure that yields one of a given set os possible outcomes. The sample space of the experiment is the set of possible outcomes. An event is a subset of the sample space. Laplace's definition of the probability p(E) of an event E in a sample space S with finitely many equally possible outcomes is jEj p(E) = : jSj Prof. Steven Evans Discrete Mathematics By the product rule, the number of hands containing a full house is the product of the number of ways to pick two kinds in order, the number of ways to pick three out of four for the first kind, and the number of ways to pick two out of the four for the second kind. We see that the number of hands containing a full house is P(13; 2) · C(4; 3) · C(4; 2) = 13 · 12 · 4 · 6 = 3744: Because there are C(52; 5) = 2; 598; 960 poker hands, the probability of a full house is 3744 ≈ 0:0014: 2598960 Introduction Probability Theory Finite probability Example What is the probability that a poker hand contains a full house, that is, three of one kind and two of another kind? Prof. Steven Evans Discrete Mathematics Introduction Probability Theory Finite probability Example What is the probability that a poker hand contains a full house, that is, three of one kind and two of another kind? By the product rule, the number of hands containing a full house is the product of the number of ways to pick two kinds in order, the number of ways to pick three out of four for the first kind, and the number of ways to pick two out of the four for the second kind.
    [Show full text]
  • The Renormalization Group in Quantum Field Theory
    COARSE-GRAINING AS A ROUTE TO MICROSCOPIC PHYSICS: THE RENORMALIZATION GROUP IN QUANTUM FIELD THEORY BIHUI LI DEPARTMENT OF HISTORY AND PHILOSOPHY OF SCIENCE UNIVERSITY OF PITTSBURGH [email protected] ABSTRACT. The renormalization group (RG) has been characterized as merely a coarse-graining procedure that does not illuminate the microscopic content of quantum field theory (QFT), but merely gets us from that content, as given by axiomatic QFT, to macroscopic predictions. I argue that in the constructive field theory tradition, RG techniques do illuminate the microscopic dynamics of a QFT, which are not automatically given by axiomatic QFT. RG techniques in constructive field theory are also rigorous, so one cannot object to their foundational import on grounds of lack of rigor. Date: May 29, 2015. 1 Copyright Philosophy of Science 2015 Preprint (not copyedited or formatted) Please use DOI when citing or quoting 1. INTRODUCTION The renormalization group (RG) in quantum field theory (QFT) has received some attention from philosophers for how it relates physics at different scales and how it makes sense of perturbative renormalization (Huggett and Weingard 1995; Bain 2013). However, it has been relatively neglected by philosophers working in the axiomatic QFT tradition, who take axiomatic QFT to be the best vehicle for interpreting QFT. Doreen Fraser (2011) has argued that the RG is merely a way of getting from the microscopic principles of QFT, as provided by axiomatic QFT, to macroscopic experimental predictions. Thus, she argues, RG techniques do not illuminate the theoretical content of QFT, and we should stick to interpreting axiomatic QFT. David Wallace (2011), in contrast, has argued that the RG supports an effective field theory (EFT) interpretation of QFT, in which QFT does not apply to arbitrarily small length scales.
    [Show full text]
  • The Cosmological Probability Density Function for Bianchi Class A
    December 9, 1994 The Cosmological Probability Density Function for Bianchi Class A Models in Quantum Supergravity HUGH LUCKOCK and CHRIS OLIWA School of Mathematics and Statistics University of Sydney NSW 2006 Australia Abstract Nicolai’s theorem suggests a simple stochastic interpetation for supersymmetric Eu- clidean quantum theories, without requiring any inner product to be defined on the space of states. In order to apply this idea to supergravity, we first reduce to a one-dimensional theory with local supersymmetry by the imposition of homogeneity arXiv:gr-qc/9412028v1 9 Dec 1994 conditions. We then make the supersymmetry rigid by imposing gauge conditions, and quantise to obtain the evolution equation for a time-dependent wave function. Owing to the inclusion of a certain boundary term in the classical action, and a careful treatment of the initial conditions, the evolution equation has the form of a Fokker-Planck equation. Of particular interest is the static solution, as this satisfies all the standard quantum constraints. This is naturally interpreted as a cosmolog- ical probability density function, and is found to coincide with the square of the magnitude of the conventional wave function for the wormhole state. PACS numbers: 98.80.H , 04.65 Introduction Supersymmetric theories enjoy a number of appealing properties, many of which are particularly attractive in the context of quantum cosmology. For example, su- persymmetry leads to the replacement of second-order constraints by first-order constraints, which are both easier to solve and more restrictive. A feature of supersymmetry which has not yet been fully exploited in quantum cosmology arises from a theorem proved by Nicolai in 1980 [1].
    [Show full text]
  • Probability Theory and Stochastic Processes (R18a0403)
    PROBABILITY THEORY AND STOCHASTIC PROCESSES (R18A0403) LECTURE NOTES B.TECH (II YEAR – I SEM) (2020-21) Prepared by: Mrs.N.Saritha, Assistant Professor Mr.G.S. Naveen Kumar, Assoc.Professor Department of Electronics and Communication Engineering MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) Recognized under 2(f) and 12 (B) of UGC ACT 1956 (Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified) Maisammaguda, Dhulapally (Post Via. Kompally), Secunderabad – 500100, Telangana State, India Sensitivity: Internal & Restricted MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY (AUTONOMOUS INSTITUTION: UGC, GOVT. OF INDIA) ELECTRONICS AND COMMUNICATION ENGINEERING II ECE I SEM PROBABILITY THEORY AND STOCHASTIC PROCESSES CONTENTS SYLLABUS UNIT-I-PROBABILITY AND RANDOM VARIABLE UNIT-II- DISTRIBUTION AND DENSITY FUNCTIONS AND OPERATIONS ON ONE RANDOM VARIABLE UNIT-III-MULTIPLE RANDOM VARIABLES AND OPERATIONS UNIT-IV-STOCHASTIC PROCESSES-TEMPORAL CHARACTERISTICS UNIT-V- STOCHASTIC PROCESSES-SPECTRAL CHARACTERISTICS UNITWISE IMPORTANT QUESTIONS PROBABILITY THEORY AND STOCHASTIC PROCESS Course Objectives: To provide mathematical background and sufficient experience so that student can read, write and understand sentences in the language of probability theory. To introduce students to the basic methodology of “probabilistic thinking” and apply it to problems. To understand basic concepts of Probability theory and Random Variables, how to deal with multiple Random Variables. To understand the difference between time averages statistical averages. To teach students how to apply sums and integrals to compute probabilities, and expectations. UNIT I: Probability and Random Variable Probability: Set theory, Experiments and Sample Spaces, Discrete and Continuous Sample Spaces, Events, Probability Definitions and Axioms, Joint Probability, Conditional Probability, Total Probability, Bayes’ Theorem, and Independent Events, Bernoulli’s trials.
    [Show full text]
  • A. Ya. Khintchine's Work in Probability Theory
    A.Ya. KHINTCHINE's WORK IN PROBABILITY THEORY Sergei Rogosin1, Francesco Mainardi2 1 Department of Economics, Belarusian State University Nezavisimosti ave 4, 220030 Minsk, Belarus e-mail: [email protected] (Corresponding author) 2 Department of Physics and Astronomy, Bologna University and INFN Via Irnerio 46, I-40126 Bologna, Italy e-mail: [email protected] Abstract The paper is devoted to the contribution in the Probability Theory of the well-known Soviet mathematician Alexander Yakovlevich Khint- chine (1894{1959). Several of his results are described, in particu- lar those fundamental results on the infinitely divisible distributions. Attention is paid also to his interaction with Paul L´evy. The con- tent of the paper is related to our joint book The Legacy of A.Ya. Khintchine's Work in Probability Theory published in 2010 by Cam- bridge Scientific Publishers. It is published in Notices of the Inter- national Congress of Chinese Mathematicians (ICCM), International Press, Boston, Vol. 5, No 2, pp. 60{75 (December 2017). DOI: 10.4310/ICCM.2017.v5.n2.a6 Keywords: History of XX Century Mathematics, A.Ya.Khintchine, Probability Theory, Infinitely Divisible Distributions. AMS 2010 Mathematics Subject Classification: 01A60, 60-03, 60E07. 1. Introduction:::::::::::::::::::::::::::::::::::::::::::::::::: 2 2. Short biography of Alexander Yakovlevich Khintchine::: 3 3. First papers in Probability: 1924{1936: : : : : : : : : : : : : : : : : : ::: 5 4. The interaction with Paul L´evy:::::::::::::::::::::::::::::10 5. Infinitely divisible
    [Show full text]
  • Mathematical Aspects of Classical Field Theory
    Mathematical Aspects of Classical Field Theory http://dx.doi.org/10.1090/conm/132 Mathematical Aspects of Classical Field Theory Recent Titles in This Series 132 Mark Gotay, Jerrold Marsden, and Vincent Moncrief, Mathematical aspects of classical field theory, 1992 131 L. A. Bokut', Yu. L. Ershov, and A. I. Kostrikin, Editors, Proceedings of the International Conference on Algebra Dedicated to the Memory of A. I. Mal' cev, Part 1, 2, and 3, 1992 130 L. Fuchs, K. R. Goodearl, J. T. Stafford, and C. Vinsonhaler, Editors, Abelian groups and noncommutative rings, 1992 129 John R. Graef and Jack K. Hale, Oscillation and dynamics in delay equations, 1992 128 Ridgley Lange and Shengwang Wang, New approaches in spectral decomposition, 1992 127 Vladimir Oliker and Andrejs Treibergs, Editors, Geometry and nonlinear partial differential equations, 1992 126 R. Keith Dennis, Claudio Pedrini, and Michael R. Stein, Editors, Algebraic K-theory, commutative algebra, and algebraic geometry, 1992 125 F. Thomas Bruss, Thomas S. Ferguson, and Stephen M. Samuels, Editors, Strategies for sequential search and selection in real time, 1992 124 Darrell Haile and James Osterburg, Editors, Azumaya algebras, actions, and modules, 1992 123 Steven L. Kleiman and Anders Thorup, Editors, Enumerative algebraic geometry, 1991 122 D. H. Sattinger, C. A. Tracy, and S. Venakides, Editors, Inverse scattering and applications, 1991 121 Alex J. Feingold, Igor B. Frenkel, and John F. X. Ries, Spinor construction of vertex operator algebras, triality, and E~ 1 J, 1991 120 Robert S. Doran, Editor, Selfadjoint and nonselfadjoint operator algebras and operator theory, 1991 119 Robert A. Melter, Azriel Rosenfeld, and Prabir Bhattacharya, Editors, Vision geometry, 1991 118 Yan Shi-Jian, Wang Jiagang, and Yang Chung-chun, Editors, Probability theory and its applications in China, 1991 117 Morton Brown, Editor, Continuum theory and dynamical systems, 1991 116 Brian Harboume and Robert Speiser, Editors, Algebraic geometry: Sundance 1988, 1991 115 Nancy Flournoy and Robert K.
    [Show full text]
  • An Introduction to Gauge Theories for Probabilists
    An introduction to gauge theories for probabilists Sourav Chatterjee Sourav Chatterjee An introduction to gauge theories for probabilists Part I: Quantum Yang–Mills theories Sourav Chatterjee An introduction to gauge theories for probabilists Maxwell’s equations of electromagnetism ◮ Equations governing the evolution of an electric field interacting with a magnetic field. ◮ Electric field: E = (E1, E2, E3) is a function of space and time. ◮ Magnetic field: B = (B1, B2, B3). ◮ Jointly evolve over time, satisfying the equations: ∂B B = 0, = E, ∇ · ∂t −∇× ∂E E = 0, = B. ∇ · ∂t ∇× Sourav Chatterjee An introduction to gauge theories for probabilists Gauge theoretic framework for Maxwell’s equations ◮ Instead of the fields E and B, consider a single field 4 A = (A0, A1, A2, A3) of on R , where each Ai is a map from R4 into the imaginary axis. The field A is known as a gauge field. ◮ For 0 j, k 3, define a matrix-valued function ≤ ≤ F = (Fjk )0≤j,k≤3 as ∂Ak ∂Aj Fjk := . ∂xj − ∂xk This is known as the curvature form of the gauge field A. ◮ Define E and B as 0 iE iE iE − 1 − 2 − 3 iE1 0 iB3 iB2 F = − . iE iB 0 iB 2 − 3 1 iE iB iB 0 3 2 − 1 ◮ Note that E and B are real fields. Sourav Chatterjee An introduction to gauge theories for probabilists Gauge theoretic derivation of Maxwell’s equations ◮ It can be easily checked that the above definitions of E and B automatically ensure that the first two of Maxwell’s equations are satisfied by E and B for arbitrary gauge field A (Bianchi identity).
    [Show full text]