Cognitive radio experimentation with VESNA platform

Miha Smolnikar Jozef Stefan Institute

ICTP School on Applications of Open Spectrum and White Spaces Technologies Outline

1. VESNA platform 2. LOG-a-TEC testbed 3. CREW project 4. Demos

2 VESNA platform

3 Concept

• A HW/SW platform for wireless sensor networks • High processing power and low energy consumption • & concentrator/gateway capability • Battery, solar or external power supply • Multiple communication technologies • Extensive portfolio of sensors and actuators • JTAG debug interface • OS ports: Contiki, NuttX, (RIOT) • Libraries ports: (Maple, Spark, …), panStamp, OpenWSN, Wiselib, SensLAB … • Arduino compatibility • Development, prototyping and testbed platform • Design files & source code • https://github.com/sensorlab/ 4 Supported …

… peripherals … sensors … … … communication interfaces • RS-232 • Temperature • Current (AC/DC, Hall, • Gas / Particles • IEEE 802.15.4 resistor) • CO2 • RS-422/485 • Air pressure • VOC • ZigBee • Power quality • CAN • Pressure (absolute, (parametrization) • NO, NO2, CO, O3, SO2 • 6LoWPAN differential) • PM, Pollen • USB (slave) • RFID, NFC • Wireless M-BUS • Humidity • Camera • SPI • Ultrasound • 4.0 • Luminance • … • I2C • IR (PIR, on-off, • Wi-Fi • Acceleration distance, temperature) • 1wire • GSM/GPRS • Gyroskop • • Capacitive/inductive SDIO • Ethernet • GPS/position touch/distance • 4…20 mA • Microwave radar • Color • 1-10 V • • Lightning Reflectance • Microphone (intensity, • Hall spectrum) • Load cell (weigh) • Radio spectrum (ISM, • Weather station UHF) • Rainfall rate • Voltage • Wind speed & direction • Sun radiation (UV, VIS) 5 Modularity

Sensor Node Expansion (SNE) • VESNA=SNC+SNR+SNE application specific HW, firmware • SNC = 7 cm x 5 cm debugging over JTAG Battery / solar Sensor Node Core (SNC) • SNR = 3 cm x 5 cm data acquisition and processing, Sensor connector • SNE = 7 (10) cm x 5 cm versatile power supply Power supply and RS-232 Sensor Node Radio (SNR) SDIO communication within the sensor network • Existing modules USB Radio connector • SNC-STM32 Antenna • SNR-TRX, SNR-MOD • SNE-PROTO, SNE-WG, SNE-WLG, SNE-ISMTV, SNE-ESHTER, SNE-SENS, SNE-AQA, SNE-AMIO, SNE-SH, SNE-BEECO, SNE-PMC

6 SNC-STM32

• Microcontroller • ST STM32F103xx • ST STM32L1zzxx • MRAM • Instrumentational amplifier • External / battery / solar power supply + charger • USB, RS232/UART, SPI, I2C, 12-bit DAC, 12-bit ADC • SD card slot

7 SNR-TRX (transceiver)

• 315/433 MHz, 868/915 MHz • TI CC1101 • AT86RF212 (IEEE 802.15.4) • 2.4 GHz • TI CC2500 • Atmel AT86RF231 (IEEE 802.15.4) • nRF8001 (BLE) • Range extenders • TI CC1190 (sub-GHz) / TI CC2590 (2.4 GHz)

8 SNR-MOD (OEM module)

• Digi XBee (ZigBee, proprietary) • Atmel ATZB-900 (ZigBee) • Atmel ATZB-24 (ZigBee) • Telit • ME50-868, (ME50-169) (WMBUS) • LExx, NEexx (pin compatible, proprietary) • ZExx-2.4 (pin compatible, ZigBee)

9 SNE-WG (wired gateway)

• Lantronix Xport / Digi ConnectMe (Ethernet) • Power over Ethernet • CAN • RS-485/422

10 SNE-WLG (wireless gateway)

• GainSpan GS1011 (WiFi) • BlueRadio BR-LE4.0 (Bluetooth 4.0 ) • Telit GL865 (GSM/GPRS) • uBlox MAX-6G (GPS) • Power supply

11 SNE-ISMTV (spectrum sensing) 1/2

• SNE-CREWTV • One PCB with several placement options 1. VHF/UHF (TVWS) • NXP TDA18219HN silicon tuner • Analog devices AD8307 demodulating logarithmic amplifier • RF input range: 420 – 870 MHz • Bandwidth: 1.7 MHz, 8 MHz • Linearity: ±1 dB • Dynamic range: 60 dB

12 SNE-ISMTV (spectrum sensing) 2/2

2. Sub-GHz ISM (315, 433, 783, 868, 915 MHz) • TI CC1101 • Receiver sensitivity: -112 dBm @ 868 Mhz • Programmable output power: 12 dBm 3. 2.4 GHz ISM • TI CC2500 • Receiver sensitivity: -104 dBm • Programmable output power: 1 dBm

• IEEE 802.15.4 transceiver (ISM 868 MHz) • Atmel AT86RF212

13 SNE-ESHTER (spectrum sensing) – UNDER DEVELOPMENT

• Embedded Sensing Hardware for TVWS Experimental Radio (ESHTER) • http://www.tablix.org/~avian/blog/articles/talks/next_generation_tv_band_r eceiver_for_vesna. • Motivation for redesign • Experiment with advanced spectrum sensing methods (require access to signal magnitude and phase) • Higher frequency resolution for energy detection (wireless microphones occupy ~200 kHz of spectrum, 1700 kHz narrowest TDA18219HN channel setting) • Practical problems (form-factor, EMI noise cancellation)

14 SNE-ESHTER (spectrum sensing) – UNDER DEVELOPMENT

• Going beyond energy detection • Covariance Absolute Value detector • Eigenvalue detector • Information-theoretic detection • Compressive sensing • Block diagram

15 LOG-a-TEC testbed

16 Projects

• Photovoltaic power plant monitoring (Telekom Slovenije) • http://sensors.ijs.si/ • Air quality (FP7 CITI-SENSE) • http://www.citi-sense.eu/ • Sensor support for unexpected & temporary events (FP7 ABSOLUTE) • http://www.absolute-project.eu/ • Robust network infrastructure for smart distribution grids (FP7 SUNSEED) • TBD • Spectrum sensing and cognitive radio (FP7 CREW) • http://www.crew-project.eu/

17 PV power plant monitoring

• Systematically investigate the pros and cons of different PV technologies (amorphous & crystalline silicon), effect of panels deployment (S, E, W orientation) and impact of environment (weather) conditions • Sensorics on 5 sets of PV panels • Light intensity in different spectrum (UV/VIS/IR) • Solar pannel U/I characteristic • Performance of inverter MPP tracker • Temperature of a PN junction • Environment conditions (context) • 7 VESNA sensor nodes, 1 VESNA gateway, ZigBee network @ 868 MHz

18 Air quality

• Static indoor unit (Wi-Fi) • T, rH, PM • Gas: CO2 (CO2-IRC-A1), VOC, NH3 (B1) • Static outdoor unit (Wi-Fi) • Weather: T, rH, wind speed & direction, rainfall rate • Solar radiation: VIS, IR • Lightning • Gas: NO, NO2, SO2, O3, CO (ISB-B4) • Portable unit (Wi-Fi / BLE) • VESNA SNE-AQA • T, rH, accelerometer • Gas: NO2, O3, CO (AFE-A4)

19 Spectrum sensing testbed location

• Deployed in the city of Logatec, Slovenia

• Based on • Sensor nodes are (mostly) installed on public light poles • Infrastructure rewiring ensures 24/7 power supply • Used to support the experimentally-driven research 20 Spectrum sensing VESNA nodes

SNE-ISMTV

2.4 GHz TRX 868 MHz TRX TV UHF RX 868 MHz TRX

CC2500 CC1101 TDA18219HN AT86RF212

SPI, GPIO

SNC v1.0 SNR-MOD v1.0

custom code ATZB-900-B0 S

or P I

/

U A

Contiki + custom code R T

21 Spectrum sensing VESNA nodes deployment

22 Spectrum sensing infrastructure

• 50+ sensor nodes are deployed in 3 clusters • City center (23) • Industrial zone (27) • JSI campus • Management network ZigBee @ 868 MHz, Ethernet gateway

23 green – UHF, blue - ISM 868 MHz, red - ISM 2400 MHz, yellow - reserve locations CREW project

24 FP7 project CREW

• Cognitive Radio Experimentation World • http://www.crew-project.eu/ • Establish an open federated test platform • Research on advanced spectrum sensing, cognitive radio and cognitive networking • Horizontal and vertical spectrum sharing in licensed and unlicensed bands • LOG-a-TEC • Outdoor • ISM/TVWS • Spectrum sensing and cognitive radio

25 LOG-a-TEC spectrum sensing infrastructure • 3 clusters • Sensor nodes (23+27+1) of City Logatec • SNC-STM32 • SNR-MOD (ZigBee mesh @ 868 MHz) • SNE-ISMTV • Gateways • SNC-STM32 • SNR-MOD (ZigBee mesh @ 868 MHz)

• SNE-WG JSI Campus Campus JSI Ljubljana /

26 LOG-a-TEC spectrum sensing infrastructure

• Web access portal • User administration and scheduling • Python library • SSL connection and protocol proxy • GRAS-RaPlaT

27 LOG-a-TEC testbed access portal • Testbed access portal available at www.log-a-tec.eu allows to • Show node status • Choose particular cluster • Perform an experiment • Described as a sequence of GET and POST requests • Remote (over-the-air) reprograming

28 LOG-a-TEC testbed access portal Sensor node clusters

29 LOG-a-TEC testbed access portal UHF, 868 MHz, 2.4 GHz spectrum sensing demos

30 LOG-a-TEC testbed access portal Direct interaction with nodes using GET and POST requests

31 LOG-a-TEC testbed access portal Execution of predefined experiments (sequence of GET and POST requests / Python script)

32 LOG-a-TEC testbed access portal GRASS-RaPlaT radio coverage simulations

33 VESNA spectrum sensing experimentation

• VESNA spectrum sensing • A batch of pre-prepared spectrum Sensing profile • Frequency band sensing profiles is available • Channel bandwidth • Once profile is selected VESNA • Averaging sensor node is accordingly • … configured • Experiment is run according to spectrum sensing specifications • Results are saved locally on the SD card and sent in batches to the server

34 GRASS-RaPlaT experimentation

• Integrated Radio Planning Tool (RaPlaT) based on open-source GIS system GRASS • Experiment planning • Tx radio coverage calculation • Visualization • Supporting REM estimation • Incorporating • Digital Elevation Model • Clutter file • Six path loss prediction models • Ray-tracing approach for rural and urban environments

http://www-e6.ijs.si/en/software/grass-raplat 35 Experimentation in LOG-a-TEC

1. Remote experiments (RE) • Define your experiments • Ask for an account to LOG-a-TEC • Use the Python scripts https://github.com/sensorlab/vesna-alh-tools to develop your own experiment • Use the web portal to run pre-defined experiments and simulations https://crn.log-a-tec.eu/ 2. On site experiments (OE) • If the experiments requires mobile equipment or a particular type of equipment to be brought on site 3. A mix of remote and on-site experiments (ME) • A combination of the above

36 Demos

37 Demos

1. UHF coverage simulation 2. in TVWS

38 Acknowledgements

• Thanks to colleagues in SensorLab who greatly contributed to this work.

• The work reported in this presentation has been partially funded by the European Community through the FP7 project CREW (FP7–258301).

40 Thanks for attention!

[email protected] http://sensorlab.ijs.si/