Ultrasensitive Magnetic Field Sensors for Biomedical Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Noninvasive Muscle Activity Imaging Using Magnetography
Noninvasive muscle activity imaging using magnetography Rodolfo R. Llinása,1,2, Mikhail Ustininb,2, Stanislav Rykunovb,2, Kerry D. Waltona,2, Guilherme M. Rabelloa,2, John Garciaa,2, Anna Boykob,2, and Vyacheslav Sychevb,2 aDepartment of Neuroscience and Physiology, Center for Neuromagnetism, New York University School of Medicine, New York, New York, 10016; and bKeldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, 125047 Russia Contributed by Rodolfo R. Llinás, November 19, 2019 (sent for review August 12, 2019; reviewed by Edgar Garcia-Rill and David Poeppel) A spectroscopic paradigm has been developed that allows the mag- Results netic field emissions generated by the electrical activity in the hu- The results obtained in the present set of functional tomo- man body to be imaged in real time. The growing significance of grams correspond to actual anatomical data, very much to imaging modalities in biology is evident by the almost exponential those obtained by head MRI, or by direct observation in other increase of their use in research, from the molecular to the ecolog- cases. Recordings were made from the head (Fig. 1), heart ical level. The method of analysis described here allows totally non- (Figs. 2 and 3), and several muscle groups (Figs. 4 and 5) at invasive imaging of muscular activity (heart, somatic musculature). rest and during voluntary contraction, or under conditions Such imaging can be obtained without additional methodological where muscles were intrinsically activated during muscle pain steps such as the use of contrast media. (Fig. 5). magnetoencephalography | magnetocardiography | magnetomyograph | Recordings with the Head in the Sensor Helmet. -
Arxiv:2008.00082V3 [Physics.Atom-Ph] 12 Oct 2020
Sensitive magnetometry in challenging environments Kai-Mei C. Fu,1 Geoffrey Z. Iwata,2, 3 Arne Wickenbrock,2, 3 and Dmitry Budker2, 3, 4 1University of Washington, Physics Department and Electrical and Computer Engineering Department, Seattle, WA, 98105, USA 2Helmholtz-Institut, GSI Helmholtzzentrum f¨ur Schwerionenforschung, 55128 Mainz, Germany 3Johannes Gutenberg-Universit¨atMainz, 55128 Mainz, Germany 4Department of Physics, University of California, Berkeley, CA 94720-7300, USA (Dated: October 13, 2020) State-of-the-art magnetic field measurements performed in shielded environments with carefully controlled conditions rarely reflect the realities of those applications envisioned in the introductions of peer-reviewed publications. Nevertheless, significant advances in magnetometer sensitivity have been accompanied by serious attempts to bring these magnetometers into the challenging working environments in which they are often required. This review discusses the ways in which various (predominantly optically-pumped) magnetometer technologies have been adapted for use in a wide range of noisy and physically demanding environments. I. INTRODUCTION of the sensor with the environment itself - it would be a difficult task indeed to convince a doctor to place a hot rubidium or cesium vapor cell inside a patient's body, no Magnetic fields are routinely measured with high sen- matter how well protected. sitivity to probe the physical processes that underlie a Unsurprisingly, utilization of enhanced measurement vast array of natural phenomena. From geological move- techniques and noise mitigation is an integral part of ments, solar flares, and atmospheric discharge, to inter- magnetometer development across many applications, cellular processes, neuronal communication in the brain, and is well documented across the literature. -
A Model of the Magnetic Fields Created by Single Motor Unit Compound Action Potentials in Skeletal Muscle Kevin Kit Parker and John P
948 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 44, NO. 10, OCTOBER 1997 A Model of the Magnetic Fields Created by Single Motor Unit Compound Action Potentials in Skeletal Muscle Kevin Kit Parker and John P. Wikswo, Jr.,* Member, IEEE Abstract—We have developed a computationally simple model Of particular interest is the MMG, although much of what for calculating the magnetic-field strength at a point due to a we state about the MMG is applicable to the MNG in the single motor unit compound action potential (SMUCAP). The appropriate context. The EMG and the MMG have similarities, motor unit is defined only in terms of its anatomical features, and the SMUCAP is approximated using the tripole model. The as they are both measurements of the same phenomena of distributed current density J is calculated within the volume propagation of action signals along an excitable fiber, that defined by the motor unit. The law of Biot and Savart can then are documented in the literature [1], [2]. Recordings made be cast in a form necessitating that J be integrated only over in our laboratory on single motor units (SMU’s) of the extens the region containing current sources or conductivity boundaries. or digitorum longus in rats [1] and a subsequent analysis of The magnetic-field strength is defined as the summation of the contributions to the field made by every muscle fiber in the motor the magnetic recording technique [3] showed two important unit. Applying this model to SMUCAP measurements obtained features of the MMG: the AF was less sensitive to the position using a high-resolution SUper Conducting Quantum Interference of the magnetometer than the electric potential recording Device (SQUID) magnetometer may yield information regarding was to electrode placement, and the AF associated with AC the distribution of action currents (AC’s) and the anatomical properties of single motor units within a muscle bundle. -
Optimisation of a Diamond Nitrogen Vacancy Centre Magnetometer for Sensing of Biological Signals
Optimisation of a diamond nitrogen vacancy centre magnetometer for sensing of biological signals August 26, 2020 []James L. Webb 1,∗, Luca Troise 1, Nikolaj W. Hansen 2, Jocelyn Achard 3, Ovidiu Brinza 3, Robert Staacke 4, Michael Kieschnick 4, Jan Meijer 4, Jean-Fran¸cois Perrier 2, Kirstine Berg Sørensen 1, Alexander Huck 1 and Ulrik Lund Andersen 1 Abstract 1 Sensing of signals from biological processes, such as action potential propagation in nerves, are essential for clinical diagnosis and basic understanding of physiology. Sensing can be performed electrically by placing sensor probes near or inside a liv- ing specimen or dissected tissue using well established electrophysiology techniques. However, these electrical probe techniques have poor spatial resolution and can- not easily access tissue deep within a living subject, in particular within the brain. An alternative approach is to detect the magnetic field induced by the passage of the electrical signal, giving the equivalent readout without direct electrical contact. Such measurements are performed today using bulky and expensive superconduct- ing sensors with poor spatial resolution. An alternative is to use nitrogen vacancy (NV) centres in diamond that promise biocompatibilty and high sensitivity without arXiv:2004.02279v2 [quant-ph] 24 Aug 2020 cryogenic cooling. In this work we present advances in biomagnetometry using NV centres, demonstrating magnetic field sensitivity of approximately 100 pT/√Hz in the DC/low frequency range using a setup designed for biological measurements. Biocompatibility of the setup with a living sample (mouse brain slice) is studied and optimized, and we show work toward sensitivity improvements using a pulsed magnetometry scheme. -
Unit VI Superconductivity JIT Nashik Contents
Unit VI Superconductivity JIT Nashik Contents 1 Superconductivity 1 1.1 Classification ............................................. 1 1.2 Elementary properties of superconductors ............................... 2 1.2.1 Zero electrical DC resistance ................................. 2 1.2.2 Superconducting phase transition ............................... 3 1.2.3 Meissner effect ........................................ 3 1.2.4 London moment ....................................... 4 1.3 History of superconductivity ...................................... 4 1.3.1 London theory ........................................ 5 1.3.2 Conventional theories (1950s) ................................ 5 1.3.3 Further history ........................................ 5 1.4 High-temperature superconductivity .................................. 6 1.5 Applications .............................................. 6 1.6 Nobel Prizes for superconductivity .................................. 7 1.7 See also ................................................ 7 1.8 References ............................................... 8 1.9 Further reading ............................................ 10 1.10 External links ............................................. 10 2 Meissner effect 11 2.1 Explanation .............................................. 11 2.2 Perfect diamagnetism ......................................... 12 2.3 Consequences ............................................. 12 2.4 Paradigm for the Higgs mechanism .................................. 12 2.5 See also ............................................... -
Magnetocardiography on an Isolated Animal Heart with a Room
www.nature.com/scientificreports OPEN Magnetocardiography on an isolated animal heart with a room- temperature optically pumped Received: 4 July 2018 Accepted: 12 October 2018 magnetometer Published: xx xx xxxx Kasper Jensen 1,4, Mark Alexander Skarsfeldt 2, Hans Stærkind 1, Jens Arnbak1, Mikhail V. Balabas 1,3, Søren-Peter Olesen 2, Bo Hjorth Bentzen 2 & Eugene S. Polzik 1 Optically pumped magnetometers are becoming a promising alternative to cryogenically-cooled superconducting magnetometers for detecting and imaging biomagnetic felds. Magnetic feld detection is a completely non-invasive method, which allows one to study the function of excitable human organs with a sensor placed outside the human body. For instance, magnetometers can be used to detect brain activity or to study the activity of the heart. We have developed a highly sensitive miniature optically pumped magnetometer based on cesium atomic vapor kept in a parafn-coated glass container. The magnetometer is optimized for detection of biological signals and has high temporal and spatial resolution. It is operated at room- or human body temperature and can be placed in contact with or at a mm-distance from a biological object. With this magnetometer, we detected the heartbeat of an isolated guinea-pig heart, which is an animal widely used in biomedical studies. In our recordings of the magnetocardiogram, we can detect the P-wave, QRS-complex and T-wave associated with the cardiac cycle in real time. We also demonstrate that our device is capable of measuring the cardiac electrographic intervals, such as the RR- and QT-interval, and detecting drug-induced prolongation of the QT-interval, which is important for medical diagnostics. -
Stress Testing in Coronary Artery Disease by Magnetic Field Imaging: a 3D Current Distribution Model
Original Investigation 191 Stress testing in coronary artery disease by Magnetic Field Imaging: a 3D current distribution model Matthias Goernig1, Massimo De Melis2, Dania Di Pietro Paolo3, Walfred Tedeschi3, Mario Liehr1,2, Hans Reiner Figulla1, Sergio Erne2 1Clinic of Internal Medicine I, University of Jena, 2Clinic of Neurology, University of Jena, 3BMDSys GmbH, Jena, Jena, Germany ABSTRACT Objective: Magnetic field imaging (MFI) combines depolarization and repolarization registration of the cardiac electromagnetic field with a 3D current distribution model. An interesting application for MFI is the possibility to detect myocardial ischemia under stress. Methods: Using a new reconstruction technique, it is possible to generate a pseudo-current distribution on the epicardial surface: the comparison of the time evolution of such current distributions at rest and under stress shows difference in coronary artery disease (CAD). The model works with a realistic epicardial surface generate on the basis of computerised tomography or magnetic resonance tomography data or with a standardized ellipsoidal model. To take into account the vectorial character of the epicardial current distribution, the current flow in the epicardial surface element is represented in the graphic display by a cone. Thus indicating the direction of current flow the height of the cone represents the current intensity. Results: As an example of the method, data of pharmacological stress MFI on a CAD patient will be presented. The newly developed algorithm operates in different segments of the electromagnetic heart beat. The indicated myocardial area strongly correlated to invasive coronary angiography results. In such a situation the advantage provided by the “friendly” ellipsoidal surface on the numerical solution of the inverse problem seems to overcome the advantage of a realistic heart model. -
Muscle Fatigue Revisited - Insights from Optically Pumped Magnetometers
bioRxiv preprint doi: https://doi.org/10.1101/2021.05.03.442396; this version posted May 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Muscle fatigue revisited - Insights from optically pumped magnetometers Davide Sometti2,3,6, Lorenzo Semeia5,6, Hui Chen2,3, Juergen Dax2,3, Cornelius Kronlage1, Sangyeob Baek2,3,11, Milena Kirchgässner1, Alyssa Romano1, Johanna Heilos1, Deborah Staber1, Julia Oppold1, Giulia Righetti2,3,4, Thomas Middelmann5, Christoph Braun2,3,6,7, Philip Broser8, Justus Marquetand 1,2,3 1 Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany 2 Department of Neural Dynamics and Magnetoencephalography, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany 3 MEG-Center, University of Tübingen, Tübingen, Germany 4 Center for Ophthalmology, University of Tübingen, Tübingen, Germany 5 IDM/fMEG Center of the Helmholtz Center Munich at the University of Tübingen, University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany 6 Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, 72074 Tübingen, Germany 7 Department of Biosignals, Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany 8 CIMeC, Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy 9 DiPsCo, Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy 10 Children's Hospital of Eastern Switzerland, Sankt Gallen, Switzerland. 11 University of Freiburg, Freiburg, Germany Corresponding Author: Justus Marquetand Email: [email protected] Hoppe-Seyler-Str.3 72076 Tübingen Germany bioRxiv preprint doi: https://doi.org/10.1101/2021.05.03.442396; this version posted May 4, 2021. -
Miniaturized Magnetic Sensors for Implantable Magnetomyography
PROGRESS REPORT www.advmattechnol.de Miniaturized Magnetic Sensors for Implantable Magnetomyography Siming Zuo, Hadi Heidari,* Dario Farina, and Kianoush Nazarpour* 1972.[1] Cohen and Gilver defined the mag- Magnetism-based systems are widely utilized for sensing and imaging netomyogram signal to be a recording of biological phenomena, for example, the activity of the brain and the heart. one component of the magnetic field vector versus time, where the magnetic field at Magnetomyography (MMG) is the study of muscle function through the inquiry the point of measurement is due to cur- of the magnetic signal that a muscle generates when contracted. Within the rents generated by skeletal muscle. The last few decades, extensive effort has been invested to identify, characterize correspondence between the MMG method and quantify the magnetomyogram signals. However, it is still far from a and its electrical counterpart, that is the miniaturized, sensitive, inexpensive and low-power MMG sensor. Herein, the electromyography (EMG) technique.[2] Both state-of-the-art magnetic sensing technologies that have the potential to realize stems directly from the Maxwell–Ampère law, as illustrated in Figure 1a. However, a low-profile implantable MMG sensor are described. The technical challenges the ease at which the EMG signal can be associated with the detection of the MMG signals, including the magnetic field recorded and the similarity between the of the Earth and movement artifacts are also discussed. Then, the development temporal and spectral characteristics of the of efficient magnetic technologies, which enable sensing pico-Tesla signals, MMG and EMG signals have encouraged is advocated to revitalize the MMG technique. -
Noninvasive Muscle Activity Imaging Using Magnetography
Noninvasive muscle activity imaging using magnetography Rodolfo R. Llinása,1,2, Mikhail Ustininb,2, Stanislav Rykunovb,2, Kerry D. Waltona,2, Guilherme M. Rabelloa,2, John Garciaa,2, Anna Boykob,2, and Vyacheslav Sychevb,2 aDepartment of Neuroscience and Physiology, Center for Neuromagnetism, New York University School of Medicine, New York, New York, 10016; and bKeldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, 125047 Russia Contributed by Rodolfo R. Llinás, November 19, 2019 (sent for review August 12, 2019; reviewed by Edgar Garcia-Rill and David Poeppel) A spectroscopic paradigm has been developed that allows the mag- Results netic field emissions generated by the electrical activity in the hu- The results obtained in the present set of functional tomo- man body to be imaged in real time. The growing significance of grams correspond to actual anatomical data, very much to imaging modalities in biology is evident by the almost exponential those obtained by head MRI, or by direct observation in other increase of their use in research, from the molecular to the ecolog- cases. Recordings were made from the head (Fig. 1), heart ical level. The method of analysis described here allows totally non- (Figs. 2 and 3), and several muscle groups (Figs. 4 and 5) at invasive imaging of muscular activity (heart, somatic musculature). rest and during voluntary contraction, or under conditions Such imaging can be obtained without additional methodological where muscles were intrinsically activated during muscle pain steps such as the use of contrast media. (Fig. 5). magnetoencephalography | magnetocardiography | magnetomyograph | Recordings with the Head in the Sensor Helmet. -
Magnetocardiography on an Isolated Animal Heart with a Room-Temperature Optically Pumped Magnetometer
Magnetocardiography on an isolated animal heart with a room-temperature optically pumped magnetometer Jensen, Kasper; Skarsfeldt, Mark Alexander; Staerkind, Hans; Arnbak, Jens; Balabas, Mikhail V.; Olesen, Soren-Peter; Bentzen, Bo Hjorth; Polzik, Eugene S. Published in: Scientific Reports DOI: 10.1038/s41598-018-34535-z Publication date: 2018 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Jensen, K., Skarsfeldt, M. A., Staerkind, H., Arnbak, J., Balabas, M. V., Olesen, S-P., Bentzen, B. H., & Polzik, E. S. (2018). Magnetocardiography on an isolated animal heart with a room-temperature optically pumped magnetometer. Scientific Reports, 8, [16218]. https://doi.org/10.1038/s41598-018-34535-z Download date: 02. okt.. 2021 www.nature.com/scientificreports OPEN Magnetocardiography on an isolated animal heart with a room- temperature optically pumped Received: 4 July 2018 Accepted: 12 October 2018 magnetometer Published: xx xx xxxx Kasper Jensen 1,4, Mark Alexander Skarsfeldt 2, Hans Stærkind 1, Jens Arnbak1, Mikhail V. Balabas 1,3, Søren-Peter Olesen 2, Bo Hjorth Bentzen 2 & Eugene S. Polzik 1 Optically pumped magnetometers are becoming a promising alternative to cryogenically-cooled superconducting magnetometers for detecting and imaging biomagnetic felds. Magnetic feld detection is a completely non-invasive method, which allows one to study the function of excitable human organs with a sensor placed outside the human body. For instance, magnetometers can be used to detect brain activity or to study the activity of the heart. We have developed a highly sensitive miniature optically pumped magnetometer based on cesium atomic vapor kept in a parafn-coated glass container. -
Gross, J. (2019) Magnetoencephalography in Cognitive Neuroscience: a Primer. Neuron, 104(2), Pp
Gross, J. (2019) Magnetoencephalography in cognitive neuroscience: A primer. Neuron, 104(2), pp. 189-204. There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it. http://eprints.gla.ac.uk/202921/ Deposited on: 21 November 2019 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk Magnetoencephalography (MEG) in Cognitive Neuroscience: A Primer Joachim Gross1,2,3 1Institute for Biomagnetism and Biosignalanalysis (IBB), University of Muenster, 48149 Muenster, Germany 2Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Muenster, 48149 Muenster, Germany 3Centre for Cognitive Neuroimaging (CCNi), University of Glasgow, Glasgow, UK Correspondence: [email protected] (phone: +49251 83 56865) Summary Magnetoencephalography (MEG) is an invaluable tool to study the dynamics and connectivity of large-scale brain activity and their interactions with the body and the environment in functional and dysfunctional body and brain states. This primer introduces the basic concepts of MEG, discusses its strengths and limitations in comparison to other brain imaging techniQues, showcases interesting applications, and projects exciting current trends into the near future, in a way that might more fully exploit the uniQue capabilities of MEG. Keywords: MEG, Magnetoencephalography, neuroscience, brain oscillations, brain rhythms, brain imaging, connectivity, In brief: This primer by Gross introduces Magnetoencephalography (MEG) as a versatile tool to study large-scale brain activity in health and disease. It explains fundamental concepts of MEG and discusses recent and future applications in the field of cognitive neuroscience. 1 Introduction Magnetoencephalography (MEG) allows researchers to study brain activity by recording the magnetic fields generated by the electrical activity of neuronal populations.