Fernando Q. Gouvêa Fernando Q
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Inverse Galois Problem with Viewpoint to Galois Theory and It's Applications
Vol-3 Issue-4 2017 IJARIIE-ISSN(O)-2395-4396 INVERSE GALOIS PROBLEM WITH VIEWPOINT TO GALOIS THEORY AND IT’S APPLICATIONS Dr. Ajay Kumar Gupta1, Vinod Kumar2 1 Associate Professor, Bhagwant Institute of Technology, Muzaffarnagar,Uttar Pradesh, India 2 Research Scholar, Deptt. Of Mathematics, Bhagwant University, Ajmer, Rajasthan, India ABSTRACT In this paper we are presenting a review of the inverse Galois Problem and its applications. In mathematics, more specifically in abstract algebra, Galois Theory, named after Évariste Galois, provides a connection between field theory and group theory. Using Galois Theory, certain problems in field theory can be reduced to group theory, which is, in some sense, simpler and better understood. Originally, Galois used permutation groups to describe how the various roots of a given polynomial equation are related to each other. Galois Theory is the algebraic study of groups that can be associated with polynomial equations. In this survey we outline the milestones of the Inverse Problem of Galois theory historically up to the present time. We summarize as well the contribution of the authors to the Galois Embedding Problem, which is the most natural approach to the Inverse Problem in the case of non-simple groups. Keyword : - Problem, Contribution, Field Theory, and Simple Group etc. 1. INTRODUCTION The inverse problem of Galois Theory was developed in the early 1800’s as an approach to understand polynomials and their roots. The inverse Galois problem states whether any finite group can be realized as a Galois group over ℚ (field of rational numbers). There has been considerable progress in this as yet unsolved problem. -
THE INVERSE GALOIS PROBLEM OVER C(Z)
THE INVERSE GALOIS PROBLEM OVER C(z) ARNO FEHM, DAN HARAN AND ELAD PARAN Abstract. We give a self-contained elementary solution for the inverse Galois problem over the field of rational functions over the complex numbers. 1. Introduction Since the 19th century one of the foundational open questions of Galois theory is the inverse Galois problem, which asks whether every finite group occurs as the Galois group of a Galois extension of the field Q of rational numbers. In 1892 Hilbert proved his cele- brated irreducibility theorem and deduced that the inverse Galois problem has a positive answer provided that every finite group occurs as the Galois group of a Galois extension of the field Q(z) of rational functions over Q. It was known already back then that the analogous problem for the field C(z) of rational functions over the complex numbers indeed has a positive answer: Every finite group occurs as the Galois group of a Galois extension of C(z). The aim of this work is to give a new and elementary proof of this result which uses only basic complex analysis and field theory. The value of such a proof becomes clear when compared to the previously known ones: 1.1. Classical proof using Riemann's existence theorem. The classical proof (likely the one known to Hilbert) uses the fact that the finite extensions of C(z) correspond to compact Riemann surfaces realized as branched covers of the Riemann sphere C^, which ^ in turn are described by the fundamental group π1(D) of domains D = C r fz1; : : : ; zdg, where z1; : : : ; zd are the branch points. -
Patching and Galois Theory David Harbater∗ Dept. of Mathematics
Patching and Galois theory David Harbater∗ Dept. of Mathematics, University of Pennsylvania Abstract: Galois theory over (x) is well-understood as a consequence of Riemann's Existence Theorem, which classifies the algebraic branched covers of the complex projective line. The proof of that theorem uses analytic and topological methods, including the ability to construct covers locally and to patch them together on the overlaps. To study the Galois extensions of k(x) for other fields k, one would like to have an analog of Riemann's Existence Theorem for curves over k. Such a result remains out of reach, but partial results in this direction can be proven using patching methods that are analogous to complex patching, and which apply in more general contexts. One such method is formal patching, in which formal completions of schemes play the role of small open sets. Another such method is rigid patching, in which non-archimedean discs are used. Both methods yield the realization of arbitrary finite groups as Galois groups over k(x) for various classes of fields k, as well as more precise results concerning embedding problems and fundamental groups. This manuscript describes such patching methods and their relationships to the classical approach over , and shows how these methods provide results about Galois groups and fundamental groups. ∗ Supported in part by NSF Grants DMS9970481 and DMS0200045. (Version 3.5, Aug. 30, 2002.) 2000 Mathematics Subject Classification. Primary 14H30, 12F12, 14D15; Secondary 13B05, 13J05, 12E30. Key words and phrases: fundamental group, Galois covers, patching, formal scheme, rigid analytic space, affine curves, deformations, embedding problems. -
The Sylow Theorems and Classification of Small Finite Order Groups
Union College Union | Digital Works Honors Theses Student Work 6-2015 The yS low Theorems and Classification of Small Finite Order Groups William Stearns Union College - Schenectady, NY Follow this and additional works at: https://digitalworks.union.edu/theses Part of the Physical Sciences and Mathematics Commons Recommended Citation Stearns, William, "The yS low Theorems and Classification of Small Finite Order Groups" (2015). Honors Theses. 395. https://digitalworks.union.edu/theses/395 This Open Access is brought to you for free and open access by the Student Work at Union | Digital Works. It has been accepted for inclusion in Honors Theses by an authorized administrator of Union | Digital Works. For more information, please contact [email protected]. THE SYLOW THEOREMS AND CLASSIFICATION OF SMALL FINITE ORDER GROUPS WILLIAM W. STEARNS Abstract. This thesis will provide an overview of various topics in group theory, all in order to accomplish the end goal of classifying all groups of order up to 15. An important precursor to classifying finite order groups, the Sylow Theorems illustrate what subgroups of a given group must exist, and constitute the first half of this thesis. Using these theorems in the latter sections we will classify all the possible groups of various orders up to isomorphism. In concluding this thesis, all possible distinct groups of orders up to 15 will be defined and the groundwork set for further study. 1. Introduction The results in this thesis require some background knowledge and motivation. To that end, material covered in an introductory course on abstract algebra should be sufficient. In particular, it is assumed that the reader is familiar with the concepts and definitions of: group, subgroup, coset, index, homomorphism, and kernel. -
1 Lagrange's Theorem
1 Lagrange's theorem Definition 1.1. The index of a subgroup H in a group G, denoted [G : H], is the number of left cosets of H in G ( [G : H] is a natural number or infinite). Theorem 1.2 (Lagrange's Theorem). If G is a finite group and H is a subgroup of G then jHj divides jGj and jGj [G : H] = : jHj Proof. Recall that (see lecture 16) any pair of left cosets of H are either equal or disjoint. Thus, since G is finite, there exist g1; :::; gn 2 G such that n • G = [i=1giH and • for all 1 ≤ i < j ≤ n, giH \ gjH = ;. Since n = [G : H], it is enough to now show that each coset of H has size jHj. Suppose g 2 G. The map 'g : H ! gH : h 7! gh is surjective by definition. The map 'g is injective; for whenever gh1 = 'g(h1) = 'g(h2) = gh2 −1 , multiplying on the left by g , we have that h1 = h2. Thus each coset of H in G has size jHj. Thus n n X X jGj = jgiHj = jHj = [G : H]jHj i=1 i=1 Note that in the above proof we could have just as easily worked with right cosets. Thus if G is a finite group and H is a subgroup of G then the number of left cosets is equal to the number of right cosets. More generally, the map gH 7! Hg−1 is a bijection between the set of left cosets of H in G and the set of right cosets of H in G. -
Syntactic and Rees Indices of Subsemigroups
JOURNAL OF ALGEBRA 205, 435]450Ž. 1998 ARTICLE NO. JA977392 Syntactic and Rees Indices of Subsemigroups N. RuskucÏ U Mathematical Institute, Uni¨ersity of St Andrews, St Andrews, KY16 9SS, Scotland and View metadata, citation and similar papers at core.ac.uk brought to you by CORE R. M. Thomas² provided by Elsevier - Publisher Connector Department of Mathematics and Computer Science, Uni¨ersity of Leicester, Leicester, LE1 7RH, England Communicated by T. E. Hall Received August 28, 1996 We define two different notions of index for subsemigroups of semigroups: the Ž.right syntactic index and the Rees index. We investigate the relationships be- tween them and with the group index. In particular, we show that the syntactic index is a generalisation of both the group index and the Rees index. We use this fact to prove further similarities between the group index and the Rees index. It turns out, however, that very few of the nice properties of the group index are inherited by the syntactic index. Q 1998 Academic Press 1. INTRODUCTION The notion of the index of a subgroup in a group is one of the most basic concepts of group theory. It provides one with a sort of ``measure'' of how much smaller the subgroup is when compared to the group. This is particularly reflected in the fact that subgroups of finite index share many properties with the group. A notion of the indexŽ. which in this paper will be called the Rees index for subsemigroups of semigroups was introduced by Jurawx 11 , and is considered in more detail inwxwx 2, 4, 6, 5, 24 . -
Inverse Galois Problem for Totally Real Number Fields
Cornell University Mathematics Department Senior Thesis Inverse Galois Problem for Totally Real Number Fields Sudesh Kalyanswamy Class of 2012 April, 2012 Advisor: Prof. Ravi Ramakrishna, Department of Mathematics Abstract In this thesis we investigate a variant of the Inverse Galois Problem. Namely, given a finite group G, the goal is to find a totally real extension K=Q, neces- sarily finite, such that Gal(K=Q) is isomorphic to G. Questions regarding the factoring of primes in these extensions also arise, and we address these where possible. The first portion of this thesis is dedicated to proving and developing the requisite algebraic number theory. We then prove the existence of totally real extensions in the cases where G is abelian and where G = Sn for some n ≥ 2. In both cases, some explicit polynomials with Galois group G are provided. We obtain the existence of totally real G-extensions of Q for all groups of odd order using a theorem of Shafarevich, and also outline a method to obtain totally real number fields with Galois group D2p, where p is an odd prime. In the abelian setting, we consider the factorization of primes of Z in the con- structed totally real extensions. We prove that the primes 2 and 5 each split in infinitely many totally real Z=3Z-extensions, and, more generally, that for primes p and q, p will split in infinitely many Z=qZ-extensions of Q. Acknowledgements I would like to thank Professor Ravi Ramakrishna for all his guidance and support throughout the year, as well as for the time he put into reading and editing the thesis. -
Group Theory
Chapter 1 Group Theory Most lectures on group theory actually start with the definition of what is a group. It may be worth though spending a few lines to mention how mathe- maticians came up with such a concept. Around 1770, Lagrange initiated the study of permutations in connection with the study of the solution of equations. He was interested in understanding solutions of polynomials in several variables, and got this idea to study the be- haviour of polynomials when their roots are permuted. This led to what we now call Lagrange’s Theorem, though it was stated as [5] If a function f(x1,...,xn) of n variables is acted on by all n! possible permutations of the variables and these permuted functions take on only r values, then r is a divisior of n!. It is Galois (1811-1832) who is considered by many as the founder of group theory. He was the first to use the term “group” in a technical sense, though to him it meant a collection of permutations closed under multiplication. Galois theory will be discussed much later in these notes. Galois was also motivated by the solvability of polynomial equations of degree n. From 1815 to 1844, Cauchy started to look at permutations as an autonomous subject, and introduced the concept of permutations generated by certain elements, as well as several nota- tions still used today, such as the cyclic notation for permutations, the product of permutations, or the identity permutation. He proved what we call today Cauchy’s Theorem, namely that if p is prime divisor of the cardinality of the group, then there exists a subgroup of cardinality p. -
Inverse Galois Problem Research Report in Mathematics, Number 13, 2017
ISSN: 2410-1397 Master Dissertation in Mathematics Inverse Galois Problem University of Nairobi Research Report in Mathematics, Number 13, 2017 James Kigunda Kabori August 2017 School of Mathematics Submied to the School of Mathematics in partial fulfilment for a degree in Master of Science in Pure Mathematics Master Dissertation in Mathematics University of Nairobi August 2017 Inverse Galois Problem Research Report in Mathematics, Number 13, 2017 James Kigunda Kabori School of Mathematics College of Biological and Physical sciences Chiromo, o Riverside Drive 30197-00100 Nairobi, Kenya Master Thesis Submied to the School of Mathematics in partial fulfilment for a degree in Master of Science in Pure Mathematics Prepared for The Director Board Postgraduate Studies University of Nairobi Monitored by Director, School of Mathematics ii Abstract The goal of this project, is to study the Inverse Galois Problem. The Inverse Galois Problem is a major open problem in abstract algebra and has been extensive studied. This paper by no means proves the Inverse Galois Problem to hold or not to hold for all nite groups but we will, in chapter 4, show generic polynomials over Q satisfying the Inverse Galois Problem. Master Thesis in Mathematics at the University of Nairobi, Kenya. ISSN 2410-1397: Research Report in Mathematics ©Your Name, 2017 DISTRIBUTOR: School of Mathematics, University of Nairobi, Kenya iv Declaration and Approval I the undersigned declare that this dissertation is my original work and to the best of my knowledge, it has not been submitted in support of an award of a degree in any other university or institution of learning. -
SPECIALIZATIONS of GALOIS COVERS of the LINE 11 It Is the Condition (Κ-Big-Enough) from Proposition 2.2 of [DG10] That Needs to Be Satisfied)
SPECIALIZATIONS OF GALOIS COVERS OF THE LINE PIERRE DEBES` AND NOUR GHAZI Abstract. The main topic of the paper is the Hilbert-Grunwald property of Galois covers. It is a property that combines Hilbert’s irreducibility theorem, the Grunwald problem and inverse Galois theory. We first present the main results of our preceding paper which concerned covers over number fields. Then we show how our method can be used to unify earlier works on specializations of covers over various fields like number fields, PAC fields or finite fields. Finally we consider the case of rational function fields κ(x) and prove a full analog of the main theorem of our preceding paper. 1. Inroduction The Hilbert-Grunwald property of Galois covers over number fields was defined and studied in our previous paper [DG10]. It combines several topics: the Grunwald-Wang problem, Hilbert’s irreducibility theorem and the Regular Inverse Galois Problem (RIGP). Roughly speaking our main result there, which is recalled below as theorem 2.1 showed how, under certain conditions, a Galois cover f : X → P1 provides, by specialization, solutions to Grunwald problems. We next explained how to deduce an obstruction (possibly vacuous) for a finite group to be a regular Galois group over some number field K, i.e. the Galois group of some regular Galois extension E/K(T ) (corollary 1.5 of [DG10]). A refined form of this obstruction led us to some statements that question the validity of the Regular Inverse Galois Problem (RIGP) (corollaries 1.6 and 4.1 of [DG10]). The aim of this paper is threefold: - in §2: we present in more details the contents of [DG10]. -
The Inverse Galois Problem Over Formal Power Series Fields by Moshe Jarden, Tel Aviv University Israel Journal of Mathematics 85
The inverse Galois problem over formal power series fields by Moshe Jarden, Tel Aviv University Israel Journal of Mathematics 85 (1994), 263–275. Introduction The inverse Galois problem asks whether every finite group G occurs as a Galois group over the field Q of rational numbers. We then say that G is realizable over Q. This problem goes back to Hilbert [Hil] who realized Sn and An over Q. Many more groups have been realized over Q since 1892. For example, Shafarevich [Sha] finished in 1958 the work started by Scholz 1936 [Slz] and Reichardt 1937 [Rei] and realized all solvable groups over Q. The last ten years have seen intensified efforts toward a positive solution of the problem. The area has become one of the frontiers of arithmetic geometry (see surveys of Matzat [Mat] and Serre [Se1]). Parallel to the effort of realizing groups over Q, people have generalized the inverse Galois problem to other fields with good arithmetical properties. The most distinguished field where the problem has an affirmative solution is C(t). This is a consequence of the Riemann Existence Theorem from complex analysis. Winfried Scharlau and Wulf-Dieter Geyer asked what is the absolute Galois group of the field of formal power series F = K((X1,...,Xr)) in r ≥ 2 variables over an arbitrary field K. The full answer to this question is still out of reach. However, a theorem of Harbater (Proposition 1.1a) asserts that each Galois group is realizable over the field of rational function F (T ). By a theorem of Weissauer (Proposition 3.1), F is Hilbertian. -
Inverse Galois Problem and Significant Methods
Inverse Galois Problem and Significant Methods Fariba Ranjbar*, Saeed Ranjbar * School of Mathematics, Statistics and Computer Science, University of Tehran, Tehran, Iran. [email protected] ABSTRACT. The inverse problem of Galois Theory was developed in the early 1800’s as an approach to understand polynomials and their roots. The inverse Galois problem states whether any finite group can be realized as a Galois group over ℚ (field of rational numbers). There has been considerable progress in this as yet unsolved problem. Here, we shall discuss some of the most significant results on this problem. This paper also presents a nice variety of significant methods in connection with the problem such as the Hilbert irreducibility theorem, Noether’s problem, and rigidity method and so on. I. Introduction Galois Theory was developed in the early 1800's as an approach to understand polynomials and their roots. Galois Theory expresses a correspondence between algebraic field extensions and group theory. We are particularly interested in finite algebraic extensions obtained by adding roots of irreducible polynomials to the field of rational numbers. Galois groups give information about such field extensions and thus, information about the roots of the polynomials. One of the most important applications of Galois Theory is solvability of polynomials by radicals. The first important result achieved by Galois was to prove that in general a polynomial of degree 5 or higher is not solvable by radicals. Precisely, he stated that a polynomial is solvable by radicals if and only if its Galois group is solvable. According to the Fundamental Theorem of Galois Theory, there is a correspondence between a polynomial and its Galois group, but this correspondence is in general very complicated.