An Experimental Study of Gridded and Virtual Cathode Inertial Electrostatic Confinement Fusion Systems

Total Page:16

File Type:pdf, Size:1020Kb

An Experimental Study of Gridded and Virtual Cathode Inertial Electrostatic Confinement Fusion Systems The University of Sydney Doctoral Thesis An Experimental Study of Gridded and Virtual Cathode Inertial Electrostatic Confinement Fusion Systems Author: Supervisor: Richard Bowden-Reid A/Prof. Joseph Khachan A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the Department of Plasma Physics and Nuclear Fusion School of Physics September 2019 Declaration of Authorship I, Richard Bowden-Reid, declare that this thesis titled, An Experimental Study of Gridded and Virtual Cathode Inertial Electrostatic Confinement Fusion Systems and the work presented in it are my own. I confirm that: This work was done wholly or mainly while in candidature for a research degree at this University. Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated. Where I have consulted the published work of others, this is always clearly attributed. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. I have acknowledged all main sources of help. Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself. Sections of Chapter 3 of this thesis are published as: \Evidence for Surface Fusion in Inertial Electrostatic Confinement Devices" Physics of Plasmas, 25, 112702, 2018, https://doi.org/10.1063/1.5053616 I designed the study, analysed the data and wrote the drafts of the manuscript. Signed: Date: i \Fusion works. All you have to do is go outside at day time or go outside at night and look up; There are billions of fusion reactors, every star is a fusion reactor and not one of them is toroidal." Robert Bussard THE UNIVERSITY OF SYDNEY Abstract Faculty of Science School of Physics Doctor of Philosophy An Experimental Study of Gridded and Virtual Cathode Inertial Electrostatic Confinement Fusion Systems by Richard Bowden-Reid Inertial electrostatic confinement (IEC) fusion is a technique that aims to use electric fields to confine and heat ions. The concept makes use of concentric electrodes to accelerate and focus ions thereby creating the conditions necessary for nuclear fusion to occur. IEC cathodes may be mechanical, taking the form of metallic grids or virtual, formed through the localisation of a net negative space charge. An experimental study has been carried out into the operation of IEC devices of both types with the view to furthering understanding as to how such devices may be implemented as net energy producing fusion reactors. The phenomenon of surface fusion in a gridded IEC was examined and the total fusion rate found to be dominated by interac- tions between energetic ions and neutral targets adsorbed on cathode surface. The material and temperature of the IEC cathode were found to have a profound influence on the observed fusion rate, with graphite seen to perform exceptionally well when compared to transition metal cathodes. The first example of a gridded IEC device manufactured from graphite is described. The research indicates that great improvements in the fusion efficiency of gridded IEC machines are possible through careful choice of grid material and the implementation of active cathode cooling. Also described is the design and construction, as well as initial operation of MCVC-0, a successor to previous Polywell style devices constructed at The University of Sydney. The device makes use of a biconic cusp magnetic field to confine electrons in space, thereby generat- ing a virtual cathode. Biased and floating Langmuir probe measurements were used to examine potential well formation in the new machine, as well as diagnose the fundamental plasma param- eters of temperature and density. Preliminary experimental work indicates poor performance of MCVC-0 with respect to virtual cathode formation and these shortcomings are addressed in terms of non-isotropic electrical conductivity in magnetised plasmas. The plasma conductivity model is extended to previously published virtual cathode machines and is shown to adequately describe the observed device behaviour, providing a possible alternate physical explanation for virtual cathode formation. Acknowledgements I would like to extend my utmost thanks to all those without whom this project would not have been possible. First and foremost to A/Prof Joe Khachan, who is the epitome of what a supervisor should be. Who, despite his sometimes crushing work load, is always able find time for his students, whether to provide assistance in the lab, advice on a problem or to proofread a thesis. I am enormously thankful that I am able to refer to Joe, not merely as a supervisor, but also as a mate. To the CSIRO and the folks at the Queensland Centre for Advanced Technologies, John Malos, Mark Kochanek, Craig Smith and Craig James, whose support and interest in this project made possible things I had not previously imagined. I am also extremely grateful to the extraordinarily talented staff of the School of Physics Me- chanical Workshop, Michael Paterson, Terry Phieffer, James Gibson, Caleb Gudu, David Cassar, Darren Moran and Sean Devaney, each and every one of whom, at one stage or another, have provided assistance or advice on some element of this project, from helping to identify an obscure thread, to totally fabricating large, complex components of experimental apparatus. Likewise to our resident electronics gurus Wayne Peacock, Peter Axtens and Phil Dennis who were always happy and willing to assist with the design, repair or troubleshooting of any piece of electrical gadgetry, be it the smallest amplifier or the largest power supply. Gentlemen, it has been a master-class. To my friends and colleagues, John Hedditch, Ralf Wilson, Daan Van Schijndel, Nico Ranson, Joe Builth-Williams and Adam Israel, who have each served as invaluable sounding boards and lab minions, all the while helping me perfect the art of articulating affection through insults. While our exuberant discussions (or arguments?) about physics, politics, history, sociology, psychology, engineering, the general state of the world and what to have for lunch may not necessarily be conducive to getting any work done, they do, at the very least, make the office a truly joyous place to work. And finally to my parents David and Bronwen, and my sisters Ellen and Rebecca, for putting up with the oddity, for actively taking an interest, and for happily nodding along, even when you'd lost track of what I was rambling about. I love you all. iv Contents Declaration of Authorshipi Abstract iii Acknowledgements iv Contents v 1 Introduction 1 1.1 Nuclear Fusion.....................................1 1.1.1 Fusion Rate and cross section.........................3 1.2 Fusion Methods.....................................5 1.2.1 Magnetic Confinement Schemes........................5 1.2.1.1 Magnetic Mirror Confinement...................6 1.2.1.2 Cusp Confinement..........................8 1.2.1.3 Toroidal Magnetic Confinement..................8 1.3 The Argument for Deuterium Fuel.......................... 10 1.4 Inertial Electrostatic Confinement (IEC)....................... 11 1.4.1 Simple Energy Balance in IEC Devices.................... 12 1.5 Virtual Cathode IEC.................................. 16 1.5.1 Polywell..................................... 17 1.6 Aim of This Thesis................................... 20 2 Experimental Apparatus 22 2.1 Vacuum System..................................... 22 2.2 Translational Stage................................... 23 2.3 Electron Gun...................................... 23 2.4 Neutron Detection................................... 26 2.4.1 Analogue Count Acquisition.......................... 26 2.4.2 Digital Count Acquisition........................... 27 2.4.3 Calibration................................... 27 2.5 Deuterium Gas Generation.............................. 30 3 Surface Fusion in IEC Devices 31 3.1 Experimental apparatus................................ 33 3.2 Pressure hysteresis in IEC devices.......................... 34 v 3.2.1 Experimental Method............................. 34 3.2.2 Results and Discussion............................. 36 3.3 Fusion on metal surfaces................................ 38 3.3.1 Experimental Method............................. 40 3.3.2 Results and Discussion............................. 40 3.4 High performance IEC Grid Based on Graphite................... 45 3.4.1 Experimental Method............................. 46 3.4.2 Results and Discussion............................. 47 3.4.3 High Power Operation of Graphite IEC Grid................ 48 3.4.4 Results and Discussion............................. 50 3.5 Summary........................................ 52 4 Magnetically Confined Virtual Cathode Machine (MCVC-0) 53 4.0.1 Magnetic field coils............................... 54 4.0.2 Coil Cases / Electrodes............................ 56 4.0.3 Field Coil Sub-assembly............................ 57 4.0.4 Coil Terminal Contacts............................ 57 4.0.5 Support Frame................................. 57 4.1 Power Supplies..................................... 61 4.1.1 Pulsed Capacitor Bank Power Supply (PCPS)............... 61 4.1.1.1 Theoretical LCR circuit response.................. 61 4.1.1.2 Capacitor Bank Layout....................... 65 4.1.1.3 Capacitor Bank Control and Automation............. 67 4.1.2 High Voltage Bias Power Supply......................
Recommended publications
  • Chapter 3 Dynamics of the Electromagnetic Fields
    Chapter 3 Dynamics of the Electromagnetic Fields 3.1 Maxwell Displacement Current In the early 1860s (during the American civil war!) electricity including induction was well established experimentally. A big row was going on about theory. The warring camps were divided into the • Action-at-a-distance advocates and the • Field-theory advocates. James Clerk Maxwell was firmly in the field-theory camp. He invented mechanical analogies for the behavior of the fields locally in space and how the electric and magnetic influences were carried through space by invisible circulating cogs. Being a consumate mathematician he also formulated differential equations to describe the fields. In modern notation, they would (in 1860) have read: ρ �.E = Coulomb’s Law �0 ∂B � ∧ E = − Faraday’s Law (3.1) ∂t �.B = 0 � ∧ B = µ0j Ampere’s Law. (Quasi-static) Maxwell’s stroke of genius was to realize that this set of equations is inconsistent with charge conservation. In particular it is the quasi-static form of Ampere’s law that has a problem. Taking its divergence µ0�.j = �. (� ∧ B) = 0 (3.2) (because divergence of a curl is zero). This is fine for a static situation, but can’t work for a time-varying one. Conservation of charge in time-dependent case is ∂ρ �.j = − not zero. (3.3) ∂t 55 The problem can be fixed by adding an extra term to Ampere’s law because � � ∂ρ ∂ ∂E �.j + = �.j + �0�.E = �. j + �0 (3.4) ∂t ∂t ∂t Therefore Ampere’s law is consistent with charge conservation only if it is really to be written with the quantity (j + �0∂E/∂t) replacing j.
    [Show full text]
  • The Fork in the Road to Electric Power from Fusion US Navy Compact
    The Fork in the Road to Electric Power From Fusion US Navy compact fusion reactors Peter Lobner, 1 February 2021 1. Background For at least the past 40 years, the US Navy has been funding fusion power research and development in considerable secrecy. In this article, we’ll take a brief look at the following US Navy fusion programs, focusing on the two most recent programs. • LINUS - pulsed stabilized liquid liner compressor (SLC) • Low Energy Nuclear Reactions (LENR, aka cold fusion) • Polywell fusion - inertial electrostatic confinement (IEC) • NIKE & Electra krypton fluoride direct-drive laser inertial confinement fusion (ICF) • Plasma compression fusion device (2019) • Argon fluoride direct-drive laser ICF (2020) 2. LINUS - pulsed stabilized liquid liner compressor (SLC) In the 1970s, this Naval Research Laboratory (NRL)-sponsored project developed and tested several pulsed stabilized liquid liner compressor (SLC) machines: LINUS-0, SUZY-II and HELIUS. A plasma is injected into a void space in a flowing molten lead-lithium liner. The liquid liner is then imploded mechanically, using high- pressure helium-driven pistons. The imploding liner compresses and adiabatically heats the plasma to fusion conditions. While the SLC concept was abandoned by the US Navy in the 1970s, it was revived in the 2000s as the basis for the small fusion reactor designs being developed by Compact Fusion Systems (US) and General Fusion (Canada). 3. Low Energy Nuclear Reactions (LENR, aka cold fusion) From the mid 1990s to at least the mid-2000s the US Navy sponsored research into cold fusion. You’ll find a list of cold fusion papers by Navy researchers from NRL, China Lake Naval Weapons 1 The Fork in the Road to Electric Power From Fusion Laboratory, and Space and Naval Warfare Systems Center (SPAWAR) here: https://lenr-canr.org/wordpress/?page_id=952 4.
    [Show full text]
  • Inertial Electrostatic Confinement Fusor Cody Boyd Virginia Commonwealth University
    Virginia Commonwealth University VCU Scholars Compass Capstone Design Expo Posters College of Engineering 2015 Inertial Electrostatic Confinement Fusor Cody Boyd Virginia Commonwealth University Brian Hortelano Virginia Commonwealth University Yonathan Kassaye Virginia Commonwealth University See next page for additional authors Follow this and additional works at: https://scholarscompass.vcu.edu/capstone Part of the Engineering Commons © The Author(s) Downloaded from https://scholarscompass.vcu.edu/capstone/40 This Poster is brought to you for free and open access by the College of Engineering at VCU Scholars Compass. It has been accepted for inclusion in Capstone Design Expo Posters by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Authors Cody Boyd, Brian Hortelano, Yonathan Kassaye, Dimitris Killinger, Adam Stanfield, Jordan Stark, Thomas Veilleux, and Nick Reuter This poster is available at VCU Scholars Compass: https://scholarscompass.vcu.edu/capstone/40 Team Members: Cody Boyd, Brian Hortelano, Yonathan Kassaye, Dimitris Killinger, Adam Stanfield, Jordan Stark, Thomas Veilleux Inertial Electrostatic Faculty Advisor: Dr. Sama Bilbao Y Leon, Mr. James G. Miller Sponsor: Confinement Fusor Dominion Virginia Power What is Fusion? Shielding Computational Modeling Because the D-D fusion reaction One of the potential uses of the fusor will be to results in the production of neutrons irradiate materials and see how they behave after and X-rays, shielding is necessary to certain levels of both fast and thermal neutron protect users from the radiation exposure. To reduce the amount of time and produced by the fusor. A Monte Carlo resources spent testing, a computational model n-Particle (MCNP) model was using XOOPIC, a particle interaction software, developed to calculate the necessary was developed to model the fusor.
    [Show full text]
  • Simulation of a Device Providing Nuclear Fusion by Electrostatic Confinement, with Multiplasma
    1 Simulation of a device providing nuclear fusion by electrostatic confinement, with Multiplasma Copyright © 2018 Patrick Lindecker Maisons-Alfort (France) 22th of July 2018 Revision B Revision B: replacement of the term « efficiency » by « yield » to avoid an ambiguity and the aneutronic fusion H+ <-> B11+ taken into account. 1. Goal To design your own electrostatic confinement nuclear fusion reactor. It is addressed to people interested by nuclear fusion, having a good general culture in physics (and who are patient because simulations can be long). It is set aside the fact that your project is physically achievable or not. 2. Warning This design will be just for the « fun » or from curiosity, because even if the calculations done by Multiplasma are as serious as possible, in the limit of the knowledge of the author (who is not a nuclear physicist but a generalist engineer), of course, nobody is going to build your nuclear reactor… Otherwise, none checking has been made by another person and the program development does not follow any quality assurance process (so there are probably a lot of errors). It is just a personal program made available to those interested by this subject. 3. Brief explanations of a few of the terms used: Deuterium (D or D2) / Tritium (T or T2): these are hydrogen isotopes comprising, besides one proton, either one neutron (Deuterium) or 2 neutrons (Tritium). As other elements, they are susceptible to produce fusions by collisions. The Deuterium is relatively abundant, in sea water, for example. It constitutes 0.01 % of hydrogen. The tritium is naturally present at traces 2 amounts but it is produced (as a gaseous effluent) by fission nuclear centrals, in very small quantities.
    [Show full text]
  • Optimization of Ion Flow Rates in a Helicon Injected IEC Fusion System
    Aeronautics and Aerospace Open Access Journal Research Article Open Access Optimization of ion flow rates in a helicon injected IEC fusion system Abstract Volume 4 Issue 2 - 2020 The Helicon Injected Inertial Electrostatic Confinement (IEC) offers an attractive D-D Qiheng Cai, George H Miley neutron source for neutron commercial and homeland security activation neutron analysis. Department of Nuclear, Plasma & Radiological Engineering, Designs with multiple injectors also provide a potential route to an attractive small fusion University of Illinois at Champaign-Urbana, USA reactor. Use of such a reactor has also been studied for deep space propulsion. In addition, a non-fusion design been studied for use as an electric thruster for near-term space Correspondence: Qiheng Cai, Department of Nuclear, Plasma applications. The Helicon Inertial Plasma Electrostatic Rocket (HIIPER) is an advanced & Radiological Engineering, University of Illinois at Champaign- space plasma thruster coupling the helicon and a modified IEC. A key aspect for all of these Urbana, Urbana, IL, 61801, Tel +15712679353, systems is to develop efficient coupling between the Helicon plasma injector and the IEC. Email This issue is under study and will be described in this presentation. To analyze the coupling efficiency, ion flow rates (which indicate how many ions exit the helicon and enter the IEC Received: May 01, 2020 | Published: May 21, 2020 device per second) are investigated by a global model. In this simulation particle rate and power balance equations are solved to investigate the time evolution of electron density, neutral density and electron temperature in the helicon tube. In addition to the Helicon geometry and RF field design, the use of a potential bias plate at the gas inlet of the Helicon is considered.
    [Show full text]
  • Thermonuclear AB-Reactors for Aerospace
    1 Article Micro Thermonuclear Reactor after Ct 9 18 06 AIAA-2006-8104 Micro -Thermonuclear AB-Reactors for Aerospace* Alexander Bolonkin C&R, 1310 Avenue R, #F-6, Brooklyn, NY 11229, USA T/F 718-339-4563, [email protected], [email protected], http://Bolonkin.narod.ru Abstract About fifty years ago, scientists conducted R&D of a thermonuclear reactor that promises a true revolution in the energy industry and, especially, in aerospace. Using such a reactor, aircraft could undertake flights of very long distance and for extended periods and that, of course, decreases a significant cost of aerial transportation, allowing the saving of ever-more expensive imported oil-based fuels. (As of mid-2006, the USA’s DoD has a program to make aircraft fuel from domestic natural gas sources.) The temperature and pressure required for any particular fuel to fuse is known as the Lawson criterion L. Lawson criterion relates to plasma production temperature, plasma density and time. The thermonuclear reaction is realised when L > 1014. There are two main methods of nuclear fusion: inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). Existing thermonuclear reactors are very complex, expensive, large, and heavy. They cannot achieve the Lawson criterion. The author offers several innovations that he first suggested publicly early in 1983 for the AB multi- reflex engine, space propulsion, getting energy from plasma, etc. (see: A. Bolonkin, Non-Rocket Space Launch and Flight, Elsevier, London, 2006, Chapters 12, 3A). It is the micro-thermonuclear AB- Reactors. That is new micro-thermonuclear reactor with very small fuel pellet that uses plasma confinement generated by multi-reflection of laser beam or its own magnetic field.
    [Show full text]
  • Plasma Physics I APPH E6101x Columbia University Fall, 2016
    Lecture 1: Plasma Physics I APPH E6101x Columbia University Fall, 2016 1 Syllabus and Class Website http://sites.apam.columbia.edu/courses/apph6101x/ 2 Textbook “Plasma Physics offers a broad and modern introduction to the many aspects of plasma science … . A curious student or interested researcher could track down laboratory notes, older monographs, and obscure papers … . with an extensive list of more than 300 references and, in particular, its excellent overview of the various techniques to generate plasma in a laboratory, Plasma Physics is an excellent entree for students into this rapidly growing field. It’s also a useful reference for professional low-temperature plasma researchers.” (Michael Brown, Physics Today, June, 2011) 3 Grading • Weekly homework • Two in-class quizzes (25%) • Final exam (50%) 4 https://www.nasa.gov/mission_pages/sdo/overview/ Launched 11 Feb 2010 5 http://www.nasa.gov/mission_pages/sdo/news/sdo-year2.html#.VerqQLRgyxI 6 http://www.ccfe.ac.uk/MAST.aspx http://www.ccfe.ac.uk/mast_upgrade_project.aspx 7 https://youtu.be/svrMsZQuZrs 8 9 10 ITER: The International Burning Plasma Experiment Important fusion science experiment, but without low-activation fusion materials, tritium breeding, … ~ 500 MW 10 minute pulses 23,000 tonne 51 GJ >30B $US (?) DIII-D ⇒ ITER ÷ 3.7 (50 times smaller volume) (400 times smaller energy) 11 Prof. Robert Gross Columbia University Fusion Energy (1984) “Fusion has proved to be a very difficult challenge. The early question was—Can fusion be done, and, if so how? … Now, the challenge lies in whether fusion can be done in a reliable, an economical, and socially acceptable way…” 12 http://lasco-www.nrl.navy.mil 13 14 Plasmasphere (Image EUV) 15 https://youtu.be/TaPgSWdcYtY 16 17 LETTER doi:10.1038/nature14476 Small particles dominate Saturn’s Phoebe ring to surprisingly large distances Douglas P.
    [Show full text]
  • This Chapter Deals with Conservation of Energy, Momentum and Angular Momentum in Electromagnetic Systems
    This chapter deals with conservation of energy, momentum and angular momentum in electromagnetic systems. The basic idea is to use Maxwell’s Eqn. to write the charge and currents entirely in terms of the E and B-fields. For example, the current density can be written in terms of the curl of B and the Maxwell Displacement current or the rate of change of the E-field. We could then write the power density which is E dot J entirely in terms of fields and their time derivatives. We begin with a discussion of Poynting’s Theorem which describes the flow of power out of an electromagnetic system using this approach. We turn next to a discussion of the Maxwell stress tensor which is an elegant way of computing electromagnetic forces. For example, we write the charge density which is part of the electrostatic force density (rho times E) in terms of the divergence of the E-field. The magnetic forces involve current densities which can be written as the fields as just described to complete the electromagnetic force description. Since the force is the rate of change of momentum, the Maxwell stress tensor naturally leads to a discussion of electromagnetic momentum density which is similar in spirit to our previous discussion of electromagnetic energy density. In particular, we find that electromagnetic fields contain an angular momentum which accounts for the angular momentum achieved by charge distributions due to the EMF from collapsing magnetic fields according to Faraday’s law. This clears up a mystery from Physics 435. We will frequently re-visit this chapter since it develops many of our crucial tools we need in electrodynamics.
    [Show full text]
  • Status of ITER Neutron Diagnostic Development
    INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 45 (2005) 1503–1509 doi:10.1088/0029-5515/45/12/005 Status of ITER neutron diagnostic development A.V. Krasilnikov1, M. Sasao2, Yu.A. Kaschuck1, T. Nishitani3, P. Batistoni4, V.S. Zaveryaev5, S. Popovichev6, T. Iguchi7, O.N. Jarvis6,J.Kallne¨ 8, C.L. Fiore9, A.L. Roquemore10, W.W. Heidbrink11, R. Fisher12, G. Gorini13, D.V. Prosvirin1, A.Yu. Tsutskikh1, A.J.H. Donne´14, A.E. Costley15 and C.I. Walker16 1 SRC RF TRINITI, Troitsk, Russian Federation 2 Tohoku University, Sendai, Japan 3 JAERI, Tokai-mura, Japan 4 FERC, Frascati, Italy 5 RRC ‘Kurchatov Institute’, Moscow, Russian Federation 6 Euratom/UKAEA Fusion Association, Culham Science Center, Abingdon, UK 7 Nagoya University, Nagoya, Japan 8 Uppsala University, Uppsala, Sweden 9 PPL, MIT, Cambridge, MA, USA 10 PPPL, Princeton, NJ, USA 11 UC Irvine, Los Angeles, CA, USA 12 GA, San Diego, CA, USA 13 Milan University, Milan, Italy 14 FOM-Rijnhuizen, Netherlands 15 ITER IT, Naka Joint Work Site, Naka, Japan 16 ITER IT, Garching Joint Work Site, Garching, Germany E-mail: [email protected] Received 7 December 2004, accepted for publication 14 September 2005 Published 22 November 2005 Online at stacks.iop.org/NF/45/1503 Abstract Due to the high neutron yield and the large plasma size many ITER plasma parameters such as fusion power, power density, ion temperature, fast ion energy and their spatial distributions in the plasma core can be measured well by various neutron diagnostics. Neutron diagnostic systems under consideration and development for ITER include radial and vertical neutron cameras (RNC and VNC), internal and external neutron flux monitors (NFMs), neutron activation systems and neutron spectrometers.
    [Show full text]
  • An Integrated Model for Materials in a Fusion Power Plant: Transmutation, Gas Production, and Helium Embrittlement Under Neutron Irradiation
    Home Search Collections Journals About Contact us My IOPscience An integrated model for materials in a fusion power plant: transmutation, gas production, and helium embrittlement under neutron irradiation This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2012 Nucl. Fusion 52 083019 (http://iopscience.iop.org/0029-5515/52/8/083019) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 193.52.216.130 The article was downloaded on 13/11/2012 at 13:27 Please note that terms and conditions apply. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 52 (2012) 083019 (12pp) doi:10.1088/0029-5515/52/8/083019 An integrated model for materials in a fusion power plant: transmutation, gas production, and helium embrittlement under neutron irradiation M.R. Gilbert, S.L. Dudarev, S. Zheng, L.W. Packer and J.-Ch. Sublet EURATOM/CCFE Fusion Association, Culham Centre for Fusion Energy, Abingdon, Oxfordshire OX14 3DB, UK E-mail: [email protected] Received 16 January 2012, accepted for publication 11 July 2012 Published 1 August 2012 Online at stacks.iop.org/NF/52/083019 Abstract The high-energy, high-intensity neutron fluxes produced by the fusion plasma will have a significant life-limiting impact on reactor components in both experimental and commercial fusion devices. As well as producing defects, the neutrons bombarding the materials initiate nuclear reactions, leading to transmutation of the elemental atoms. Products of many of these reactions are gases, particularly helium, which can cause swelling and embrittlement of materials.
    [Show full text]
  • Magnetohydrodynamics 1 19.1Overview
    Contents 19 Magnetohydrodynamics 1 19.1Overview...................................... 1 19.2 BasicEquationsofMHD . 2 19.2.1 Maxwell’s Equations in the MHD Approximation . ..... 4 19.2.2 Momentum and Energy Conservation . .. 8 19.2.3 BoundaryConditions. 10 19.2.4 Magneticfieldandvorticity . .. 12 19.3 MagnetostaticEquilibria . ..... 13 19.3.1 Controlled thermonuclear fusion . ..... 13 19.3.2 Z-Pinch .................................. 15 19.3.3 Θ-Pinch .................................. 17 19.3.4 Tokamak.................................. 17 19.4 HydromagneticFlows. .. 18 19.5 Stability of Hydromagnetic Equilibria . ......... 22 19.5.1 LinearPerturbationTheory . .. 22 19.5.2 Z-Pinch: Sausage and Kink Instabilities . ...... 25 19.5.3 EnergyPrinciple ............................. 28 19.6 Dynamos and Reconnection of Magnetic Field Lines . ......... 29 19.6.1 Cowling’stheorem ............................ 30 19.6.2 Kinematicdynamos............................ 30 19.6.3 MagneticReconnection. 31 19.7 Magnetosonic Waves and the Scattering of Cosmic Rays . ......... 33 19.7.1 CosmicRays ............................... 33 19.7.2 Magnetosonic Dispersion Relation . ..... 34 19.7.3 ScatteringofCosmicRays . 36 0 Chapter 19 Magnetohydrodynamics Version 1219.1.K.pdf, 7 September 2012 Please send comments, suggestions, and errata via email to [email protected] or on paper to Kip Thorne, 350-17 Caltech, Pasadena CA 91125 Box 19.1 Reader’s Guide This chapter relies heavily on Chap. 13 and somewhat on the treatment of vorticity • transport in Sec. 14.2 Part VI, Plasma Physics (Chaps. 20-23) relies heavily on this chapter. • 19.1 Overview In preceding chapters, we have described the consequences of incorporating viscosity and thermal conductivity into the description of a fluid. We now turn to our final embellishment of fluid mechanics, in which the fluid is electrically conducting and moves in a magnetic field.
    [Show full text]
  • Formation of Hot, Stable, Long-Lived Field-Reversed Configuration Plasmas on the C-2W Device
    IOP Nuclear Fusion International Atomic Energy Agency Nuclear Fusion Nucl. Fusion Nucl. Fusion 59 (2019) 112009 (16pp) https://doi.org/10.1088/1741-4326/ab0be9 59 Formation of hot, stable, long-lived 2019 field-reversed configuration plasmas © 2019 IAEA, Vienna on the C-2W device NUFUAU H. Gota1 , M.W. Binderbauer1 , T. Tajima1, S. Putvinski1, M. Tuszewski1, 1 1 1 1 112009 B.H. Deng , S.A. Dettrick , D.K. Gupta , S. Korepanov , R.M. Magee1 , T. Roche1 , J.A. Romero1 , A. Smirnov1, V. Sokolov1, Y. Song1, L.C. Steinhauer1 , M.C. Thompson1 , E. Trask1 , A.D. Van H. Gota et al Drie1, X. Yang1, P. Yushmanov1, K. Zhai1 , I. Allfrey1, R. Andow1, E. Barraza1, M. Beall1 , N.G. Bolte1 , E. Bomgardner1, F. Ceccherini1, A. Chirumamilla1, R. Clary1, T. DeHaas1, J.D. Douglass1, A.M. DuBois1 , A. Dunaevsky1, D. Fallah1, P. Feng1, C. Finucane1, D.P. Fulton1, L. Galeotti1, K. Galvin1, E.M. Granstedt1 , M.E. Griswold1, U. Guerrero1, S. Gupta1, Printed in the UK K. Hubbard1, I. Isakov1, J.S. Kinley1, A. Korepanov1, S. Krause1, C.K. Lau1 , H. Leinweber1, J. Leuenberger1, D. Lieurance1, M. Madrid1, NF D. Madura1, T. Matsumoto1, V. Matvienko1, M. Meekins1, R. Mendoza1, R. Michel1, Y. Mok1, M. Morehouse1, M. Nations1 , A. Necas1, 1 1 1 1 1 10.1088/1741-4326/ab0be9 M. Onofri , D. Osin , A. Ottaviano , E. Parke , T.M. Schindler , J.H. Schroeder1, L. Sevier1, D. Sheftman1 , A. Sibley1, M. Signorelli1, R.J. Smith1 , M. Slepchenkov1, G. Snitchler1, J.B. Titus1, J. Ufnal1, Paper T. Valentine1, W. Waggoner1, J.K. Walters1, C.
    [Show full text]