Cable and Antenna Troubleshooting Guide – Utilizing Anritsu's Handheld

Total Page:16

File Type:pdf, Size:1020Kb

Cable and Antenna Troubleshooting Guide – Utilizing Anritsu's Handheld Cable and Antenna Troubleshooting Guide – utilizing Anritsu’s Handheld Site Master™, LMR MasterTM, VNA MasterTM, Cell Master™, or BTS Master™ Antenna Sweeping Antenna Sweeping (continued) Return Loss and VSWR Distance to Fault (DTF) Antenna Isolation Why Sweep Antennas? Maintenance Sweeps Measuring Reflections Comparing Traces For Base Stations Commissioning Sweeps Troubleshooting Sweeps Setting Cable Types Propagation Velocity and Cable Loss For Repeaters Why sweep antennas? Poor VSWR/Return Common Faults Limit Lines Frequency Range Setup Loss can damage transmitters, reduce the Maintenance sweeps can catch faults early, Poor base station antenna isolation allows RF coverage area, and lower data rates. For which will increase network uptime, reduce signals from one base station antenna to leak instance, a return loss of 10 dB means that dropped calls, and allow consistently higher to another. If the leak is 10% of the total power is not radiated and (if data rates. strong enough, BTS the transmitter is still running) that the signal quality can be coverage area is 10% smaller than the Since every cable has a different sweep compromised causing transmitter power settings might imply. signature, it can be difficult to judge changes. But a reference trace, from the commissioning dropped and blocked sweeps, makes it easy to see changes. calls. This sort of problem can affect more Once a problem is spotted, whether from a than just the radios with VSWR alarm or a maintenance sweep, it’s poor isolation. Failures time to troubleshoot the problem. mean that the sector is Troubleshooting sweeps are inherently prone to excessive inter- different from maintenance or commissioning modulation distortion, sweeps, since they require a flexible use of which lowers signal the instrument, calibrations, and settings to Return Loss, or VSWR if you prefer, can be DTF is a way to locate faults identified by quality, increases accurately locate the fault. FlexCal is a BTS used as a one-number screening tool. Return Loss or VSWR measurements. dropped calls, and can Master capability that allows users to change As seen above, the markers for this sweep are Trace comparisons are often used for cause interference with Reduced coverage increases dropped and frequency range without a new calibration, set at the edges of the antenna’s pass band. diagnostics because small changes in cables other radio services. blocked calls due to weak signal areas and which is helpful when troubleshooting. The trace between the markers is better than will have large effects on the DTF trace. network loading imbalances. Base station antenna isolation limits, when Common faults 15.5 dB, (or a VSWR of 1.40) a common limit Because of this, it is accepted practice to take dealing with cellular systems typically should On the data link side, the increased signal for sweeps with an antenna at the far end. include connector, reference sweeps of each cable at be lower than the -50 to -60 dBm range, distortion caused by a low return loss means cable and antenna This trace would typically be accepted as commissioning time for later comparison. although different situations require different that data rates are reduced and capacity faults. When looking good. Reflections are measured using either Changes are often more significant than actual limit numbers. suffers. values. Even so, typical values with a good for faults, it’s VSWR or Return Loss. These are two different Repeaters with insufficient isolation between setup are: Finally, poor Return Loss or VSWR can cause important to know ways to measure the same thing. Return Loss the two antennas are prone to oscillations, transmitter shutdown and even damage, that most faults are is a logarithmic scale, and Voltage Standing Open or Short 0 to 5 dB creating interference that can seriously harm taking out a sector until repaired. connector related. Wave Ratio (VSWR) is a linear scale. Your communications over a wide area. Keeping antenna systems in shape means the This includes loose choice can be made by personal preference, Antenna Better than 16 dB connectors, the unit’s limit numbers are given in, or by Repeaters are tested in system as a whole runs better. Uptime is Connectors Better than 25 dB corroded connectors, and poorly installed company requirements. Here’s the conversion much the same increased, call drops go down, data rates go manner as base connectors. Most formula: Propagation velocity (PV or Vp) directly up, and both managers and customers are stations; however they remaining faults are Return Loss = 20 log |VSWR +1/VSWR-1| affects distance accuracy. PV must be set happier. require better isolation cable related. This —RL/20 -RL/20 either manually or by entering a cable type. VSWR = 1+10 /1-10 Commissioning sweeps provide the basis for includes water in the numbers. Consult your Cable Loss also needs to be set accurately, acceptance of the antenna systems. They cable, loose weather However the quickest conversion is to just repeater installation either manually, or by selecting a cable type. also provide a reference trace for use when wrap, pinched cables, change the instrument units to the preferred instructions for specific False cable loss values can mask Return Loss looking for changes later. For best accuracy, poorly installed settings. guidelines. or VSWR problems. they use a short and a load at the top of the ground kits, bullet Limit lines can be The setup for antenna antenna run. They may also be done with an holes, and even nails created on the Master The frequency range for DTF sweeps should isolation tests uses the antenna attached. in the cable! A small series sweepers and, be set to stay within the load’s bandwidth. If BTS Master, Cell The same data that is used for Return Loss or portion of the faults are antenna related. when, accepted, moved an antenna is used for the load, any portion of Master, or Site VSWR is also used for the Distance to Fault It is possible to damage GPS antennas by from one instrument to the DTF sweep that goes outside of the pass Master’s Two Port (DTF) calculations and display. Users can sweeping. Their active components are not another using a USB band is mostly reflected, reducing the Insertion Loss capability. After a two port change between the two displays at will. This intended to take higher power levels so they stick or Compact Flash accuracy of the vertical axis Return Loss or calibration (An OSLIT cal), the signal source is reduces the number of traces that must be should be replaced by a load (for Return Loss) Memory. This makes looking for faults VSWR measurements. connected to one antenna while the sense archived and tracked by half. or a short (for DTF) before measuring the line. straightforward and helps ensure consistency. A wider frequency range improves distance terminal is connected to the other. The amount of power lost during the transmission Cable loss is also an important commissioning Measurement accuracy is critical. That’s why Return loss, with an antenna on the far end, resolution and lowers the maximum is the antenna isolation. check. Excessive cable loss reduces the there are a variety of calibration routines as should be between 15 to 25 dB. For a line measureable distance. However, if an radiated power, but also, can mask return loss discussed in other parts of this guide. with a load on the far end, the value should antenna is in place at the other end of the Further information on isolation testing can be issues, creating false good readings later. Improper use of the calibration standards, or be between 30 and 40 dB. cable, the DTF frequency range should be found in the application note “Tower Mounted restricted to the antenna’s pass band. GPS location reporting allows verification of use of an antenna sweeper with lower Further information on Return Loss and VSWR Amplifiers, Diagnostics and Isolation the trace location. This validation increases specifications, can lead to inaccurate testing can be found in the application note Further information on DTF testing can be Measurements” and “Practical Tips on the credibility of the measurements and adds measurements and unnecessary equipment “Understanding Cable & Antenna Analysis” at found in the application note “Distance To Transmission Measurements“ at value to the work. replacement due to false fails. What is the www.Anritsu.com. Fault” at www.Anritsu.com www.Anritsu.com. cost of a false fail? Visit us at www.anritsu.com Cable and Antenna Troubleshooting Guide – utilizing Anritsu’s Handheld Site Master™, LMR MasterTM, VNA MasterTM, Cell Master™, or BTS Master™ Tower Mounted Amplifiers (TMAs) Transmission Line Concepts Calibration and Accuracy Which Calibration to Use? Line Sweep Tools (LST) Tower Testing Antenna cables are a type of transmission Antenna and cable sweepers need to be Open, Short, and Load (OSL) Trace Processing TMAs create a larger receive coverage area. line, a cable that has constant impedance calibrated to correct for the very small InstaCal, FlexCal File Transfer If a TMA has low gain, distortion, is in bypass throughout its length. Any change in reflections that will Limit Lines mode, is improperly impedance causes a partial radio signal otherwise lower the Open, Short, Load, Isolation, Through installed, or is reflection. accuracy of the (OSLIT) Line Sweep Tools is a PC based program that completely open, a measurement. The OSL is the most accurate calibration for one port makes life easier for people testing cables and base stations’ receive accuracy of the tests such as Return Loss, VSWR, and DTF. An antennas. It helps with collecting traces, verifying coverage can be instrument depends OSL calibration requires the use of three precision traces, and generating reports in an industry seriously on the accuracy of standards, and is as accurate as the standards.
Recommended publications
  • Measuring OTDR Reflectance and ORL
    TECHNICAL NOTE Measuring OTDR Reflectance and ORL Overview Optical Return Loss (ORL) is the ratio between the light launched into a device and the light reflected by a defined length or region. ORL can be measured using two measurement techniques: optical continuous wave reflectometry (OCWR) or optical time domain reflectometry (OTDR). Both techniques are described in IEC 61300-3-6. This paper will briefly describe the OCWR method, but the emphasis will be on the OTDR method. While the OCWR method is more accurate, the time-domain method has become the more popular tool primarily due to its ease-of-use and ability to characterize total fiber spans results as well as individual event location, loss and reflectance. OTDRs can measure reflectance and total ORL for a fiber span. Return Loss (RL) of individual events, i.e. the reflection above the fiber backscatter level, relative to the source pulse scatter, is called reflectance. Return Loss of a fiber span is referred to as ORL. Both reflectance and ORL are in units of dB but reflectance is always a negative value while ORL is a positive value. Larger reflections indicate bad reflectance or -14dB, or 4% Fresnel reflection indicating poor connection. ORL and reflectance measurement results can be impacted by contaminated connectors so proper cleaning and inspection is critical prior to any measurement to ensure accurate and repeatable results. RL on a mated optical connector is ORL but when measured using OTDR, it is called reflectance. The ORL of a connector can change over time with repeated mating due to small changes to the surface.
    [Show full text]
  • Simulation and Measurements of VSWR for Microwave Communication Systems
    Int. J. Communications, Network and System Sciences, 2012, 5, 767-773 http://dx.doi.org/10.4236/ijcns.2012.511080 Published Online November 2012 (http://www.SciRP.org/journal/ijcns) Simulation and Measurements of VSWR for Microwave Communication Systems Bexhet Kamo, Shkelzen Cakaj, Vladi Koliçi, Erida Mulla Faculty of Information Technology, Polytechnic University of Tirana, Tirana, Albania Email: [email protected], [email protected], [email protected], [email protected] Received September 5, 2012; revised October 11, 2012; accepted October 18, 2012 ABSTRACT Nowadays, microwave frequency systems, in many applications are used. Regardless of the application, all microwave communication systems are faced with transmission line matching problem, related to the load or impedance connected to them. The mismatching of microwave lines with the load connected to them generates reflected waves. Mismatching is identified by a parameter known as VSWR (Voltage Standing Wave Ratio). VSWR is a crucial parameter on deter- mining the efficiency of microwave systems. In medical application VSWR gets a specific importance. The presence of reflected waves can lead to the wrong measurement information, consequently a wrong diagnostic result interpretation applied to a specific patient. For this reason, specifically in medical applications, it is important to minimize the re- flected waves, or control the VSWR value with the high accuracy level. In this paper, the transmission line under dif- ferent matching conditions is simulated and experimented. Through simulation and experimental measurements, the VSWR for each case of connected line with the respective load is calculated and measured. Further elements either with impact or not on the VSWR value are identified.
    [Show full text]
  • Ant-433-Heth
    ANT-433-HETH Data Sheet by Product Description HE Series antennas are designed for direct PCB Outside 8.89 mm mounting. Thanks to the HE’s compact size, they Diameter (0.35") are ideal for internal concealment inside a product’s housing. The HE is also very low in cost, making it well suited to high-volume applications. HE Series Inside 6.4 mm Diameter (0.25") antennas have a very narrow bandwidth; thus, care in placement and layout is required. In addition, they are not as efficient as whip-style antennas, so they are generally better suited for use on the transmitter end where attenuation is often required Wire 15.24 mm Diameter (0.60") anyway for regulatory compliance. Use on both 1.3 mm 6.35 mm transmitter and receiver ends is recommended only (0.05") (0.25") in instances where a short range (less than 30% of whip style) is acceptable. 38.1 mm (1.50") Features • Very low cost • Compact for physical concealment Recommended Mounting • Precision-wound coil No ground plane or traces No electircal • Rugged phosphor-bronze construction under the antenna connection on this • Mounts directly to the PCB pad. For physical 38.10 mm support only. (1.50") Electrical Specifications 1.52 mm Center Frequency: 433MHz 7.62 mm (Ø0.060") Recom. Freq. Range: 418–458MHz (0.30") 3.81 mm Wavelength: ¼-wave 12.70 mm (0.50") (0.15") VSWR: ≤ 2.0 typical at center Peak Gain: 1.9dBi Impedance: 50-ohms Connection: Through-hole Oper. Temp. Range: –40°C to +80°C Electrical specifications and plots measured on a 7.62 x 19.05 Ground plane on cm (3.00" x 7.50") reference ground plane 50-ohm microstrip line bottom layer for counterpoise Ordering Information ANT-433-HETH (helical, through-hole) – 1 – Revised 5/16/16 Counterpoise Quarter-wave or monopole antennas require an associated ground plane counterpoise for proper operation.
    [Show full text]
  • Slotted Line-SWR
    Lab 2: Slotted Line and SWR Meter NAME NAME NAME Introduction: In this lab you will learn how to characterize and use a 50-ohm slotted line, crystal detector, and standing wave ratio (SWR) meter to measure an unknown impedance. The apparatus used is shown below. The slotted line is a (rigid) continuation of the coaxial transmission lines. Its characteristic impedance is 50 ohms. It has a thin slot in its outer conductor, cut along z. A probe rides within (but not touching) the slot to sample the transmission line voltage. The probe can be moved along z to sample the standing wave ratio at different locations. It can also be moved into and out of the slot by means of a micrometer in order to adjust the signal strength. The probe is connected to a crystal (diode) detector that converts the time-varying microwave voltage to a DC value with the help of a low speed modulation envelope (1 kHz) on the microwave signal. The DC voltage is measured using the SWR meter (HP 415D). 1 Using Slotted Line to Measure an Unknown Impedance: The magnitude of the line voltage as a function of position is: + −2 jβ l + j(θ −2β l ) jθ V ()z = V0 1− Γe = V0 1+ Γ e with Γ = Γ e and l the distance from the load towards the generator. Notice that the voltage magnitude has maxima and minima at different locations. + Vmax = V0 (1+ Γ ) when θ − 2β l = π + Vmin = V0 (1− Γ ) when θ − 2β l = 0 V 1+ Γ The SWR is defined as: SWR = max = .
    [Show full text]
  • Voltage Standing Wave Ratio Measurement and Prediction
    International Journal of Physical Sciences Vol. 4 (11), pp. 651-656, November, 2009 Available online at http://www.academicjournals.org/ijps ISSN 1992 - 1950 © 2009 Academic Journals Full Length Research Paper Voltage standing wave ratio measurement and prediction P. O. Otasowie* and E. A. Ogujor Department of Electrical/Electronic Engineering University of Benin, Benin City, Nigeria. Accepted 8 September, 2009 In this work, Voltage Standing Wave Ratio (VSWR) was measured in a Global System for Mobile communication base station (GSM) located in Evbotubu district of Benin City, Edo State, Nigeria. The measurement was carried out with the aid of the Anritsu site master instrument model S332C. This Anritsu site master instrument is capable of determining the voltage standing wave ratio in a transmission line. It was produced by Anritsu company, microwave measurements division 490 Jarvis drive Morgan hill United States of America. This instrument works in the frequency range of 25MHz to 4GHz. The result obtained from this Anritsu site master instrument model S332C shows that the base station have low voltage standing wave ratio meaning that signals were not reflected from the load to the generator. A model equation was developed to predict the VSWR values in the base station. The result of the comparism of the developed and measured values showed a mean deviation of 0.932 which indicates that the model can be used to accurately predict the voltage standing wave ratio in the base station. Key words: Voltage standing wave ratio, GSM base station, impedance matching, losses, reflection coefficient. INTRODUCTION Justification for the work amplitude in a transmission line is called the Voltage Standing Wave Ratio (VSWR).
    [Show full text]
  • Understanding Optical Time Domain Reflectometers (OTDR) Specifications
    WHITE PAPER Understanding Optical Time Domain Reflectometers (OTDR) Specifications December 2020 | Rev. A00 P/N: D08-00-087 VeEX Inc. 2827 Lakeview Court, Fremont, CA 94538 USA Tel: +1.510.651.0500 Fax: +1.510.651.0505 www.veexinc.com Understanding Optical Time Domain Reflectometers (OTDR) Notice: The information contained in this document is subject to change without notice. VeEX Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. VeEX shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material. The features or functions described in this document may or may not be available in your test equipment or may look slightly different. Make sure it is updated to the latest software packages available and that is has any related licenses that may be required. For assistance or questions related to this document and procedures, or to get a test set serviced by VeEX or an authorized service facility, please contact: VeEX Inc. Phone: +1 510 651 0500 E-mail: [email protected] Web: www.veexinc.com ©Copyright VeEX Inc. All rights reserved. VeEX, VePAL are registered trademarks of VeEX Inc. and/or its affiliates in the USA and certain other countries. All other trademarks or registered trademarks are the property of their respective companies. No part of this document may be reproduced or transmitted electronically or otherwise without written permission from VeEX Inc. VeEX Inc.
    [Show full text]
  • Ec6503 - Transmission Lines and Waveguides Transmission Lines and Waveguides Unit I - Transmission Line Theory 1
    EC6503 - TRANSMISSION LINES AND WAVEGUIDES TRANSMISSION LINES AND WAVEGUIDES UNIT I - TRANSMISSION LINE THEORY 1. Define – Characteristic Impedance [M/J–2006, N/D–2006] Characteristic impedance is defined as the impedance of a transmission line measured at the sending end. It is given by 푍 푍0 = √ ⁄푌 where Z = R + jωL is the series impedance Y = G + jωC is the shunt admittance 2. State the line parameters of a transmission line. The line parameters of a transmission line are resistance, inductance, capacitance and conductance. Resistance (R) is defined as the loop resistance per unit length of the transmission line. Its unit is ohms/km. Inductance (L) is defined as the loop inductance per unit length of the transmission line. Its unit is Henries/km. Capacitance (C) is defined as the shunt capacitance per unit length between the two transmission lines. Its unit is Farad/km. Conductance (G) is defined as the shunt conductance per unit length between the two transmission lines. Its unit is mhos/km. 3. What are the secondary constants of a line? The secondary constants of a line are 푍 i. Characteristic impedance, 푍0 = √ ⁄푌 ii. Propagation constant, γ = α + jβ 4. Why the line parameters are called distributed elements? The line parameters R, L, C and G are distributed over the entire length of the transmission line. Hence they are called distributed parameters. They are also called primary constants. The infinite line, wavelength, velocity, propagation & Distortion line, the telephone cable 5. What is an infinite line? [M/J–2012, A/M–2004] An infinite line is a line where length is infinite.
    [Show full text]
  • Reference Guide to Fiber Optic Testing Product Speci Cations and Descriptions in This Document Subject to Change Without Notice
    Reference Guide to Fiber Optic Testing Optic Fiber Guide to Reference Reference Guide to Fiber Optic Testing Product specications and descriptions in this document subject to change without notice. © 2010 JDS Uniphase Corporation SECOND EDITION Volume 1 SECOND EDITION SECOND 30149054.002.0710.FIBERGUIDE1.BK.FOP.TM.AE Test & Measurement Regional Sales Volume 1 Volume North America Latin America Asia Pacic EMEA www.jdsu.com Toll Free: 1 866 228 3762 Tel: +1 954 688 5660 Tel: +852 2892 0990 Tel.: +49 7121 86 2222 Tel: +1 301 353 1560 x 2850 Fax: +1 954 345 4668 Fax: +852 2892 0770 Fax: +49 7121 86 1222 Fax: +1 301 353 9216 Reference Guide to Fiber Optic Testing SECOND EDITION Volume 1 By J. Laferrière G. Lietaert R. Taws S. Wolszczak Contact the authors JDSU 34 rue Necker 42000 Saint-Etienne France Tel. +33 (0) 4 77 47 89 00 Fax +33 (0) 4 77 47 89 70 Stay Informed To be alerted by email to availability of newly published chapters to this guide, go to www.jdsu.com/fiberguide2 Copyright© 2011, JDS Uniphase Corporation All rights reserved. The information contained in this document is the property of JDSU. No part of this book may be reproduced or utilized in any form or means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher. JDSU shall not be liable for errors contained herein. All terms mentioned in this book that are known to be trademarks or service marks have been appropriately indicated.
    [Show full text]
  • Unit V Microwave Antennas and Measurements
    UNIT V MICROWAVE ANTENNAS AND MEASUREMENTS Horn antenna and its types, micro strip and patch antennas. Network Analyzer, Measurement of VSWR, Frequency and Power, Noise, cavity Q, Impedance, Attenuation, Dielectric Constant and antenna gain. ------------------------------------------------------------------------------------------------------------------------------- DEFINITION: A conductor or group of conductors used either for radiating electromagnetic energy into space or for collecting it from space.or Is a structure which may be described as a metallic object, often a wire or a collection of wires through specific design capable of converting high frequency current into em wave and transmit it into free space at light velocity with high power (kW) besides receiving em wave from free space and convert it into high frequency current at much lower power (mW). Also known as transducer because it acts as coupling devices between microwave circuits and free space and vice versa. Electrical energy from the transmitter is converted into electromagnetic energy by the antenna and radiated into space. On the receiving end, electromagnetic energy is converted into electrical energy by the antenna and fed into the receiver. Basic operation of transmit and receive antennas. Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic energy from space In two-way communication, the same antenna can be used for transmission and reception. Short wavelength produced by high frequency microwave, allows the usage
    [Show full text]
  • Microwave Impedance Measurements and Standards
    NBS MONOGRAPH 82 MICROWAVE IMPEDANCE MEASUREMENTS AND STANDARDS . .5, Y 1 p p R r ' \ Jm*"-^ CCD 'i . y. s. U,BO»WOM t «• U.S. DEPARTMENT OF STANDARDS NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS The National Bureau of Standards is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. Its responsibilities include development and main- tenance of the national standards of measurement, and the provisions of means for making measurements consistent with those standards; determination of physical constants and properties of materials; development of methods for testing materials, mechanisms, and struc- tures, and making such tests as may be necessary, particularly for government agencies; cooperation in the establishment of standard practices for incorporation in codes and specifications; advisory service to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; assistance to industry, business, and consumers in the development and acceptance of commercial standards and simplified trade practice recommendations; administration of programs in cooperation with United States business groups and standards organizations for the development of international standards of practice; and maintenance of a clearinghouse for the collection and dissemination of scientific, technical, and engineering information. The scope of the Bureau's activities is suggested in the following listing of its four Institutes and their organizational units. Institute for Basic Standards. Applied Mathematics. Electricity. Metrology. Mechanics. Heat. Atomic Physics. Physical Chem- istry. Laboratory Astrophysics.* Radiation Physics. Radio Stand- ards Laboratory:* Radio Standards Physics; Radio Standards Engineering.
    [Show full text]
  • Module 2 : Transmission Lines Lecture 6 : Loss Less Transmission Line
    Module 2 : Transmission Lines Lecture 6 : Loss Less Transmission Line Objectives In this course you will learn the following What is a loss-less transmission line? Variation of voltage and current on a loss less line. Standing waves on a loss-less line. Voltage standing wave ratio (VSWR) and its relation to the voltage reflection co-efficient. Importance of VSWR and its values for various impedances. Concept of return-loss (RL). Return loss a measure of reflection on the line. Module 2 : Transmission Lines Lecture 6 : Loss Less Transmission Line Analysis of Loss Less Transmission Line In any electrical circuit the power loss is due to ohmic elements. A loss less transmission line therefore implies and . For a loss less transmission line hence we get Propagation constant : That is, and . The charateristic impedance The reflection coefficient at any point on the line is The voltage and current expressions become Let the reflection coefficient at the load end be written in the amplitude and phase form as then we have As we move towards the generator the phase becomes more negative and point P rotates clockwise on the dotted circle. The radius of the circle is . Length of the vector OP gives the magnitude of the quantity Module 2 : Transmission Lines Lecture 6 : Loss Less Transmission Line Spatial Variation of Current & Voltage The previous equations indicate that the amplitudes of the voltage and current vary as a function of distance on the line. Wherever or even multiple of , the quantity in the brackets is maximum in the voltage expression, and minimum in the current expression.
    [Show full text]
  • BARS VSWR.Key
    A “Refresher” on VSWR • VSWR stands for “Voltage Standing Wave Ratio” sometimes abbreviated as just SWR. • The subject is appropriate for all types of transmission lines. • Note: If the transmission line is much less than λ / 4 , then the analysis of “transmission line transformers” and possibly “baluns” is more appropriate. Transferring Power in Transmission Lines • For maximum power transfer, the impedance at the load end of the line must be matched to the transmission line’s characteristic impedance. ZL= Zo Transmitter Tuner CHARACTERISTIC IMPEDANCE = Zo Transmission Line Characteristic Impedance • Characteristic Impedance Z o is Resistive. • Z o is fixed by the geometry of the conductors. µo • Impedance of “free space” Zo = = 376.73031Ω εo Parallel Wires Typical values: 200Ω to 800Ω Coaxial Cable • Most common values, Z o = 50Ω, and 75Ω Typical values: 25Ω to 100Ω Mismatched Transmission Line • Energy reaching the load will not be fully absorbed. • Some of the energy is reflected back toward the source by the “impedance discontinuity.” • Splicing two transmission lines of different impedance will also cause a reflected wave. Forward Wave Reflected Wave (< 100%) ZL = Zo Transmitter Tuner CHARACTERISTIC IMPEDANCE = Zo Extreme Mismatch Examples • Heuristic argument for reflected waves... Forward Wave Reflected Wave (= 100%) Short Circuit V=0 Transmitter Tuner CHARACTERISTIC IMPEDANCE = Zo Forward Wave Reflected Wave (= 100%) Open Circuit I=0 Transmitter Tuner CHARACTERISTIC IMPEDANCE = Zo • Since P = V × I , no power is transferred to the load in either case and must be returned to the source. OK, Now the Math • In a mismatched transmission line, the ratio of the voltage in the reflected wave at any one point to the forward wave at the same point is defined as the “voltage reflection coefficient,” ρ (rho).
    [Show full text]