Direct Chemical Evidence for Sphingolipid Domains in the Plasma

Total Page:16

File Type:pdf, Size:1020Kb

Direct Chemical Evidence for Sphingolipid Domains in the Plasma Direct chemical evidence for sphingolipid domains PNAS PLUS in the plasma membranes of fibroblasts Jessica F. Frisza,1, Kaiyan Loua,1, Haley A. Klitzinga, William P. Hanafina, Vladimir Lizunovb, Robert L. Wilsona, Kevin J. Carpenterc, Raehyun Kima, Ian D. Hutcheonc, Joshua Zimmerbergb, Peter K. Weberc, and Mary L. Krafta,2 aSchool of Chemical Sciences, University of Illinois, Urbana, IL 61801; bProgram in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; and cGlenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, CA 94551 Edited* by Thomas S. Reese, National Institutes of Health, Bethesda, MD, and approved December 28, 2012 (received for review September 23, 2012) Sphingolipids play important roles in plasma membrane structure To visualize the sphingolipids within the plasma membrane, we and cell signaling. However, their lateral distribution in the plasma isotopically labeled them and then mapped their distributions in membrane is poorly understood. Here we quantitatively analyzed the plasma membrane, using a secondary ion mass spectrometry the sphingolipid organization on the entire dorsal surface of intact (SIMS) instrument (Cameca NanoSIMS 50) with 50-nm lateral cells by mapping the distribution of 15N-enriched ions from metabol- resolution and an analysis depth of <5 nm at the cell surface (14– ically labeled 15N-sphingolipids in the plasma membrane, using high- 16); this analysis depth is less than the thickness of the plasma resolution imaging mass spectrometry. Many types of control experi- membrane. Previous reports establish that NanoSIMS imaging ments (internal, positive, negative, and fixation temperature), along does not alter biomolecule distribution within subcellular com- with parallel experiments involving the imaging of fluorescent sphin- partments or lipid membranes (14, 17–19). Thus, this approach golipids—both in living cells and during fixation of living cells— enabled us to quantitatively determine the sphingolipid organi- exclude potential artifacts. Micrometer-scale sphingolipid patches zation. Sphingolipids were segregated in ∼200-nm diameter mi- consisting of numerous 15N-sphingolipid microdomains with mean crodomains that nonrandomly clustered into sphingolipid-rich diameters of ∼200 nm are always present in the plasma membrane. plasma membrane patches with micrometer-scale dimensions. Depletion of 30% of the cellular cholesterol did not eliminate the The effects of cholesterol depletion and cytoskeleton disruption CHEMISTRY sphingolipid domains, but did reduce their abundance and long- on this sphingolipid organization indicate these sphingolipid range organization in the plasma membrane. In contrast, disruption assemblages are not lipid rafts and thus should at present be re- of the cytoskeleton eliminated the sphingolipid domains. These re- ferred to as sphingolipid domains. sults indicate that these sphingolipid assemblages are not lipid rafts and are instead a distinctly different type of sphingolipid-enriched Results plasma membrane domain that depends upon cortical actin. Metabolic Labeling Achieved a High Level of Molecule-Specific 13C- and 15N-Incorporation. We metabolically labeled Clone 15 cells, SIMS | stable isotope using uniformly 13C-labeled fatty acids and the 15N-sphingolipid precursors, 15N-sphingosine and 15N-sphinganine, such that the CELL BIOLOGY 15 patial organization of the lipids and proteins in the plasma resulting N-sphingolipids (i.e., sphingomyelin, ceramide, and Smembranes of eukaryotic cells is critical to coordinating lipid glycosphingolipids) reached a steady-state distribution in the plasma membrane without 15N-incorporation into proteins (20). signaling and numerous other processes that occur at the cell 13 surface (1). Thus, the hypothesis that lipids self-organize in com- The uniformly C-labeled fatty acids varied in chain length and positionally and functionally distinct plasma membrane domains degree of saturation to promote their incorporation into all sphingolipid and glycerolipid species, presumably producing an has been investigated for decades (2). Microdomains with a variety 13 of lipid compositions and dependencies on lipid and protein even distribution of C-lipids in the cell membrane. This global interactions may exist in the plasma membrane (3–5), but the most labeling of most lipids with carbon-13 allowed evaluation of compelling lipid microdomain is the lipid raft because such plasma membrane integrity and detection of spatially dependent variations in analysis sensitivity or artifactual lipid clustering. domains self-assemble in synthetic membranes (6, 7). Lipid rafts N are defined as dynamic and small (10- to 200-nm) plasma mem- Approximately 80% of the -palmitoyl sphingomyelin, the most abundant cellular sphingolipid we detected, contained one 15N- brane domains that are enriched with cholesterol and sphingoli- 13 ∼ pids (6, 7). Despite intense research, the distributions of most lipid isotope, and C16-palmitic acid was incorporated into 80% of the N-palmitoyl sphingomyelin (Fig. S1). Little (<2%) 15N-en- species, including cholesterol and sphingolipids, in cellular mem- richment of phosphatidylethanolamine due to 15N-sphingolipid branes are still difficult to determine (7). The ability to directly catabolism was detected (SI Methods), so 15N-incorporation into visualize specific lipid species without the use of potentially per- nonsphingolipid species was negligible. Using previously reported turbing tags would help to address outstanding questions regarding methods (21), we determined that ∼60% of the fatty acids in the distinct lipid domains in the plasma membrane (7–9). 13 cellular glycerolipids were uniformly C-labeled. The cells were Here we use a high-resolution chemical imaging approach to address the question: How are sphingolipids distributed in the plasma membranes of intact cells? We focused on sphingolipids i Author contributions: I.D.H., J.Z., P.K.W., and M.L.K. designed research; J.F.F., K.L., H.A.K., because ( ) they are postulated to be segregated within composi- W.P.H., V.L., K.J.C., R.K., P.K.W., and M.L.K. performed research; K.L., R.L.W., R.K., and J.Z. tionally distinct lipid domains, such as lipid rafts (10–12), and (ii) contributed new reagents/analytic tools; J.F.F., H.A.K., V.L., R.L.W., and M.L.K. analyzed sphingolipid metabolites are signaling molecules that regulate cell data; and J.F.F., J.Z., P.K.W., and M.L.K. wrote the paper. survival and proliferation (13). We studied a transfected mouse The authors declare no conflict of interest. fibroblast cell line that stably expresses influenza hemagglutinin *This Direct Submission article had a prearranged editor. (Clone 15 cell line) because the hemagglutinin clusters in their 1J.F.F. and K.L. contributed equally to this work. plasma membranes are thought to be associated with sphingolipid 2To whom correspondence should be addressed. E-mail: [email protected]. and cholesterol domains (10–12). Thus, we hoped to increase the See Author Summary on page 2701 (volume 110, number 8). probability of detecting sphingolipid-enriched plasma membrane This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. domains by using the Clone 15 cell line. 1073/pnas.1216585110/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1216585110 PNAS | Published online January 28, 2013 | E613–E622 Downloaded by guest on September 26, 2021 prepared for SIMS analysis by chemical fixation in glutaraldehyde, ological samples (26), the sputtering depth (<2 nm) was much followed by osmication, a procedure known to immobilize lipids less than the plasma membrane’s thickness (7.5 nm) (27), en- because osmium tetroxide acts as a multivalent cross-linker (22). suring that a minimum number of secondary ions were collected This procedure produces a membrane whose organization is re- from the underlying cytoplasm. tained during the inevitable drying process needed for introduction Secondary electron images of the Clone 15 fibroblast cells were into the vacuum of the NanoSIMS analysis chamber (22). Well- collected simultaneously to the secondary ions to allow the isotopic preserved cells with intact microextensions and normal morpholo- data to be related to cell location and morphology (Fig. 1 and Fig. gies were identified by low-voltage scanning electron microscopy S3). The high levels of 15N-isotope incorporation into the cellular (SEM) imaging and subsequently analyzed with NanoSIMS. sphingomyelin allowed the location and density of sphingolipids in the membrane to be mapped with a high signal-to-noise ratio. NanoSIMS Images Show Sphingolipid-Enriched Domains in the Plasma Local elevations in 15N-enrichment were dispersed within a matrix Membrane. The samples were coated with a thin (3-nm) iridium of lower 15N-enrichment on the surfaces of the Clone 15 cells layer that prevents charging during NanoSIMS analysis; prior (Fig. 2 and Fig. S3). Control experiments excluded the possibilities work establishes these metal coatings do not alter the lipid dis- that these local elevations in 15N-enrichment were artifacts in- tribution at the cell surface (23). To visualize the distributions of duced by cell topography (Fig. S2), the iridium coating (Fig. S4), 13C-lipids and 15N-sphingolipids in the plasma membrane, the or isotope-labeled material adsorbed to the cell (Fig. S5). Con- − − − − 12C1H , 13C1H , 12C14N , and 12C15N secondary ions were si- sequently, these local
Recommended publications
  • Lipid Bilayer, with the Nonpolar Regions of the Lipids Facing Inward
    Chapter 7 Membranes: Their Structure, Function, and Chemistry Lectures by Kathleen Fitzpatrick Simon Fraser University © 2012 Pearson Education, Inc. Membranes: Their Structure, Function, and Chemistry • Membranes define the boundaries of a cell, and its internal compartments • Membranes play multiple roles in the life of a cell © 2012 Pearson Education, Inc. Figure 7-1A © 2012 Pearson Education, Inc. Figure 7-1B © 2012 Pearson Education, Inc. The Functions of Membranes • 1. Define boundaries of a cell and organelles and act as permeability barriers • 2. Serve as sites for biological functions such as electron transport • 3. Possess transport proteins that regulate the movement of substances into and out of cells and organelles © 2012 Pearson Education, Inc. The Functions of Membranes (continued) • 4. Contain protein molecules that act as receptors to detect external signals • 5. Provide mechanisms for cell-to-cell contact, adhesion, and communication © 2012 Pearson Education, Inc. Figure 7-2 © 2012 Pearson Education, Inc. Models of Membrane Structure: An Experimental Approach • The development of electron microscopy in the 1950s was important for understanding membrane structure • The fluid mosaic model is thought to be descriptive of all biological membranes • The model envisions a membrane as two fluid layers of lipids with proteins within and on the layers © 2012 Pearson Education, Inc. Overton and Langmuir: Lipids Are Important Components of Membranes • In the 1890s Overton observed the easy penetration of lipid-soluble substances into cells and concluded that the cell surface had some kind of lipid “coat” on it • Langmuir studied phospholipids and found that they were amphipathic and reasoned that they must orient on water with the hydrophobic tails away from the water © 2012 Pearson Education, Inc.
    [Show full text]
  • Sphingolipid Metabolism Diseases ⁎ Thomas Kolter, Konrad Sandhoff
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1758 (2006) 2057–2079 www.elsevier.com/locate/bbamem Review Sphingolipid metabolism diseases ⁎ Thomas Kolter, Konrad Sandhoff Kekulé-Institut für Organische Chemie und Biochemie der Universität, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany Received 23 December 2005; received in revised form 26 April 2006; accepted 23 May 2006 Available online 14 June 2006 Abstract Human diseases caused by alterations in the metabolism of sphingolipids or glycosphingolipids are mainly disorders of the degradation of these compounds. The sphingolipidoses are a group of monogenic inherited diseases caused by defects in the system of lysosomal sphingolipid degradation, with subsequent accumulation of non-degradable storage material in one or more organs. Most sphingolipidoses are associated with high mortality. Both, the ratio of substrate influx into the lysosomes and the reduced degradative capacity can be addressed by therapeutic approaches. In addition to symptomatic treatments, the current strategies for restoration of the reduced substrate degradation within the lysosome are enzyme replacement therapy (ERT), cell-mediated therapy (CMT) including bone marrow transplantation (BMT) and cell-mediated “cross correction”, gene therapy, and enzyme-enhancement therapy with chemical chaperones. The reduction of substrate influx into the lysosomes can be achieved by substrate reduction therapy. Patients suffering from the attenuated form (type 1) of Gaucher disease and from Fabry disease have been successfully treated with ERT. © 2006 Elsevier B.V. All rights reserved. Keywords: Ceramide; Lysosomal storage disease; Saposin; Sphingolipidose Contents 1. Sphingolipid structure, function and biosynthesis ..........................................2058 1.1.
    [Show full text]
  • An Overview of Lipid Membrane Models for Biophysical Studies
    biomimetics Review Mimicking the Mammalian Plasma Membrane: An Overview of Lipid Membrane Models for Biophysical Studies Alessandra Luchini 1 and Giuseppe Vitiello 2,3,* 1 Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark; [email protected] 2 Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy 3 CSGI-Center for Colloid and Surface Science, via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy * Correspondence: [email protected] Abstract: Cell membranes are very complex biological systems including a large variety of lipids and proteins. Therefore, they are difficult to extract and directly investigate with biophysical methods. For many decades, the characterization of simpler biomimetic lipid membranes, which contain only a few lipid species, provided important physico-chemical information on the most abundant lipid species in cell membranes. These studies described physical and chemical properties that are most likely similar to those of real cell membranes. Indeed, biomimetic lipid membranes can be easily prepared in the lab and are compatible with multiple biophysical techniques. Lipid phase transitions, the bilayer structure, the impact of cholesterol on the structure and dynamics of lipid bilayers, and the selective recognition of target lipids by proteins, peptides, and drugs are all examples of the detailed information about cell membranes obtained by the investigation of biomimetic lipid membranes. This review focuses specifically on the advances that were achieved during the last decade in the field of biomimetic lipid membranes mimicking the mammalian plasma membrane. In particular, we provide a description of the most common types of lipid membrane models used for biophysical characterization, i.e., lipid membranes in solution and on surfaces, as well as recent examples of their Citation: Luchini, A.; Vitiello, G.
    [Show full text]
  • Membrane Proteins Are Associated with the Membrane of a Cell Or Particular Organelle and Are Generally More Problematic to Purify Than Water-Soluble Proteins
    Strategies for the Purification of Membrane Proteins Sinéad Marian Smith Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland. Email: [email protected] Abstract Although membrane proteins account for approximately 30 % of the coding regions of all sequenced genomes and play crucial roles in many fundamental cell processes, there are relatively few membranes with known 3D structure. This is likely due to technical challenges associated with membrane protein extraction, solubilization and purification. Membrane proteins are classified based on the level of interaction with membrane lipid bilayers, with peripheral membrane proteins associating non- covalently with the membrane, and integral membrane proteins associating more strongly by means of hydrophobic interactions. Generally speaking, peripheral membrane proteins can be purified by milder techniques than integral membrane proteins, whose extraction require phospholipid bilayer disruption by detergents. Here, important criteria for strategies of membrane protein purification are addressed, with a focus on the initial stages of membrane protein solublilization, where problems are most frequently are encountered. Protocols are outlined for the successful extraction of peripheral membrane proteins, solubilization of integral membrane proteins, and detergent removal which is important not only for retaining native protein stability and biological functions, but also for the efficiency of downstream purification techniques. Key Words: peripheral membrane protein, integral membrane protein, detergent, protein purification, protein solubilization. 1. Introduction Membrane proteins are associated with the membrane of a cell or particular organelle and are generally more problematic to purify than water-soluble proteins. Membrane proteins represent approximately 30 % of the open-reading frames of an organism’s genome (1-4), and play crucial roles in basic cell functions including signal transduction, energy production, nutrient uptake and cell-cell communication.
    [Show full text]
  • Role of Cholesterol in Lipid Raft Formation: Lessons from Lipid Model Systems
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1610 (2003) 174–183 www.bba-direct.com Review Role of cholesterol in lipid raft formation: lessons from lipid model systems John R. Silvius* Department of Biochemistry, McGill University, Montre´al, Que´bec, Canada H3G 1Y6 Received 21 March 2002; accepted 16 October 2002 Abstract Biochemical and cell-biological experiments have identified cholesterol as an important component of lipid ‘rafts’ and related structures (e.g., caveolae) in mammalian cell membranes, and membrane cholesterol levels as a key factor in determining raft stability and organization. Studies using cholesterol-containing bilayers as model systems have provided important insights into the roles that cholesterol plays in determining lipid raft behavior. This review will discuss recent progress in understanding two aspects of lipid–cholesterol interactions that are particularly relevant to understanding the formation and properties of lipid rafts. First, we will consider evidence that cholesterol interacts differentially with different membrane lipids, associating particularly strongly with saturated, high-melting phospho- and sphingolipids and particularly weakly with highly unsaturated lipid species. Second, we will review recent progress in reconstituting and directly observing segregated raft-like (liquid-ordered) domains in model membranes that mimic the lipid compositions of natural membranes incorporating raft domains. D 2003 Elsevier Science B.V. All rights reserved. Keywords: Sterol; Phospholipid; Sphingolipid; Lipid bilayer; Lipid monolayer; Membrane domain 1. Introduction Two major observations suggest that cholesterol–lipid interactions play an important role in the formation of rafts Cholesterol–lipid interactions have long been recognized in animal cell membranes.
    [Show full text]
  • The Adaptive Remodeling of Endothelial Glycocalyx in Response to Fluid Shear Stress
    City University of New York (CUNY) CUNY Academic Works Publications and Research City College of New York 2014 The Adaptive Remodeling of Endothelial Glycocalyx in Response to Fluid Shear Stress Ye Zeng CUNY City College John M. Tarbell CUNY City College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/cc_pubs/34 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] The Adaptive Remodeling of Endothelial Glycocalyx in Response to Fluid Shear Stress Ye Zeng1,2, John M. Tarbell1* 1 Department of Biomedical Engineering, The City College of New York, New York, New York, United States of America, 2 Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China Abstract The endothelial glycocalyx is vital for mechanotransduction and endothelial barrier integrity. We previously demonstrated the early changes in glycocalyx organization during the initial 30 min of shear exposure. In the present study, we tested the hypothesis that long-term shear stress induces further remodeling of the glycocalyx resulting in a robust layer, and explored the responses of membrane rafts and the actin cytoskeleton. After exposure to shear stress for 24 h, the glycocalyx components heparan sulfate, chondroitin sulfate, glypican-1 and syndecan-1, were enhanced on the apical surface, with nearly uniform spatial distributions close to baseline levels that differed greatly from the 30 min distributions. Heparan sulfate and glypican-1 still clustered near the cell boundaries after 24 h of shear, but caveolin-1/caveolae and actin were enhanced and concentrated across the apical aspects of the cell.
    [Show full text]
  • Biological Membranes
    14 Biological Membranes To understand the structure The fundamental unit of life is the cell. All living things are composed of Goal and composition of biological cells, be it a single cell in the case of many microorganisms or a highly membranes. organized ensemble of myriad cell types in the case of multicellular organisms. A defining feature of the cell is a membrane, the cytoplasmic Objectives membrane, that surrounds the cell and separates the inside of the cell, the After this chapter, you should be able to cytoplasm, from other cells and the extracellular milieu. Membranes also • distinguish between cis and trans surround specialized compartments inside of cells known as organelles. unsaturated fatty acids. Whereas cells are typically several microns (μm) in diameter (although • explain why phospholipids some cells can be much larger), the membrane is only about 10 nanometers spontaneously form lipid bilayers and (nm) thick. Yet, and as we will see in subsequent chapters, the membrane is sealed compartments. not simply an ultra-thin, pliable sheet that encases the cytoplasm. Rather, • describe membrane fluidity and how it membranes are dynamic structures that mediate many functions in the is affected by membrane composition life of the cell. In this chapter we examine the composition of membranes, and temperature. their assembly, the forces that stabilize them, and the chemical and physical • explain the role of cholesterol in properties that influence their function. buffering membrane fluidity. The preceding chapters have focused on two kinds of biological molecules, • explain how the polar backbone namely proteins and nucleic acids, that are important in the workings of a membrane protein can be accommodated in a bilayer.
    [Show full text]
  • Diffusion of Lipids and GPI-Anchored Proteins in Actin-Free Plasma Membrane Vesicles Measured by STED-FCS Falk Schneidera, Mathias P
    bioRxiv preprint doi: https://doi.org/10.1101/076109; this version posted September 19, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Diffusion of lipids and GPI-anchored proteins in actin-free plasma membrane vesicles measured by STED-FCS Falk Schneidera, Mathias P. Clausena,b, Dominic Waithec, Thomas Kollera, Gunes Ozhand,e, Christian Eggelinga,c,*, Erdinc Sezgina,* a MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX39DS, Oxford, United Kingdom b MEMPHYS – Center for Biomembrane Physics, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark c Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of Oxford, OX39DS, Oxford, United Kingdom d Izmir International Biomedicine and Genome Institute (iBG-izmir), Dokuz Eylul University, Inciralti- Balcova, 35340 Izmir, Turkey; e Department of Medical Biology and Genetics, Dokuz Eylul University Medical School, Inciralti-Balcova, 35340 Izmir, Turkey. Correspondence: [email protected]; [email protected] Running title: Diffusion in actin-free plasma membrane vesicles Keywords: plasma membrane biophysics, fluorescence correlation spectroscopy, lipid raft, GPI anchored proteins, STED microscopy, STED-FCS, giant plasma membrane vesicles, Abbreviations: giant plasma membrane vesicles (GPMVs), giant unilamellar vesicles (GUVs), Glycophosphatidylinositol anchored protein (GPI-AP), phospholipid (PL), Stimulated emission depletion (STED), fluorescence correlation spectroscopy (FCS) Character count: 19,026 1 bioRxiv preprint doi: https://doi.org/10.1101/076109; this version posted September 19, 2016.
    [Show full text]
  • Lipid Rafts Facilitate LPS Responses 2605
    Research Article 2603 Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation Martha Triantafilou1, Kensuke Miyake2, Douglas T. Golenbock3,* and Kathy Triantafilou1,‡ 1University of Portsmouth, School of Biological Sciences, King Henry Building, King Henry I Street, Portsmouth, PO1 2DY, UK 2Department of Immunology, Saga Medical School, Nabeshima, Japan 3Boston University School of Medicine, Boston Medical Center, The Maxwell Finland Laboratory for Infectious Diseases, Boston, Massachusetts 02118, USA *Present address: Department of Medicine, Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, MA 01665, USA ‡Author for correspondence (e-mail: [email protected]) Accepted 19 March 2002 Journal of Cell Science 115, 2603-2611 (2002) © The Company of Biologists Ltd Summary The plasma membrane of cells is composed of lateral present in microdomains following LPS stimulation. Lipid heterogeneities, patches and microdomains. These raft integrity is essential for LPS-cellular activation, since membrane microdomains or lipid rafts are enriched raft-disrupting drugs, such as nystatin or MCD, inhibit in glycosphingolipids and cholesterol and have been LPS-induced TNF-α secretion. Our results suggest that the implicated in cellular processes such as membrane sorting entire bacterial recognition system is based around the and signal transduction. In this study we investigated the ligation of CD14 by bacterial components and the importance of lipid raft formation in the innate immune recruitment of multiple signalling molecules, such as hsp70, recognition of bacteria using biochemical and fluorescence hsp90, CXCR4, GDF5 and TLR4, at the site of CD14-LPS imaging techniques. We found that receptor molecules ligation, within the lipid rafts.
    [Show full text]
  • The Lipid Bilayer: Composition and Structural Organization
    THE LIPID BILAYER: COMPOSITION AND STRUCTURAL ORGANIZATION • MR. SOURAV BARAI • ASSISTANT PROFESSOR • DEPARTMENT OF ZOOLOGY • JHARGRAM RAJ COLLEGE THELIPID BILAYER: COMPOSITION AND STRUCTURAL ORGANIZATION The Fluid Mosaic Model of Biomembrane Plasma membrane • 1. Affect shape and function • 2. Anchor protein to the membrane • 3. Modify membrane protein activities • 4. Transducing signals to the cytoplasm “A living cell is a self-reproducing system of molecules held inside a container - the plasma membrane” Membrane comprised of lipid sheet (5 nm thick) • Primary purpose - barrier to prevent cell contents spilling out BUT, must be selective barrier Lipid Composition and struCturaL organization • Phospholipids of the composition present in cells spontaneously form sheet like phospholipid bilayers, which are two molecules thick. • The hydrocarbon chains of the phospholipids in each layer, or leaflet, form a hydrophobic core that is 3–4 nm thick in most biomembranes. • Approx 10^6 lipid molecule in 1µm×1µm area of lipid bilayer. • Electron microscopy of thin membrane sections stained with osmium tetroxide, which binds strongly to the polar head groups of phospholipids, reveals the bilayer structure. • A cross section of all single membranes stained with osmium tetroxide looks like a railroad track: two thin dark lines (the stain–head group complexes) with a uniform light space of about 2nm (the hydrophobic tails) between them. PROPERTIES • PERMIABILITY: The hydrophobic core is an impermeable barrier that prevents the diffusion of water-soluble (hydrophilic) solutes across the membrane. • STABILITY: The bilayer structure is maintained by hydrophobic and van der Waals interactions between the lipid chains. Even though the exterior aqueous environment can vary widely in ionic strength and pH, the bilayer has the strength to retain its characteristic architecture.
    [Show full text]
  • Targeting the Sphingosine Kinase/Sphingosine-1-Phosphate Signaling Axis in Drug Discovery for Cancer Therapy
    cancers Review Targeting the Sphingosine Kinase/Sphingosine-1-Phosphate Signaling Axis in Drug Discovery for Cancer Therapy Preeti Gupta 1, Aaliya Taiyab 1 , Afzal Hussain 2, Mohamed F. Alajmi 2, Asimul Islam 1 and Md. Imtaiyaz Hassan 1,* 1 Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; [email protected] (P.G.); [email protected] (A.T.); [email protected] (A.I.) 2 Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; afi[email protected] (A.H.); [email protected] (M.F.A.) * Correspondence: [email protected] Simple Summary: Cancer is the prime cause of death globally. The altered stimulation of signaling pathways controlled by human kinases has often been observed in various human malignancies. The over-expression of SphK1 (a lipid kinase) and its metabolite S1P have been observed in various types of cancer and metabolic disorders, making it a potential therapeutic target. Here, we discuss the sphingolipid metabolism along with the critical enzymes involved in the pathway. The review provides comprehensive details of SphK isoforms, including their functional role, activation, and involvement in various human malignancies. An overview of different SphK inhibitors at different phases of clinical trials and can potentially be utilized as cancer therapeutics has also been reviewed. Citation: Gupta, P.; Taiyab, A.; Hussain, A.; Alajmi, M.F.; Islam, A.; Abstract: Sphingolipid metabolites have emerged as critical players in the regulation of various Hassan, M..I. Targeting the Sphingosine Kinase/Sphingosine- physiological processes. Ceramide and sphingosine induce cell growth arrest and apoptosis, whereas 1-Phosphate Signaling Axis in Drug sphingosine-1-phosphate (S1P) promotes cell proliferation and survival.
    [Show full text]
  • Structure and Activity of Lipid Bilayer Within a Membrane-Protein Transporter
    Structure and activity of lipid bilayer within a membrane-protein transporter Weihua Qiua,b,1, Ziao Fuc,1, Guoyan G. Xua, Robert A. Grassuccid, Yan Zhanga, Joachim Frankd,e,2, Wayne A. Hendricksond,f,g,2, and Youzhong Guoa,b,2 aDepartment of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298; bInstitute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219; cIntegrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY 10032; dDepartment of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032; eDepartment of Biological Sciences, Columbia University, New York, NY 10027; fDepartment of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032; and gNew York Structural Biology Center, New York, NY 10027 Contributed by Wayne A. Hendrickson, October 15, 2018 (sent for review July 20, 2018; reviewed by Yifan Cheng and Michael C. Wiener) Membrane proteins function in native cell membranes, but extrac- 1.9 Å (30). Nevertheless, the mechanism of active transport is still tion into isolated particles is needed for many biochemical and far from clear, in part because crucial structural information re- structural analyses. Commonly used detergent-extraction meth- garding protein–lipid interaction is missing (31). The AcrB trimer ods destroy naturally associated lipid bilayers. Here, we devised a has a central cavity between transmembrane (TM) domains of the detergent-free method for preparing cell-membrane nanopar- three protomers, where a portion of lipid bilayer may exist (26). ticles to study the multidrug exporter AcrB, by cryo-EM at 3.2-Å Although detergent molecules and some alkane chains have been resolution.
    [Show full text]