Pricing of Barrier Options Using a Two-Volatility Model

Total Page:16

File Type:pdf, Size:1020Kb

Pricing of Barrier Options Using a Two-Volatility Model U.U.D.M. Project Report 2017:13 Pricing of Barrier Options Using a Two-Volatility Model Konstantinos Papakonstantinou Examensarbete i matematik, 30 hp Handledare: Jacob Lundgren, Itiviti Group AB Ämnesgranskare: Erik Ekström Examinator: Denis Gaidashev Juni 2017 Department of Mathematics Uppsala University Abstract The purpose of the current study is to assess and compare performance char- acteristics of a range of trinomial lattice and finite difference solvers for pric- ing barrier options using a two-volatility model. Emphasis is laid upon reduc- ing the problem to a one-dimensional barrier option pricing problem with a time-independent barrier. Additionally, focus is placed upon handling discrete dividend payments and floating interest rates. Improvements such as the use of a non-uniform grid and the local refinement of the adaptive mesh model are also scrutinized. The results of this study reveal that the Crank-Nicolson finite difference scheme almost outperforms among all the considered meth- ods. Only Ritchken’s tree may compete against it when a relatively fast re- sponse time is necessary. Keywords: pricing, valuation, barrier option, two-volatility model, finite dif- ference method, trinomial lattice method, non-uniform grid, adaptive mesh model, discrete dividends. To the memory of my grandmother, Evaggelia Mourti Acknowledgements First and foremost, I wish to thank professor Erik Ekström for his invaluable help in conducting this study. I would like also to thank Itiviti company and especially, Jacob Lundgren and Yuri Shpolyanskiy for their support and guid- ance. For additional helpful comments on this dissertation, I am grateful to Peiyu Wang and Victor Shcherbakov. I would also like to thank my parents Giorgos and Rania, and my sister Maria for their unwavering support throughout my studies. Additionally, I thank Anna, Fragkiski and Vaggelis for their encouragement. Finally, I wish to express my gratitude to my beloved partner Sofia for her wholehearted sup- port. Contents 1. Introduction ............................................................................................ 9 1.1. Barrier Options ............................................................................... 9 1.2. Model and Absence of Arbitrage ................................................. 11 1.3. Numerical Methods ...................................................................... 12 1.4. Objectives ..................................................................................... 13 1.5. Outline .......................................................................................... 13 2. Theory .................................................................................................. 14 2.1. Stochastic Calculus ...................................................................... 14 2.1.1. Stochastic Processes ............................................................. 14 2.1.2. Stochastic Integrals ............................................................... 15 2.1.3. Itô Processes ......................................................................... 15 2.1.4. Itô’s Formula ........................................................................ 16 2.1.5. The Feynman-Kac Formula .................................................. 16 2.1.6. Geometric Brownian Motion ................................................ 16 2.2. The Black-Scholes-Merton Model ............................................... 17 2.2.1. The Black-Scholes Equation ................................................ 18 2.2.2. Risk-Neutral Valuation ......................................................... 19 2.3. Pricing Formulas of Standard Barrier Options ............................. 20 2.4. Trinomial Tree Models ................................................................. 22 2.4.1. Standard Trinomial Tree Model ........................................... 22 2.4.2. Probability-Adjusted Trinomial Tree Model ........................ 24 2.4.3. Ritchken’s Trinomial Tree Model ........................................ 25 2.4.4. Adaptive Mesh Model .......................................................... 27 2.5. Finite Difference Methods ........................................................... 30 2.5.1. Explicit Discretization .......................................................... 31 2.5.2. Fully Implicit Discretization ................................................. 32 2.5.3. Crank-Nicolson Discretization ............................................. 33 2.5.4. Boundary Conditions ............................................................ 34 2.5.5. Non-uniform Grid Points ...................................................... 35 2.5.6. Tridiagonal matrix algorithm ................................................ 38 2.6. Dividends ..................................................................................... 39 2.7. Barycentric Lagrange Interpolation ............................................. 40 3. Methodology ........................................................................................ 42 3.1. Problem ........................................................................................ 42 3.2. Solution ........................................................................................ 42 3.2.1. European Barrier Option ...................................................... 42 3.2.2. Stochastic Process H ............................................................. 43 3.2.3. Pricing of Barrier Options Using a Two-Volatility Model ... 44 3.2.4. Transformation to a Time-independent Barrier Option ........ 45 3.3. Implementation ............................................................................. 46 4. Results .................................................................................................. 47 4.1. Test Specification ......................................................................... 47 4.2. Convergence Test ......................................................................... 48 4.3. Performance Test .......................................................................... 54 4.4. Discussion .................................................................................... 58 5. Conclusion ........................................................................................... 60 6. Bibliography ........................................................................................ 61 List of Figures Figure 1. A Wiener trajectory. ................................................................... 14 Figure 2. A geometric Brownian motion: µ = 1, σ = 0.4. ........................ 17 Figure 3. A trinomial tree model with diffusion paths traversing the barrier between nodes. ......................................... 25 Figure 4. Two trinomial tree models for a down-and-out option with λ = 1 and λ estimated according to Ritchken’s procedure. ....... 27 Figure 5. An illustration of the adaptive mesh model for a down-and-out option. ......................................................... 29 Figure 6. An example of non-uniform grids via an exponential transformation. ................................................... 37 Figure 7. An example of a non-uniform grid via a polynomial transformation. ...................................................... 37 Figure 8. A dividend correction as described by Vellekoop and Nieuwenhuis. ...................................................... 40 Figure 9. An example of a non-uniform grid via a coordinate transformation. ....................................................... 46 Figure 10. Convergence of the finite difference methods for the down-and-out call option with 64-bit precision. ................... 49 Figure 11. Convergence of the finite difference methods for the down-and-out call option with 128-bit precision. ................. 50 Figure 12. Convergence of the finite difference methods for the up-and-out put option with 128-bit precision. ...................... 50 Figure 13. Convergence of the finite difference methods for the down-and-out call option. ..................................................... 51 Figure 14. Convergence of the finite difference methods for the down-and-out call option. ..................................................... 51 Figure 15. Convergence of the finite difference methods for the up-and-out put option. ........................................................... 52 Figure 16. Convergence of the lattice methods for the down-and-out call option. ..................................................... 53 Figure 17. Convergence of the lattice methods for the up-and-out put option. ........................................................... 53 Figure 18. An effective relationship between the number of stock nodes and time points for the down-and-out call option. .. 54 Figure 19. An effective relationship between the number of stock nodes and time points for the up-and-out put option. ........ 55 Figure 20. Performance of the finite difference solvers for the down-and-out call option. ..................................................... 55 Figure 21. Performance of the finite difference solvers for the up-and-out put option. ........................................................... 56 Figure 22. Performance of the lattice solvers for the down-and-out call option. ..................................................... 56 Figure 23. Performance of the lattice solvers for the up-and-out put option. ........................................................... 57 Figure 24. Performance
Recommended publications
  • Dixit-Pindyck and Arrow-Fisher-Hanemann-Henry Option Concepts in a Finance Framework
    Dixit-Pindyck and Arrow-Fisher-Hanemann-Henry Option Concepts in a Finance Framework January 12, 2015 Abstract We look at the debate on the equivalence of the Dixit-Pindyck (DP) and Arrow-Fisher- Hanemann-Henry (AFHH) option values. Casting the problem into a financial framework allows to disentangle the discussion without unnecessarily introducing new definitions. Instead, the option values can be easily translated to meaningful terms of financial option pricing. We find that the DP option value can easily be described as time-value of an American plain-vanilla option, while the AFHH option value is an exotic chooser option. Although the option values can be numerically equal, they differ for interesting, i.e. non-trivial investment decisions and benefit-cost analyses. We find that for applied work, compared to the Dixit-Pindyck value, the AFHH concept has only limited use. Keywords: Benefit cost analysis, irreversibility, option, quasi-option value, real option, uncertainty. Abbreviations: i.e.: id est; e.g.: exemplum gratia. 1 Introduction In the recent decades, the real options1 concept gained a large foothold in the strat- egy and investment literature, even more so with Dixit & Pindyck (1994)'s (DP) seminal volume on investment under uncertainty. In environmental economics, the importance of irreversibility has already been known since the contributions of Arrow & Fisher (1974), Henry (1974), and Hanemann (1989) (AFHH) on quasi-options. As Fisher (2000) notes, a unification of the two option concepts would have the benefit of applying the vast results of real option pricing in environmental issues. In his 1The term real option has been coined by Myers (1977).
    [Show full text]
  • The Promise and Peril of Real Options
    1 The Promise and Peril of Real Options Aswath Damodaran Stern School of Business 44 West Fourth Street New York, NY 10012 [email protected] 2 Abstract In recent years, practitioners and academics have made the argument that traditional discounted cash flow models do a poor job of capturing the value of the options embedded in many corporate actions. They have noted that these options need to be not only considered explicitly and valued, but also that the value of these options can be substantial. In fact, many investments and acquisitions that would not be justifiable otherwise will be value enhancing, if the options embedded in them are considered. In this paper, we examine the merits of this argument. While it is certainly true that there are options embedded in many actions, we consider the conditions that have to be met for these options to have value. We also develop a series of applied examples, where we attempt to value these options and consider the effect on investment, financing and valuation decisions. 3 In finance, the discounted cash flow model operates as the basic framework for most analysis. In investment analysis, for instance, the conventional view is that the net present value of a project is the measure of the value that it will add to the firm taking it. Thus, investing in a positive (negative) net present value project will increase (decrease) value. In capital structure decisions, a financing mix that minimizes the cost of capital, without impairing operating cash flows, increases firm value and is therefore viewed as the optimal mix.
    [Show full text]
  • A Glossary of Securities and Financial Terms
    A Glossary of Securities and Financial Terms (English to Traditional Chinese) 9-times Restriction Rule 九倍限制規則 24-spread rule 24 個價位規則 1 A AAAC see Academic and Accreditation Advisory Committee【SFC】 ABS see asset-backed securities ACCA see Association of Chartered Certified Accountants, The ACG see Asia-Pacific Central Securities Depository Group ACIHK see ACI-The Financial Markets of Hong Kong ADB see Asian Development Bank ADR see American depositary receipt AFTA see ASEAN Free Trade Area AGM see annual general meeting AIB see Audit Investigation Board AIM see Alternative Investment Market【UK】 AIMR see Association for Investment Management and Research AMCHAM see American Chamber of Commerce AMEX see American Stock Exchange AMS see Automatic Order Matching and Execution System AMS/2 see Automatic Order Matching and Execution System / Second Generation AMS/3 see Automatic Order Matching and Execution System / Third Generation ANNA see Association of National Numbering Agencies AOI see All Ordinaries Index AOSEF see Asian and Oceanian Stock Exchanges Federation APEC see Asia Pacific Economic Cooperation API see Application Programming Interface APRC see Asia Pacific Regional Committee of IOSCO ARM see adjustable rate mortgage ASAC see Asian Securities' Analysts Council ASC see Accounting Society of China 2 ASEAN see Association of South-East Asian Nations ASIC see Australian Securities and Investments Commission AST system see automated screen trading system ASX see Australian Stock Exchange ATI see Account Transfer Instruction ABF Hong
    [Show full text]
  • Pricing and Hedging of American Knock-In Options
    Pricing and Hedging of American Knock-In Options FARID AITSAHLIA, LORENS IMHOF, AND TZE LEUNG LAI FARID AITSAHLIA American barrier options of the knock-in type involve as they do not have closed-form solutions, is a senior scientist at non-Markouian optimal stopping problems for early unlike their European-style counterparts (see DemandTec in Stanford, CA. exercise. They therefore cannot be priced via stan- Merton [1973] and Rubinstein and Reiner farid @stat.stanford.edu dard methods such as binomial or trinomial trees [1991]). LORENS IMHOF and finite-difference schemes for free-boundary par- Naive application of the Cox-Ross- is an assistant professor at tial differential equations. Rubinstein binomial tree method for barrier Institut ftir Statistik und options has been shown by Boyle and Lau Wirtschaftsniathematik in This article provides a modified tree method to [1994] to yield inaccurate values, even with Aachen, Germany. price these options. It also develops fast and accu- many steps. To address this problem, which [email protected] rate analytic approximations for the price and hedge stems from the position of the barrier relative TZE LEUNG LAI parameters. to the grid, a number of variants of the tree is a professor of statistics at method have been advanced. Stanford University. omplex derivatives have become Ritchken [1995] implements a trinomial [email protected] accepted instruments to tailor risk tree method. Cheuk and Vorst [1996| develop coverage for risk managers and a time-dependent shift for the trinomial tree, Cinvestors. Barrier-type options and Figlewski and Gao [1999[ introduce an have become important instruments, particu- adaptive mesh model that grafts high-resolution larly for the valuation of structured products lattices around points that cause the inaccuracies (see Banks [1994]).
    [Show full text]
  • Analysis of Employee Stock Options and Guaranteed Withdrawal Benefits for Life by Premal Shah B
    Analysis of Employee Stock Options and Guaranteed Withdrawal Benefits for Life by Premal Shah B. Tech. & M. Tech., Electrical Engineering (2003), Indian Institute of Technology (IIT) Bombay, Mumbai Submitted to the Sloan School of Management in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Operations Research at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2008 c Massachusetts Institute of Technology 2008. All rights reserved. Author.............................................................. Sloan School of Management July 03, 2008 Certified by. Dimitris J. Bertsimas Boeing Professor of Operations Research Thesis Supervisor Accepted by . Cynthia Barnhart Professor Co-director, Operations Research Center 2 Analysis of Employee Stock Options and Guaranteed Withdrawal Benefits for Life by Premal Shah B. Tech. & M. Tech., Electrical Engineering (2003), Indian Institute of Technology (IIT) Bombay, Mumbai Submitted to the Sloan School of Management on July 03, 2008, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Operations Research Abstract In this thesis we study three problems related to financial modeling. First, we study the problem of pricing Employee Stock Options (ESOs) from the point of view of the issuing company. Since an employee cannot trade or effectively hedge ESOs, she exercises them to maximize a subjective criterion of value. Modeling this exercise behavior is key to pricing ESOs. We argue that ESO exercises should not be modeled on a one by one basis, as is commonly done, but at a portfolio level because exercises related to different ESOs that an employee holds would be coupled. Using utility based models we also show that such coupled exercise behavior leads to lower average ESO costs for the commonly used utility functions such as power and exponential utilities.
    [Show full text]
  • Sequential Compound Options and Investments Valuation
    Sequential compound options and investments valuation Luigi Sereno Dottorato di Ricerca in Economia - XIX Ciclo - Alma Mater Studiorum - Università di Bologna Marzo 2007 Relatore: Prof. ssa Elettra Agliardi Coordinatore: Prof. Luca Lambertini Settore scienti…co-disciplinare: SECS-P/01 Economia Politica ii Contents I Sequential compound options and investments valua- tion 1 1 An overview 3 1.1 Introduction . 3 1.2 Literature review . 6 1.2.1 R&D as real options . 11 1.2.2 Exotic Options . 12 1.3 An example . 17 1.3.1 Value of expansion opportunities . 18 1.3.2 Value with abandonment option . 23 1.3.3 Value with temporary suspension . 26 1.4 Real option modelling with jump processes . 31 1.4.1 Introduction . 31 1.4.2 Merton’sapproach . 33 1.4.3 Further reading . 36 1.5 Real option and game theory . 41 1.5.1 Introduction . 41 1.5.2 Grenadier’smodel . 42 iii iv CONTENTS 1.5.3 Further reading . 45 1.6 Final remark . 48 II The valuation of new ventures 59 2 61 2.1 Introduction . 61 2.2 Literature Review . 63 2.2.1 Flexibility of Multiple Compound Real Options . 65 2.3 Model and Assumptions . 68 2.3.1 Value of the Option to Continuously Shut - Down . 69 2.4 An extension . 74 2.4.1 The mathematical problem and solution . 75 2.5 Implementation of the approach . 80 2.5.1 Numerical results . 82 2.6 Final remarks . 86 III Valuing R&D investments with a jump-di¤usion process 93 3 95 3.1 Introduction .
    [Show full text]
  • Calibration Risk for Exotic Options
    Forschungsgemeinschaft through through Forschungsgemeinschaft SFB 649DiscussionPaper2006-001 * CASE - Center for Applied Statistics and Economics, Statisticsand Center forApplied - * CASE Calibration Riskfor This research was supported by the Deutsche the Deutsche by was supported This research Wolfgang K.Härdle** Humboldt-Universität zuBerlin,Germany SFB 649, Humboldt-Universität zu Berlin zu SFB 649,Humboldt-Universität Exotic Options Spandauer Straße 1,D-10178 Berlin Spandauer http://sfb649.wiwi.hu-berlin.de http://sfb649.wiwi.hu-berlin.de Kai Detlefsen* ISSN 1860-5664 the SFB 649 "Economic Risk". "Economic the SFB649 SFB 6 4 9 E C O N O M I C R I S K B E R L I N Calibration Risk for Exotic Options K. Detlefsen and W. K. H¨ardle CASE - Center for Applied Statistics and Economics Humboldt-Universit¨atzu Berlin Wirtschaftswissenschaftliche Fakult¨at Spandauer Strasse 1, 10178 Berlin, Germany Abstract Option pricing models are calibrated to market data of plain vanil- las by minimization of an error functional. From the economic view- point, there are several possibilities to measure the error between the market and the model. These different specifications of the error give rise to different sets of calibrated model parameters and the resulting prices of exotic options vary significantly. These price differences often exceed the usual profit margin of exotic options. We provide evidence for this calibration risk in a time series of DAX implied volatility surfaces from April 2003 to March 2004. We analyze in the Heston and in the Bates model factors influencing these price differences of exotic options and finally recommend an error func- tional.
    [Show full text]
  • Model Risk in the Pricing of Exotic Options
    Model Risk in the Pricing of Exotic Options Jacinto Marabel Romo∗ José Luis Crespo Espert† [email protected] [email protected] Abstract The growth experimented in recent years in both the variety and volume of structured products implies that banks and other financial institutions have become increasingly exposed to model risk. In this article we focus on the model risk associated with the local volatility (LV) model and with the Vari- ance Gamma (VG) model. The results show that the LV model performs better than the VG model in terms of its ability to match the market prices of European options. Nevertheless, both models are subject to significant pricing errors when compared with the stochastic volatility framework. Keywords: Model risk, exotic options, local volatility, stochastic volatil- ity, Variance Gamma process, path dependence. JEL: G12, G13. ∗BBVA and University Institute for Economic and Social Analysis, University of Alcalá (UAH). Mailing address: Vía de los Poblados s/n, 28033, Madrid, Spain. The content of this paper represents the author’s personal opinion and does not reflect the views of BBVA. †University of Alcalá (UAH) and University Institute for Economic and Social Analysis. Mail- ing address: Plaza de la Victoria, 2, 28802, Alcalá de Henares, Madrid, Spain. 1 Introduction In recent years there has been a remarkable growth of structured products with embedded exotic options. In this sense, the European Commission1 stated that the use of derivatives has grown exponentially over the last decade, with over-the- counter transactions being the main contributor to this growth. At the end of December 2009, the size of the over-the-counter derivatives market by notional value equaled approximately $615 trillion, a 12% increase with respect to the end of 2008.
    [Show full text]
  • Barrier Options Under Lévy Processes: a Short-Cut Arxiv
    Barrier Options under L´evyProcesses: a Short-Cut Jos´eFajardo∗ November 7, 2018 Abstract In this paper we present a simple way to price a class of barrier options when the underlying process is driven by a huge class of L´evy processes. To achieve our goal we assume that our market satisfies a symmetry property. In case of not satisfying that property some approximations and relationships can be obtained. Keywords: Barrier Options; L´evyProcesses; Implied volatility; Mar- ket Symmetry. JEL Classification: C52; G10 1 Introduction Recently, the relationship between the implied volatility symmetry and other symmetry concepts has been established, as Fajardo and Mordecki (2006) have shown for L´evyprocess and Carr and Lee (2009) have shown for lo- arXiv:1303.6340v3 [q-fin.PR] 6 May 2013 cal/stochastic volatility models and time-changed L´evyprocesses. Also, Fa- jardo and Mordecki (2012) have studied the relationship of symmetry prop- erties with the skewness premium. Moreover, it is known that important applications, such as the construction of semi-static hedges for exotic options can be obtained, as Carr, Ellis, and Gupta (1998) and Carr and Lee (2009) ∗Brazilian School of Public and Business Administration, Getulio Vargas Founda- tion, Praia de Botafogo 190, 22253 900 - Rio de Janeiro, RJ, Brazil. E-mail address: [email protected] 1 have shown, and its extension to multivariate derivatives due to Molchanov and Schmutz (2010). The importance of such symmetry properties have demanded the analysis of conditions to verify what kind of underlying processes satisfy such prop- erties, as Carr and Lee (2009), Fajardo and Mordecki (2008), Fajardo and Mordecki (2010) and Tehranchi (2009) results have shown.
    [Show full text]
  • Efficient Pricing of Barrier Options on High Volatility Assets Using
    Efficient Pricing of Barrier Options on High Volatility Assets using Subset Simulation∗ Keegan Mendonca,y Vasileios E. Kontosakos,z Athanasios A. Pantelous,x Konstantin M. Zuev{ March 29, 2018 Abstract Barrier options are one of the most widely traded exotic options on stock ex- changes. In this paper, we develop a new stochastic simulation method for pricing barrier options and estimating the corresponding execution probabilities. We show that the proposed method always outperforms the standard Monte Carlo approach and becomes substantially more efficient when the underlying asset has high volatil- ity, while it performs better than multilevel Monte Carlo for special cases of barrier options and underlying assets. These theoretical findings are confirmed by numer- ous simulation results. JEL classification: G13, C15 Keywords: Simulation; Barrier Options Pricing; Path{Dependent Derivatives; Monte Carlo; Discretely Monitored ∗The authors would like to thank Siu-Kui (Ivan) Au, James Beck, Damiano Brigo, Gianluca Fusai, Steven Kou, Ioannis Kyriakou, Zili Zhu, and the participants at Caltech, University of Liverpool, and Monash University seminars for helpful comments. Any remaining errors are ours. yDepartment of Computing and Mathematical Sciences, California Institute of Technology, E. Cali- arXiv:1803.03364v2 [q-fin.PR] 28 Mar 2018 fornia Blvd., Pasadena, CA 91125 USA. Email: [email protected] zDepartment of Econometrics and Business Statistics, Monash University, Wellington Rd, Clayton, Victoria 3800, Australia. Email: [email protected] xDepartment of Econometrics and Business Statistics, Monash University, Wellington Rd, Clayton, Victoria 3800, Australia. Email: [email protected]. {Corresponding author. Department of Computing and Mathematical Sciences, California Institute of Technology, E. California Blvd., Pasadena, CA 91125 USA.
    [Show full text]
  • Static Replication of Exotic Options Andrew Chou JUL 241997 Eng
    Static Replication of Exotic Options by Andrew Chou M.S., Computer Science MIT, 1994, and B.S., Computer Science, Economics, Mathematics, Physics MIT, 1991 Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 1997 () Massachusetts Institute of Technology 1997. All rights reserved. Author ................. ......................... Department of Electrical Engineering and Computer Science April 23, 1997 Certified by ................... ............., ...... .................... Michael F. Sipser Professor of Mathematics Thesis Supervisor Accepted by .................................. A utlir C. Smith Chairman, Department Committee on Graduate Students .OF JUL 241997 Eng. •'~*..EC.•HL-, ' Static Replication of Exotic Options by Andrew Chou Submitted to the Department of Electrical Engineering and Computer Science on April 23, 1997, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract In the Black-Scholes model, stocks and bonds can be continuously traded to replicate the payoff of any derivative security. In practice, frequent trading is both costly and impractical. Static replication attempts to address this problem by creating replicating strategies that only trade rarely. In this thesis, we will study the static replication of exotic options by plain vanilla options. In particular, we will examine barrier options, variants of barrier options, and lookback options. Under the Black-Scholes assumptions, we will prove the existence of static replication strategies for all of these options. In addition, we will examine static replication when the drift and/or volatility is time-dependent. Finally, we conclude with a computational study to test the practical plausibility of static replication.
    [Show full text]
  • Foreign Exchange Derivatives Commerzbank AG
    Foreign exchange derivatives Commerzbank AG 2. The popularity of barrier options Isn't there anything cheaper than a) They are less expensive than vanilla options? From an actuarial vanilla contracts: in fact, the closer point of view a put or a call option is the spot is to the barrier, the an insurance against falling or rising cheaper the knock-out option. Any exchange rates, and surely a buyer price between zero and the vanilla would like to keep the premium at a premium can be obtained by minimal level. For this reason barrier taking an appropriate barrier level. options have been invented. They One must be aware however, that belong to the first generation exotics. too cheap barrier options are very The premium can be lowered by likely to knock out. shifting risk to the option holder. We give an overview of the issues Vanilla Put and Down-and-out Put Compared related to barrier options 0.040 barrier 0.035 1. What is a barrier option option 0.030 value 0.025 vanilla Varatio delectat - there are lots of 0.020 option different kinds of barrier options. A 0.015 spot = 0.90 strike = 0.92 standard barrier option can be either a option value 0.010 maturity = 3M call or a put with the additional feature 0.005 volatility = 14% that the option becomes worthless if 0.000 domestic rate = 5% the spot hits a prespecified barrier. foreign rate = 6% Such an option is called a knock-out 0.70 0.74 0.78 0.82 0.86 0.90 Barrier call or knock-out put.
    [Show full text]