Immune Deficiency Pathway Innate Immune Response Activated by The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Synergy and Remarkable Specificity of Antimicrobial Peptides in 2 Vivo Using a Systematic Knockout Approach
bioRxiv preprint doi: https://doi.org/10.1101/493817; this version posted December 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Synergy and remarkable specificity of antimicrobial peptides in 2 vivo using a systematic knockout approach 3 M.A. Hanson1*, A. Dostálová1, C. Ceroni1, M. Poidevin2, S. Kondo3, and B. Lemaitre1* 4 5 1 Global Health Institute, School of Life Science, École Polytechnique Fédérale de 6 Lausanne (EPFL), Lausanne, Switzerland. 7 2 Institute For Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, 8 Université Paris Sud, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France 9 3 Invertebrate Genetics Laboratory, Genetic Strains Research Center, National 10 Institute oF Genetics, Mishima, Japan 11 * Corresponding authors: M.A. Hanson ([email protected]), B. Lemaitre 12 ([email protected]) 13 14 ORCID IDs: 15 Hanson: https://orcid.org/0000-0002-6125-3672 16 Kondo : https://orcid.org/0000-0002-4625-8379 17 Lemaitre: https://orcid.org/0000-0001-7970-1667 18 19 Abstract 20 Antimicrobial peptides (AMPs) are host-encoded antibiotics that combat invading 21 microorganisms. These short, cationic peptides have been implicated in many 22 biological processes, primarily involving innate immunity. In vitro studies have 23 shown AMPs kill bacteria and Fungi at physiological concentrations, but little 24 validation has been done in vivo. We utilised CRISPR gene editing to delete all 25 known immune inducible AMPs oF Drosophila, namely: 4 Attacins, 4 Cecropins, 2 26 Diptericins, Drosocin, Drosomycin, Metchnikowin and DeFensin. -
The Wnt Signaling Pathway Is Involved in the Regulation of Phagocytosis Of
OPEN The Wnt signaling pathway is involved in SUBJECT AREAS: the regulation of phagocytosis of virus in PHAGOCYTES CELL BIOLOGY Drosophila CYTOSKELETON Fei Zhu1,2 & Xiaobo Zhang1 CELLULAR MICROBIOLOGY 1Key Laboratory of Conservation Biology for Endangered Wildlife of Ministry of Education, Key Laboratory of Animal Virology of 2 Received Ministry of Agriculture and College of Life Sciences, Zhejiang University, Hangzhou 310058, China, College of Animal Science 1 February 2013 and Technology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China. Accepted 3 June 2013 Phagocytosis is crucial for triggering host defenses against invading pathogens in animals. However, the receptors on phagocyte surface required for phagocytosis of virus have not been extensively explored. This Published study demonstrated that white spot syndrome virus (WSSV), a major pathogen of shrimp, could be engulfed 25 June 2013 but not digested by Drosophila S2 cells, indicating that the virus was not recognized and taken up by a pathway that was silent and would not activate the phagosome maturation and digestion pathway. The results showed that the activation of receptors on S2 cell surface by lipopolysaccharide or peptidoglycan resulted in the phagocytosis of S2 cells against WSSV virions. Gene expression profiles revealed that the Correspondence and dally-mediated Wnt signaling pathway was involved in S2 phagocytosis. Further data showed that the Wnt requests for materials signaling pathway played an essential role in phagocytosis. Therefore, our study contributed novel insight should be addressed to into the molecular mechanism of phagocytosis in animals. X.B.Z. (zxb0812@zju. edu.cn) hagocytosis, a highly conserved process, is crucial for the immune responses of animals and it allows for rapid engulfment of pathogens and apoptotic cells by specialized phagocytes1–5. -
Dynamic Regulation of Innate Immune Responses in Drosophila by Senju-Mediated Glycosylation
Dynamic regulation of innate immune responses in Drosophila by Senju-mediated glycosylation Miki Yamamoto-Hinoa, Masatoshi Muraokab, Shu Kondoc, Ryu Uedac, Hideyuki Okanod, and Satoshi Gotoa,d,1 aDepartment of Life Science, Rikkyo University, Tokyo 171-8501, Japan; bStem Cell Project Group, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; cInvertebrate Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima 411-8540, Japan; and dDepartment of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan Edited by Norbert Perrimon, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, and approved March 30, 2015 (received for review December 22, 2014) The innate immune system is the first line of defense encountered by Most cell surface and secreted proteins are glycosylated in the invading pathogens. Delayed and/or inadequate innate immune endoplasmic reticulum (ER) and Golgi apparatus. Glycosylation responses can result in failure to combat pathogens, whereas ex- requires glycosyltransferases and nucleotide sugar substrates cessive and/or inappropriate responses cause runaway inflamma- that are synthesized in the cytosol and nucleus. The nucleotide tion. Therefore, immune responses are tightly regulated from sugars must be transported into the ER and Golgi lumens by initiation to resolution and are repressed during the steady state. It is nucleotide sugar transporters (NSTs) (6). On arrival, they are used well known that glycans presented on pathogens play important by glycosyltransferases. The Drosophila genome encodes at least roles in pathogen recognition and the interactions between host 10 NSTs, which transport different subsets of nucleotide sugars. molecules and microbes; however, the function of glycans of host Studies of mutated NST genes show that protein glycosylation organisms in innate immune responses is less well known. -
Functional and Structural Characterization of Drosocin and Its Derivatives Bull
Functional and Structural Characterization of Drosocin and its Derivatives Bull. Korean Chem. Soc. 2011, Vol. 32, No. 9 3327 http://dx.doi.org/10.5012/bkcs.2011.32.9.3327 Functional and Structural Characterization of Drosocin and its Derivatives Linked O-GalNAc at Thr11 Residue Mija Ahn, Hoik Sohn,† Yong Hai Nan,‡ Ravichandran N. Murugan, Chaejoon Cheong, Eun Kyoung Ryu, Eun-Hee Kim, Shin Won Kang,§ Eun Joo Kim,# Song Yub Shin,‡,* and Jeong Kyu Bang* Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk 363-883, Korea. *E-mail: [email protected] †Department of Chemistry and Biochemistry, College of Natural Science, University of Texas at Austin, TX 78713, USA ‡Department of Bio-Materials, Graduate School and Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju 501-759, Korea. *E-mail: [email protected] §Department of Chemistry, Pusan National University, Pusan 609-735, Korea #Korea Institute of Toxicology,100 Jangdong Yuseong-Ku, Daejeon 305-343, Korea Received June 27, 2011, Accepted July 21, 2011 Antimicrobial peptides have recently gained the much attention because of their ability to make defense system from attacking bacterial infections. Drosocin has been considered as very attractive antibiotic agents because of low toxicity against human erythrocytes and active at the low concentration. We have studied the structure- activity relationship of a glycopeptide drosocin focused on the N-acetyl-D-galactoside at Thr11 residue. Based on the radial diffusion assay, we found that the acetylation of carbohydrate moiety increased the antimicrobial activity and the Pro10, present in the middle of drosocin plays an important role in the antimicrobial activity. -
Elimination of Plasmatocytes by Targeted Apoptosis Reveals Their Role in Multiple Aspects of the Drosophila Immune Response
Elimination of plasmatocytes by targeted apoptosis reveals their role in multiple aspects of the Drosophila immune response Bernard Charroux and Julien Royet1 Institut de Biologie du De´veloppement de Marseille Luminy, Unite´Mixte de Recherche 6216, Centre National de la Recherche Scientifique, Universite´dela Méditerrannée Aix-Marseille II, 13288 Marseille Cedex 9, France Communicated by Jules A. Hoffmann, Centre National de la Recherche Scientifique, Strasbourg, France, April 17, 2009 (received for review January 14, 2009) Drosophila hemocytes have strong phagocytic capacities and pro- generating plasmatocyte-depleted individuals and by analyzing duce antimicrobial peptides (AMPs). However, the precise role of their development and immune response. blood cells during immune responses and developmental processes has only been studied using indirect means. To overcome this Results limitation, we generated plasmatocyte-depleted flies by specifi- To obtain flies devoid of plasmatocytes, we decided to trigger cally overexpressing the proapoptotic protein Hid into plasmato- cell death in blood cells by overexpressing the proapoptotic cytes. Unexpectedly, these plasmatocyte-depleted animals have a protein Hid using the plasmatocyte (and crystal cells)–specific normal larval and pupal development and do not exhibit any hml(⌬)-Gal4 driver (20, 21). A UAS-EGFP transgene was used obvious defect after birth. Remarkably, plasmatocyte-depleted to precisely characterize the spatiotemporal expression of the adults show a strong susceptibility to infections by various micro- hml(⌬)-Gal4 driver. GFP is not expressed during embryogenesis, organisms, although activation of systemic AMP gene transcription even in late embryos in which Croquemort-positive blood cells via the Toll and immune deficiency (IMD) pathways is wild-type. are detected (Fig. -
Peptidoglycan Recognition Protein S2 from Silkworm Integument
Journal of Insect Science RESEARCH Peptidoglycan Recognition Protein S2 From Silkworm Integument: Characterization, Microbe-Induced Expression, and Involvement in the Immune-Deficiency Pathway Jie Yang,1 Xiaonan Wang,1 Shunming Tang,2 Zhongyuan Shen,2 and Jinmei Wu1,2,3 1College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China 2The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China 3Corresponding author, e-mail: [email protected] Subject Editor: Sheng Li J. Insect Sci. 15(20): 2015; DOI: 10.1093/jisesa/iev007 ABSTRACT. Peptidoglycan recognition protein (PGRP) binds specifically to peptidoglycan and plays an important role as a pattern recog- nition receptor in the innate immunity of insects. The cDNA of a short-type PGRP, an open reading frame of 588 bp encoding a polypep- tide of 196 amino acids, was cloned from Bombyx mori. A phylogenetic tree was constructed, and the results showed that BmPGRP-S2 was most similar to Drosophila melanogaster PGRP (DmPGRP-SA). The induced expression profile of BmPGRP-S2 in healthy Escherichia coli- and Bacillus subtilis-challenged B. mori was measured using semiquantitative reverse transcriptase polymerase chain reaction analysis. The expression of BmPGRP-S2 was upregulated at 24 h by E. coli and Ba. subtilis challenge. In addition, in the integument of B. mori, RNAi knockdown of BmPGRP-S2 caused an obvious reduction in the transcription expression of the transcription factor Relish and in antibacterial effector genes Attacin, Gloverin, and Moricin. The results indicated that BmPGRP-S2 participates in the signal transduc- tion pathway of B. mori. Key Words: Bombyx mori, innate immunity, peptidoglycan recognition protein, RNA interference Insects are the most abundant species on the earth and can combat a va- Genome-wide analysis showed that B. -
B Protein Relish Regulates the JNK-Mediated Immune Response in Drosophila
Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press Targeting of TAK1 by the NF-B protein Relish regulates the JNK-mediated immune response in Drosophila Jin Mo Park,1 Helen Brady,3 Maria Grazia Ruocco,1 Huaiyu Sun,2 DeeAnn Williams,2 Susan J. Lee,2 Tomohisa Kato Jr.,1 Normand Richards,3 Kyle Chan,3 Frank Mercurio,3 Michael Karin,1 and Steven A. Wasserman2,4 1Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, and 2Center for Molecular Genetics, Section of Cell and Developmental Biology, Division of Biology, University of California, San Diego, La Jolla, California 92093-0636, USA; 3Celgene Corporation, San Diego, California 92121, USA The molecular circuitry underlying innate immunity is constructed of multiple,evolutionarily conserved signaling modules with distinct regulatory targets. The MAP kinases and the IKK-NF-B molecules play important roles in the initiation of immune effector responses. We have found that the Drosophila NF-B protein Relish plays a crucial role in limiting the duration of JNK activation and output in response to Gram-negative infections. Relish activation is linked to proteasomal degradation of TAK1,the upstream MAP kinase kinase kinase required for JNK activation. Degradation of TAK1 leads to a rapid termination of JNK signaling,resulting in a transient JNK-dependent response that precede s the sustained induction of Relish-dependent innate immune loci. Because the IKK-NF-B module also negatively regulates JNK activation in mammals,thereby controlling inflammation-induced apoptosis,the regulatory cross-talk between the JNK and NF-B pathways appears to be broadly conserved. -
Insect Peptides with Improved Protease-Resistance Protect Mice Against Bacterial Infection
Protein Science ~2000!, 9:742–749. Cambridge University Press. Printed in the USA. Copyright © 2000 The Protein Society Insect peptides with improved protease-resistance protect mice against bacterial infection LASZLO OTVOS, JR.,1 KRISZTINA BOKONYI,1 ISTVAN VARGA,1 BALINT I. OTVOS,1,2 RALF HOFFMANN,1,3 HILDEGUND C.J. ERTL,1 JOHN D. WADE,4 AILSA M. McMANUS,5 DAVID J. CRAIK,5 and PHILIPPE BULET2 1 The Wistar Institute, 3601 Spruce Street, Philadelphia, Pennsylvania 19104 2 Unité Propre du CNRS No. 9022, “Réponse Immunitaire et Développement chez les Insectes,” Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg Cedex, France 3 Biologisch-Medizinisches Forschungszentrum, Heinrich-Heine-Universität, Moorenstrasse 5, 40225 Düsseldorf, Germany 4 Howard Florey Institute, Parkville 3052, Victoria, Australia 5 Centre for Drug Design and Development, University of Queensland, Brisbane 4072, Queensland, Australia ~Received October 13, 1999; Final Revision January 11, 2000; Accepted January 21, 2000! Abstract At a time of the emergence of drug-resistant bacterial strains, the development of antimicrobial compounds with novel mechanisms of action is of considerable interest. Perhaps the most promising among these is a family of antibacterial peptides originally isolated from insects. These were shown to act in a stereospecific manner on an as-yet unidentified target bacterial protein. One of these peptides, drosocin, is inactive in vivo due to the rapid decomposition in mammalian sera. However, another family member, pyrrhocoricin, is significantly more stable, has increased in vitro efficacy against Gram-negative bacterial strains, and if administered alone, as we show here, is devoid of in vitro or in vivo toxicity. -
Drice Restrains DIAP2-Mediated Inflammatory Signalling and Intestinal Inflammation
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.29.122978; this version posted July 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. drICE restrains DIAP2-mediated inflammatory signalling and intestinal inflammation Christa Kietz (1), Vilma Pollari (1), Ida-Emma Tuominen (1), Paulo S Ribeiro (2,3), Pascal Meier (2), Annika Meinander* (1,2) (1) Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, BioCity, Turku, Finland (2) Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK (3) Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, UK *Correspondence: [email protected] Keywords: DIAP2/drICE/Drosophila/ host-microbe interactions/inflammation/intestine Abstract The Drosophila IAP protein, DIAP2, is a key mediator of NF-κB signalling and is required for immune activation, both locally in the intestinal epithelia and during systemic, fat body-induced responses. We have found that transgenic expression of DIAP2 induces inflammation in the intestine, but not in the fat body, indicating a need for regulating DIAP2 in microbiotic environments. We describe the Drosophila caspase drICE, a known interaction partner of DIAP2, as a regulator of DIAP2 and NF-κB signalling in the intestinal epithelium. drICE acts by cleaving, and interfering with DIAP2’s ability to ubiquitinate and, thereby, activate mediators of the NF-κB pathway. The drICE-cleaved form of DIAP2 is, moreover, unable to induce inflammation during basal conditions in the intestine. Interestingly, cleavage of DIAP2 does not interfere with pathogen-induced signalling, suggesting that drICE protects from immune responses induced by resident microbes. -
Toll-Related Receptors and the Control of Antimicrobial Peptide Expression in Drosophila
Toll-related receptors and the control of antimicrobial peptide expression in Drosophila Servane Tauszig, Emmanuelle Jouanguy, Jules A. Hoffmann, and Jean-Luc Imler* UPR9022 du Centre National de la Recherche Scientifique, Institut de Biologie Mole´culaire et Cellulaire, F-67084 Strasbourg, France Edited by Margaret G. Kidwell, University of Arizona, Tucson, AZ, and approved June 27, 2000 (received for review March 23, 2000) Insects defend themselves against infectious microorganisms by the nucleus where it is thought to bind to and activate the synthesizing potent antimicrobial peptides. Drosophila has ap- drosomycin promoter (7–9). The same genetic analysis revealed peared in recent years as a favorable model to study this innate that expression of the antibacterial peptides drosocin and dip- host defense. A genetic analysis of the regulation of the antifungal tericin is independent of Toll. peptide drosomycin has demonstrated a key role for the trans- The discovery of the key role played by Toll in the Drosophila membrane receptor Toll, which prompted the search for mamma- host defense led in 1997 to the description of the first mammalian lian homologs. Two of these, Toll-like receptor (TLR)2 and TLR4, Toll homolog, now referred to as Toll-like receptor 4 (TLR4) recently were shown to play a critical role in innate immunity (10), and was followed over the past 2 years by the description against bacteria. Here we describe six additional Toll-related genes of several additional homologs (11–13). The most conserved (Toll-3 to Toll-8)inDrosophila in addition to 18-wheeler. Two of region between these molecules and Drosophila Toll consists of these genes, Toll-3 and Toll-4, are expressed at a low level. -
A Drosophila Model of Closed Head Traumatic Brain Injury
A Drosophila model of closed head traumatic brain injury Rebeccah J. Katzenbergera, Carin A. Loewenb, Douglas R. Wassarmana, Andrew J. Petersena, Barry Ganetzkyb,1, and David A. Wassarmana,1 aDepartment of Cell and Regenerative Biology, School of Medicine and Public Health, and bLaboratory of Genetics, University of Wisconsin–Madison, Madison, WI 53706 Contributed by Barry Ganetzky, September 6, 2013 (sent for review August 6, 2013) Traumatic brain injury (TBI) is a substantial health issue world- three regions, the protocerebrum, deutocerebrum, and trito- wide, yet the mechanisms responsible for its complex spectrum of cerebrum, which are homologous to the forebrain, midbrain, and pathologies remains largely unknown. To investigate the mecha- hindbrain, respectively, of humans (10). The fly brain is composed nisms underlying TBI pathologies, we developed a model of TBI in of functionally diverse neurons with all of the structural features, Drosophila melanogaster. The model allows us to take advantage neurotransmitters, and ion channels found in human neurons of the wealth of experimental tools available in flies. Closed head (11). Glial cell types and functions in flies are also similar to those TBI was inflicted with a mechanical device that subjects flies to in humans (12). For instance, surface glial cells cover brain neu- rapid acceleration and deceleration. Similar to humans with TBI, rons to form the blood–brain barrier, and glial cells are part of the flies with TBI exhibited temporary incapacitation, ataxia, activa- innate immune system (13, 14). The fly brain is encapsulated by an tion of the innate immune response, neurodegeneration, and exoskeleton, also known as the cuticle (15). -
Imd Unveiled
HIGHLIGHTS INNATE IMMUNITY imd mutation. This approach showed IN BRIEF that imd is a single gene encoding a 30-kDa protein. Importantly, imd has imd unveiled a carboxy-terminal death domain, a T-CELL ACTIVATION protein–protein interaction module that is involved in apoptotic and OX40 promotes Bcl-xL and Bcl-2 expression and is Although they lack an adaptive immune signalling pathways. essential for long-term survival of CD4 cells. immune system, Drosphila are armed Although there is no human Rogers, P.R., Song, J., Gramaglia, I., Killeen, N. & Croft, M. Immunity 15, 445–455 with a battery of highly effective homologue of imd, its death domain (2001) antimicrobial peptides. In response is remarkably similar to that of Optimal T-cell activation occurs when a T cell receives a signal to infection, antibacterial and anti- mamalian RIP (receptor-interacting from the T-cell receptor and a signal from a co-stimulatory fungal peptides are induced by inde- protein), an adaptor molecule receptor, for example CD28. CD28 signalling enhances T-cell κ pendent recognition pathways, ini- involved in NF- B activation and proliferation, cytokine secretion and expression of anti-apoptotic tially defined by imd and Toll apoptosis. imd was known to act proteins. This paper provides direct evidence that OX40 acts κ mutants, respectively. Remarkably, upstream of an NF- B-like molecule, synergistically and at a later stage than CD28, and promotes T-cell these basic signalling pathways are but it had not been implicated in survival by increasing expression of the anti-apopototic highly conserved in humans, making apoptosis.