A perturbation view of level-set methods for convex optimization Ron Estrina and Michael P. Friedlanderb a b Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA (
[email protected]); Department of Computer Science and Department of Mathematics, University of British Columbia, Vancouver, BC, Canada (
[email protected]). Research supported by ONR award N00014-16-1-2242 July 31, 2018 Level-set methods for convex optimization are predicated on the idea where τ is an estimate of the optimal value τ ∗. If τ τ ∗, the p ≈ p that certain problems can be parameterized so that their solutions level-set constraint f(x) τ ensures that a solution x ≤ τ ∈ X can be recovered as the limiting process of a root-finding procedure. of this problem causes f(xτ ) to have a value near τp∗. If, This idea emerges time and again across a range of algorithms for additionally, g(x ) 0, then x is a nearly optimal and τ ≤ τ convex problems. Here we demonstrate that strong duality is a nec- feasible solution for (P). The trade-off for this potentially essary condition for the level-set approach to succeed. In the ab- more convenient problem is that we must compute a sequence sence of strong duality, the level-set method identifies -infeasible of parameters τk that converges to the optimal value τp∗. points that do not converge to a feasible point as tends to zero. Define the optimal-value function, or simply the value func- The level-set approach is also used as a proof technique for estab- tion, of (Qτ ) by lishing sufficient conditions for strong duality that are different from Slater’s constraint qualification.