ABSTRACT ANDERSON, KAREN MILLER. Leveraging Technology

Total Page:16

File Type:pdf, Size:1020Kb

ABSTRACT ANDERSON, KAREN MILLER. Leveraging Technology ABSTRACT ANDERSON, KAREN MILLER. Leveraging Technology and Creativity among Self- Employed Textile Artists and Designers Through the Use of Geometric Software. (Under the direction of Dr. George L. Hodge and Dr. Cynthia L. Istook.) Self-employed textile artists and designers have many obstacles to overcome; among these obstacles are the use of technology in their work and locating affordable software applications that can be used in their studios. There are a number of specifi c software applications used in industry for textile design. While these systems are extremely powerful and function well for the purpose for which they were designed, they are often expensive, infl exible, and proprietary, which may limit collaboration efforts as well as production capabilities. This very fact may act as a deterrent to the use and adoption of the technology by self-employed artists and designers. There are many software applications that were developed to create patterns for disciplines other than textiles. These programs may have potential for use in textile design and may well be more affordable to the microentrepreneur. Because these applications are mathematical and scientifi c-based software applications, designers are likely to be unaware of their availability and application to textile design. The purpose of this study was twofold. One was to identify and survey the many geometric software applications that have been developed to create pattern and design that have potential for use in the textile industry. The exploration of these applications not only increases awareness of other disciplines, it extends the artist’s vision and creativity. All of the software applications are readily available as freeware, shareware or off-the-shelf. The majority of these applications are downloadable, providing for easy access. The second step was to develop a framework for the Geometric Software-Textile Design Process Model and to further develop a sequence of steps in the form of mapping or an algorithim that will provide the leverage needed for the use of technology among self-employed designers and artists. This study will identify not only each step in the process, but also the knowledge needed to complete each step. If the technological skills, knowledge and process are identifi ed, then they can be taught and utilized. The knowledge gained as part of the development of the model will assist with the selection of non-traditional geometry- based applications that can be used in the design and creation process. This study introduces technology-driven design through the use of geometry-based software and a textile design process that can be used by the self-employed artist or designer in his or her own workshop or studio to generate new ideas and aid in the creation of their work. i BIOGRAPHY Karen Miller Anderson received her B.F.A. from the College of the Dayton Art Institute. A former Art and Commercial Art teacher, Ms. Anderson left teaching after being introduced to the early Macintosh computer. She then pursued her M.S. at Middle Tennessee State University in Engineering Technology. Upon completing her masters, she joined an Autodesk reseller in Tennessee specializing in CAD solutions for industry, from guitars at the Gibson plant to working with boats at OMC Hydra. Ms. Anderson was invited to sit on the Autodesk National Multimedia Advisory Board and served in that position for three years. After relocating to New York, her corporate customers included Donna Karan, Kenneth Cole, the New York Mercantile Exchange, Steelcase and many others. Ms. Anderson then moved from the CAD to the non-linear video-editing market specializing in special effects hardware and software. Ms. Anderson has contributed articles to the publication Cadalyst, has been mentioned in 3D Artist, and featured in Computer Reseller News. She has beta tested, evaluated and reviewed numerous graphic applications. A recent article by Ms. Anderson, “Machine embroidery: tools, techniques and technologies” appeared in the August 2005 edition of the AATCC Review, International Magazine for Textile Design, Processing and Testing. Ms. Anderson enrolled in the Textile Technology Management Ph.D. program at North Carolina State University’s College of Textiles in 2001. She opened her company KMA Productions in 2002. While continuing her education, she has successfully produced textiles, exhibited her artwork and provided digital services to retail and corporate clients. In 2005 she produced a booklet as part of the Textile Technology Workshop which also provided the case studies for her research. Ms. Anderson contributed to the Self-Employment in the Arts conference at Wake Forest University (2006) as an artist, speaker and business owner. Ms. Anderson’s projected graduation date is August 2006. Although she is busy with ii the digital services she provides through KMA productions, she is currently working on a new series incorporating photographic collages, digital printing and embroidery. All of Ms. Anderson’s works incorporate digital technology integration throughout her processes. iii ACKNOWLEDGEMENTS No one accomplishes something of this magnitude without the support of others. Many people have supported and encouraged me in the attainment of this degree. I am grateful to them all. There are some people, however, to whom I wish to give a special acknowledgement. I would like to thank the fi ve professors on my committee: Dr. George Hodge, Dr. Cindy Istook, Dr. Pamela Banks-Lee, Dr. Moon Suh, and Dr. Thomas Honeycutt for their advice, insights, and inspiration throughout this project and my academic career while attending North Carolina State University. Dr George Hodge and Dr. Cindy Istook have shown extraordinary patience and provided guidance and unique perspectives throughout this project and are deserving of a special thanks for all their efforts. The Textile Technology Workshop was partially funded by the College of Textiles, the Department of Textile and Apparel, Technology & Management at North Carolina State University, and without their necessary contribution this research could not have been accomplished. Friends and colleagues provided an important network of support, and therefore a special thank you to Lisa Parrillo-Chapman for donating her time expertise and friendship. The workshop observers whom are both friends and colleagues: Carol Gonzalez, Janine LeBlanc, Kavita Mathur, Jiyhoun Bae and Narahari Kenkare were of invaluable assistance. The College of Textiles Information Technology Department provided support and assistance which enabled a successful workshop. Beyond the people in my academic world, my friends have listened patiently and supported the accomplishment of this task beyond all reasonable expectations. A very special thank you goes to Marilyn and Paul Dracos for their enduring friendship. Additionally, my friends: Marcie, Brenner, Jennifer Grisby and Mary Eismann have been my support network. Finally, I want to say thank you to my family, especially my husband Edward (Andy); iv my son, Nolan Smock; and my sister, Carole Runyon, for their patience, love, and support. All of you are my inspiration. To complete this task was a long-held dream, and I appreciate what each of you had to sacrifi ce for the achievement of my dream. This is dedicated in loving memory to my father Clarence H. Miller who always encouraged me in my pursuits. A fellow engineer, inventor, and dreamer, he believed that nothing was impossible to achieve. v TABLE OF CONTENTS LIST OF FIGURES ...........................................................................................................ix LIST OF TABLES ..............................................................................................................x CHAPTER I: INTRODUCTION .........................................................................................1 Rationale ......................................................................................................................2 Statement of problem ..................................................................................................2 Purpose ........................................................................................................................3 Research Questions .....................................................................................................4 Limitations os Study ....................................................................................................4 Defi nition of Terms ......................................................................................................5 CHAPTER II: REVIEW OF LITERATURE ......................................................................... Employment ..............................................................................................................10 Creativity ...................................................................................................................11 Design ........................................................................................................................13 Conceptual Models ....................................................................................................18 Information Technology ............................................................................................19 Design models ...........................................................................................................20 Technology and art ....................................................................................................21
Recommended publications
  • Developing Scientific Computing Software: Current Processes And
    DEVELOPING: SGIENffl&Pifli|ii^Mp| CURRENT PROCESSES" WMWiiiiia DEVELOPING SCIENTIFIC COMPUTING SOFTWARE MASTER OF APPLIED SCIENCE(2008) McMaster University COMPUTING AND SOFTWARE Hamilton, Ontario TITLE: Developing Scientific Computing Software: Current Processes and Future Directions AUTHOR: Jin Tang, M.M. (Nanjing University) SUPERVISOR: Dr. Spencer Smith NUMBER OF PAGERS: xxii, 216 n Abstract Considerable emphasis in scientific computing (SC) software development has been placed on the software qualities of performance and correctness. How ever, other software qualities have received less attention, such as the qualities of usability, maintainability, testability and reusability. Presented in this work is a survey titled "Survey on Developing Scien tific Computing Software, which is apparently the first conducted to explore the current approaches to SC software development and to determine which qualities of SC software are in most need of improvement. From the survey. we found that systematic development process is frequently not adopted in the SC software community, since 58% of respondents mentioned that their entire development process potentially consists only of coding and debugging. Moreover, semi-formal and formal specification is rarely used when developing SC software, which is suggested by the fact that 70% of respondents indicate that they only use informal specification. In terms of the problems in SC software development, which are dis covered by analyzing the survey results, a solution is proposed to improve the quality of SC software by using SE methodologies, concretely, using a modified Parnas' Rational Design Process (PRDP) and the Unified Software Development Process (USDP). A comparison of the two candidate processes is provided to help SC software practitioners determine which of the two pro cesses fits their particular situation.
    [Show full text]
  • The Guide to Available Mathematical Software Problem Classification System
    The Guide to Available Mathematical Software Problem Classification System Ronald F. Boisvert, Sally E. Howe and David K. Kahaner November 1990 U.S. DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, MD 20899 100 U56 //4475 1990 C.2 NATIONAL, INSrrnJTE OF STANDARDS & TECHNOLOGY / THE GUIDE TO AVAILABLE MATHEMATICAL SOFTWARE PROBLEM CLASSIFICATION SYSTEM Ronald F. Boisvert Sally E. Howe David K. Kahaner U.S. DEPARTMENT OF COMMERCE National InstHute of Standards and Technology Center for Computing and Applied Mathematics Gaithersburg, MO 20899 November 1990 U.S. DEPARTMENT OF COMMERCE Robert A. Mosbacher, Secretary NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY John W. Lyons, Director 2 Boisvert, Howe and Kahaner own manuals or on-line documentation system. In order to determine what software is avail- able to solve a particular problem, users must search through a very large, heterogeneous collection of information. This is a tedious and error-prone process. As a result, there has been much interest in the development of automated advisory systems to help users select software. Keyword search is a popular technique used for this purpose. In such a system keywords or phrases are assigned to each piece of software to succinctly define its purpose, and the set of aU such keywords axe entered into a database. Keyword-based selection systems query users for a set of keywords and then present a fist of software modules which contain them. A major difficulty with such systems is that users often have trouble in providing the appropriate keywords for a given mathematical or statistical problem. There is such a wealth of alternate mathematical and statistical terminology that it would be a rare occurrence for two separate knowledgeable persons to assign the same set of keywords to a given software module.
    [Show full text]
  • Infinite Perimeter of the Koch Snowflake And
    The exact (up to infinitesimals) infinite perimeter of the Koch snowflake and its finite area Yaroslav D. Sergeyev∗ y Abstract The Koch snowflake is one of the first fractals that were mathematically described. It is interesting because it has an infinite perimeter in the limit but its limit area is finite. In this paper, a recently proposed computational methodology allowing one to execute numerical computations with infinities and infinitesimals is applied to study the Koch snowflake at infinity. Nu- merical computations with actual infinite and infinitesimal numbers can be executed on the Infinity Computer being a new supercomputer patented in USA and EU. It is revealed in the paper that at infinity the snowflake is not unique, i.e., different snowflakes can be distinguished for different infinite numbers of steps executed during the process of their generation. It is then shown that for any given infinite number n of steps it becomes possible to calculate the exact infinite number, Nn, of sides of the snowflake, the exact infinitesimal length, Ln, of each side and the exact infinite perimeter, Pn, of the Koch snowflake as the result of multiplication of the infinite Nn by the infinitesimal Ln. It is established that for different infinite n and k the infinite perimeters Pn and Pk are also different and the difference can be in- finite. It is shown that the finite areas An and Ak of the snowflakes can be also calculated exactly (up to infinitesimals) for different infinite n and k and the difference An − Ak results to be infinitesimal. Finally, snowflakes con- structed starting from different initial conditions are also studied and their quantitative characteristics at infinity are computed.
    [Show full text]
  • Object Oriented Programming
    No. 52 March-A pril'1990 $3.95 T H E M TEe H CAL J 0 URN A L COPIA Object Oriented Programming First it was BASIC, then it was structures, now it's objects. C++ afi<;ionados feel, of course, that objects are so powerful, so encompassing that anything could be so defined. I hope they're not placing bets, because if they are, money's no object. C++ 2.0 page 8 An objective view of the newest C++. Training A Neural Network Now that you have a neural network what do you do with it? Part two of a fascinating series. Debugging C page 21 Pointers Using MEM Keep C fro111 (C)rashing your system. An AT Keyboard Interface Use an AT keyboard with your latest project. And More ... Understanding Logic Families EPROM Programming Speeding Up Your AT Keyboard ((CHAOS MADE TO ORDER~ Explore the Magnificent and Infinite World of Fractals with FRAC LS™ AN ELECTRONIC KALEIDOSCOPE OF NATURES GEOMETRYTM With FracTools, you can modify and play with any of the included images, or easily create new ones by marking a region in an existing image or entering the coordinates directly. Filter out areas of the display, change colors in any area, and animate the fractal to create gorgeous and mesmerizing images. Special effects include Strobe, Kaleidoscope, Stained Glass, Horizontal, Vertical and Diagonal Panning, and Mouse Movies. The most spectacular application is the creation of self-running Slide Shows. Include any PCX file from any of the popular "paint" programs. FracTools also includes a Slide Show Programming Language, to bring a higher degree of control to your shows.
    [Show full text]
  • Fractal 3D Magic Free
    FREE FRACTAL 3D MAGIC PDF Clifford A. Pickover | 160 pages | 07 Sep 2014 | Sterling Publishing Co Inc | 9781454912637 | English | New York, United States Fractal 3D Magic | Banyen Books & Sound Option 1 Usually ships in business days. Option 2 - Most Popular! This groundbreaking 3D showcase offers a rare glimpse into the dazzling world of computer-generated fractal art. Prolific polymath Clifford Pickover introduces the collection, which provides background on everything from Fractal 3D Magic classic Mandelbrot set, to the infinitely porous Menger Sponge, to ethereal fractal flames. The following eye-popping gallery displays mathematical formulas transformed into stunning computer-generated 3D anaglyphs. More than intricate designs, visible in three dimensions thanks to Fractal 3D Magic enclosed 3D glasses, will engross math and optical illusions enthusiasts alike. If an item you have purchased from us is not working as expected, please visit one of our in-store Knowledge Experts for free help, where they can solve your problem or even exchange the item for a product that better suits your needs. If you need to return an item, simply bring it back to any Micro Center store for Fractal 3D Magic full refund or exchange. All other products may be returned within 30 days of purchase. Using the software may require the use of a computer or other device that must meet minimum system requirements. It is recommended that you familiarize Fractal 3D Magic with the system requirements before making your purchase. Software system requirements are typically found on the Product information specification page. Aerial Drones Micro Center is happy to honor its customary day return policy for Aerial Drone returns due to product defect or customer dissatisfaction.
    [Show full text]
  • Computer Science and Software Engineering 1
    Computer Science and Software Engineering 1 Computer Science and Software Engineering Software Engineering The focus of the software engineering curriculum, which leads to the bachelor of software engineering, is on the analysis, design, verification, validation, construction, application, and maintenance of software systems. The degree program prepares students for professional careers and graduate study with a balance of computer science theory and practical application of software engineering methodology using modern software engineering environments and tools. The curriculum is based on a strong core of topics including software modeling and design, construction, process and quality assurance, intelligent and interactive systems, networks, operating systems, and computer architecture. The curriculum also enriches each student’s general education with a range of courses from science, mathematics, the humanities and the social sciences. Through advanced elective courses, the curriculum allows students to specialize in core areas of computer science and software engineering. Engineering design theory and methodology, as they apply to software systems, form an integral part of the curriculum, beginning with the first course in computing and culminating with a comprehensive senior design project, which gives students the opportunity to work in one or more significant application domains. The curriculum also emphasizes oral and written communication skills, the importance of ethical behavior, and the need for continual, life-long learning. The overall educational objectives of the Software Engineering program are for graduates of the program to attain success in their chosen profession and/or post-undergraduate studies. The undergraduate Software Engineering program is accredited by the Engineering Accreditation Commission of ABET, http:// www.abet.org.
    [Show full text]
  • A Comparison of Six Numerical Software Packages for Educational Use in the Chemical Engineering Curriculum
    SESSION 2520 A COMPARISON OF SIX NUMERICAL SOFTWARE PACKAGES FOR EDUCATIONAL USE IN THE CHEMICAL ENGINEERING CURRICULUM Mordechai Shacham Department of Chemical Engineering Ben-Gurion University of the Negev P. O. Box 653 Beer Sheva 84105, Israel Tel: (972) 7-6461481 Fax: (972) 7-6472916 E-mail: [email protected] Michael B. Cutlip Department of Chemical Engineering University of Connecticut Box U-222 Storrs, CT 06269-3222 Tel: (860)486-0321 Fax: (860)486-2959 E-mail: [email protected] INTRODUCTION Until the early 1980’s, computer use in Chemical Engineering Education involved mainly FORTRAN and less frequently CSMP programming. A typical com- puter assignment in that era would require the student to carry out the following tasks: 1.) Derive the model equations for the problem at hand, 2.) Find an appropri- ate numerical method to solve the model (mostly NLE’s or ODE’s), 3.) Write and debug a FORTRAN program to solve the problem using the selected numerical algo- rithm, and 4.) Analyze the results for validity and precision. It was soon recognized that the second and third tasks of the solution were minor contributions to the learning of the subject material in most chemical engi- neering courses, but they were actually the most time consuming and frustrating parts of computer assignments. The computer indeed enabled the students to solve realistic problems, but the time spent on technical details which were of minor rele- vance to the subject matter was much too long. In order to solve this difficulty, there was a tendency to provide the students with computer programs that could solve one particular type of a problem.
    [Show full text]
  • WHY the KOCH CURVE LIKE √ 2 1. Introduction This Essay Aims To
    p WHY THE KOCH CURVE LIKE 2 XANDA KOLESNIKOW (SID: 480393797) 1. Introduction This essay aims to elucidate a connection between fractals and irrational numbers, two seemingly unrelated math- ematical objects. The notion of self-similarity will be introduced, leading to a discussion of similarity transfor- mations which are the main mathematical tool used to show this connection. The Koch curve and Koch island (or Koch snowflake) are thep two main fractals that will be used as examples throughout the essay to explain this connection, whilst π and 2 are the two examples of irrational numbers that will be discussed. Hopefully,p by the end of this essay you will be able to explain to your friends and family why the Koch curve is like 2! 2. Self-similarity An object is self-similar if part of it is identical to the whole. That is, if you are to zoom in on a particular part of the object, it will be indistinguishable from the entire object. Many objects in nature exhibit this property. For example, cauliflower appears self-similar. If you were to take a picture of a whole cauliflower (Figure 1a) and compare it to a zoomed in picture of one of its florets, you may have a hard time picking the whole cauliflower from the floret. You can repeat this procedure again, dividing the floret into smaller florets and comparing appropriately zoomed in photos of these. However, there will come a point where you can not divide the cauliflower any more and zoomed in photos of the smaller florets will be easily distinguishable from the whole cauliflower.
    [Show full text]
  • Project-Team Virtual Plants Modeling Plant Morphogenesis from Genes To
    INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE Project-Team Virtual Plants Modeling plant morphogenesis from genes to phenotype Sophia Antipolis THEME BIO c t i v it y ep o r t 2005 Table of contents 1. Team 1 2. Overall Objectives 2 2.1. Overall Objectives 2 3. Scientific Foundations 2 3.1. Analysis of structures resulting from meristem activity 2 3.2. Meristem functioning and development 3 3.3. A software platform for plant modeling 4 4. New Results 4 4.1. Analysis of structures resulting from meristem activity 4 4.1.1. Analysis of longitudinal count data and underdispersion 4 4.1.2. Growth synchronism between Aerial and Root Systems 4 4.1.3. Changes in branching structures within the whole plants 5 4.1.4. Growth components in trees 5 4.1.5. Markov switching models 5 4.1.6. Diagnostic tools for hidden Markovian models 5 4.1.7. Hidden Markov tree models for investigating physiological age within plants 6 4.1.8. Branching processes for plant development analysis 6 4.1.9. Self-similarity in plants 6 4.1.10. Reconstruction of plant foliage density from photographs 6 4.1.11. Fractal analysis of plant geometry 6 4.1.12. Light interception by canopy 7 4.1.13. Heritability of architectural traits 7 4.2. Meristem functioning and development 8 4.2.1. 3D surface reconstruction and cell lineage detection in shoot meristems 8 4.2.2. Simulation of auxin fluxes in the mersitem 8 4.2.3. Dynamic model of phyllotaxy based on auxin fluxes 8 4.2.4.
    [Show full text]
  • General Guide to the Science and Cosmos Museum
    General guide to the Science and Cosmos Museum 1 Background: “Tenerife monts” and “Pico” near of Plato crater in the Moon PLANTA TERRAZA Terrace Floor 5 i 2 1 4 6 3 ASCENSOR 4 RELOJ DE SOL ECUATORIAL Elevator Analemmatic sundial i INFORMACIÓN 5 BUSTO PARLANTE Information “AGUSTÍN DE BETANCOURT” Agustín de Betancourt 1 PLAZA “AGUSTÍN DE talking bust BETANCOURT” Agustín de Betancourt 6 ZONA WI-FI Square Wi-Fi zone 2 ANTENA DE RADIOASTRONOMÍA Radioastronomy antenna 3 TELESCOPIO Telescope PLANTA BAJA Ground Floor WC 10 9 8 11 7 1 6 5 4 12 2 3 ASCENSOR Cosmos Lab - Creative Elevator Laboratory 1 EXPOSICIÓN 7 PLANETARIO Exhibition Planetarium 2 TALLER DE DIDÁCTICA 8 SALIDA DE EMERGENCIA Didactic Workshop Emergency exit 3 EFECTOS ÓPTICOS 9 MICROCOSMOS Optical illusions 10 SALÓN DE ACTOS 4 SALA CROMA KEY Assembly hall Chroma Key room 11 EXPOSICIONES TEMPORALES 5 LABERINTO DE ESPEJOS Temporary exhibitions Mirror Labyrinth 12 ZONA DE DESCANSO 6 COSMOS LAB - LABORATORIO Rest zone CREATIVO CONTENIDOS Contents 7 LA TIERRA The Earth 23 EL SOL The Sun 33 EL UNIVERSO The Universe 45 CÓMO FUNCIONA How does it work 72 EL CUERPO HUMANO The human body 5 ¿POR QUÉ PIRÁMIDES? Why pyramids? 1 Sacred places have often been con- ceived of as elevated spaces that draw the believer closer to the divi- nity. For this reason, once architec- tural techniques became sufficiently refined, mosques or cathedrals rai- sed their vaults, minarets, towers and spires to the sky. However, for thousands of years, the formula fa- voured by almost every culture was the pyramid.
    [Show full text]
  • Lasalle Academy Fractal Workshop – October 2006
    LaSalle Academy Fractal Workshop – October 2006 Fractals Generated by Geometric Replacement Rules Sierpinski’s Gasket • Press ‘t’ • Choose ‘lsystem’ from the menu • Choose ‘sierpinski2’ from the menu • Make the order ‘0’, press ‘enter’ • Press ‘F4’ (This selects the video mode. This mode usually works well. Fractint will offer other options if you press the delete key. ‘Shift-F6’ gives more colors and better resolution, but doesn’t work on every computer.) You should see a triangle. • Press ‘z’, make the order ‘1’, ‘enter’ • Press ‘z’, make the order ‘2’, ‘enter’ • Repeat with some other orders. (Orders 8 and higher will take a LONG time, so don’t choose numbers that high unless you want to wait.) Things to Ponder Fractint repeats a simple rule many times to generate Sierpin- ski’s Gasket. The repetition of a rule is called an iteration. The order 5 image, for example, is created by performing 5 iterations. The Gasket is only complete after an infinite number of iterations of the rule. Can you figure out what the rule is? One of the characteristics of fractals is that they exhibit self-similarity on different scales. For example, consider one of the filled triangles inside of Sierpinski’s Gasket. If you zoomed in on this triangle it would look identical to the entire Gasket. You could then find a smaller triangle inside this triangle that would also look identical to the whole fractal. Sierpinski imagined the original triangle like a piece of paper. At each step, he cut out the middle triangle. How much of the piece of paper would be left if Sierpinski repeated this procedure an infinite number of times? Von Koch Snowflake • Press ‘t’, choose ‘lsystem’ from the menu, choose ‘koch1’ • Make the order ‘0’, press ‘enter’ • Press ‘z’, make the order ‘1’, ‘enter’ • Repeat for order 2 • Look at some other orders that are less than 8 (8 and higher orders take more time) Things to Ponder What is the rule that generates the von Koch snowflake? Is the von Koch snowflake self-similar in any way? Describe how.
    [Show full text]
  • An Introduction Into Ecological Modelling for Students, Teachers & Scientists
    Modelling Complex Ecological Dynamics . Fred Jopp l Hauke Reuter l Broder Breckling Editors Modelling Complex Ecological Dynamics An Introduction into Ecological Modelling for Students, Teachers & Scientists Title Drawings by Melanie Trexler Foreword by Sven Erik Jørgensen & Donald L. DeAngelis Editors Dr. Fred Jopp Dr. Hauke Reuter Department of Biology Department of Ecological Modelling University of Miami Leibniz Center for Tropical Marine Ecology P.O. Box 249118 GmbH (ZMT) Coral Gables, FL 33124 Fahrenheitstraße 6 USA 28359 Bremen [email protected] Germany [email protected] Dr. Broder Breckling General and Theoretical Ecology Center for Environmental Research and Sustainable Technology (UFT) University of Bremen Leobener St. 28359 Bremen Germany [email protected] ISBN 978-3-642-05028-2 e-ISBN 978-3-642-05029-9 DOI 10.1007/978-3-642-05029-9 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2011921703 # Springer-Verlag Berlin Heidelberg 2011 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protec- tive laws and regulations and therefore free for general use.
    [Show full text]