Hidden in Snow, Revealed in Thaw Cold Boot Attacks Revisited
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Basic Cryptography
Basic cryptography • How cryptography works... • Symmetric cryptography... • Public key cryptography... • Online Resources... • Printed Resources... I VP R 1 © Copyright 2002-2007 Haim Levkowitz How cryptography works • Plaintext • Ciphertext • Cryptographic algorithm • Key Decryption Key Algorithm Plaintext Ciphertext Encryption I VP R 2 © Copyright 2002-2007 Haim Levkowitz Simple cryptosystem ... ! ABCDEFGHIJKLMNOPQRSTUVWXYZ ! DEFGHIJKLMNOPQRSTUVWXYZABC • Caesar Cipher • Simple substitution cipher • ROT-13 • rotate by half the alphabet • A => N B => O I VP R 3 © Copyright 2002-2007 Haim Levkowitz Keys cryptosystems … • keys and keyspace ... • secret-key and public-key ... • key management ... • strength of key systems ... I VP R 4 © Copyright 2002-2007 Haim Levkowitz Keys and keyspace … • ROT: key is N • Brute force: 25 values of N • IDEA (international data encryption algorithm) in PGP: 2128 numeric keys • 1 billion keys / sec ==> >10,781,000,000,000,000,000,000 years I VP R 5 © Copyright 2002-2007 Haim Levkowitz Symmetric cryptography • DES • Triple DES, DESX, GDES, RDES • RC2, RC4, RC5 • IDEA Key • Blowfish Plaintext Encryption Ciphertext Decryption Plaintext Sender Recipient I VP R 6 © Copyright 2002-2007 Haim Levkowitz DES • Data Encryption Standard • US NIST (‘70s) • 56-bit key • Good then • Not enough now (cracked June 1997) • Discrete blocks of 64 bits • Often w/ CBC (cipherblock chaining) • Each blocks encr. depends on contents of previous => detect missing block I VP R 7 © Copyright 2002-2007 Haim Levkowitz Triple DES, DESX, -
Block Ciphers and the Data Encryption Standard
Lecture 3: Block Ciphers and the Data Encryption Standard Lecture Notes on “Computer and Network Security” by Avi Kak ([email protected]) January 26, 2021 3:43pm ©2021 Avinash Kak, Purdue University Goals: To introduce the notion of a block cipher in the modern context. To talk about the infeasibility of ideal block ciphers To introduce the notion of the Feistel Cipher Structure To go over DES, the Data Encryption Standard To illustrate important DES steps with Python and Perl code CONTENTS Section Title Page 3.1 Ideal Block Cipher 3 3.1.1 Size of the Encryption Key for the Ideal Block Cipher 6 3.2 The Feistel Structure for Block Ciphers 7 3.2.1 Mathematical Description of Each Round in the 10 Feistel Structure 3.2.2 Decryption in Ciphers Based on the Feistel Structure 12 3.3 DES: The Data Encryption Standard 16 3.3.1 One Round of Processing in DES 18 3.3.2 The S-Box for the Substitution Step in Each Round 22 3.3.3 The Substitution Tables 26 3.3.4 The P-Box Permutation in the Feistel Function 33 3.3.5 The DES Key Schedule: Generating the Round Keys 35 3.3.6 Initial Permutation of the Encryption Key 38 3.3.7 Contraction-Permutation that Generates the 48-Bit 42 Round Key from the 56-Bit Key 3.4 What Makes DES a Strong Cipher (to the 46 Extent It is a Strong Cipher) 3.5 Homework Problems 48 2 Computer and Network Security by Avi Kak Lecture 3 Back to TOC 3.1 IDEAL BLOCK CIPHER In a modern block cipher (but still using a classical encryption method), we replace a block of N bits from the plaintext with a block of N bits from the ciphertext. -
A Complete Bibliography of ACM Transactions on Computer Systems
A Complete Bibliography of ACM Transactions on Computer Systems Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 10 August 2021 Version 1.75 Title word cross-reference Accelerating [BJS01]. Accelerator [CZL+15]. Accelerators [LAB+13]. Accent [FR86]. Access [AT83, LZCZ86, LP93, Smi84b, GB01]. arc [GS93]. N [SHG95, Mae85]. Access/Execute [Smi84b]. Accesses [AJ19, HY92, Kel00]. accessing [ACM04]. -Body [SHG95]. accounting [EV03]. accuracy [Jim05]. Accurate [GVM+11, NTW09]. Ace [RR99]. 11/780 [Cla83, CE85]. 1988 [ACM88]. Achieve [LLL+16]. ACM [Jha20]. ACM/SIGOPS [ACM88]. Action [Sch84]. + 2.6 [PTS 14]. 2011 [Mow12]. 2019 [MT20]. Actions [Ree83]. Activations [ABLL92]. active [SJS+00]. Activity 36 [Jha20]. [IRH86, MSB+06]. Ad [BYFK08, FKA10]. Adaptable [AC92]. Adaptation 4 [Jha20]. 432 [CGJ88, CCLP83]. [BS91, AD03, FS04]. Adaptive [ALHH08, AS95, MLS97, CT01]. Address 780 [Cla83, CE85]. [CLFL94, SV99]. Adrenaline [HZL+17]. Affected [IRH86]. Aggregate [AB83]. Abstract [Her86, SS84]. abstraction aggregation [JMB05]. Aggressive [CRL03, Kel00]. Abstractions [SKH+16]. 1 2 [GWSU13]. AI [RDB+21]. Air [CDD96]. al [HKS+83]. Arrays [SHCG94]. Article [Jha20]. Algorithm [Jha20]. Asbestos [VEK+07]. [Bad86, DC85, HBAK86, Lam87, Mae85, Assignments [BGM86]. Assistant Ray89, SK85, Zha91]. Algorithms [HLZ+16]. Assisting [KMG16]. [CM86, GD87, GLM91, KS91, KH92, LA93, Associative [SA95]. Astrolabe [VBV03]. MCS91, San87, Sau83a, Sau83b, TS89, KY04]. Asymmetric [SFKP12]. At-Most-Once allergies [QTZS07]. Allocation [LSW91]. ATC [MT20]. -
1 Perfect Secrecy of the One-Time Pad
1 Perfect secrecy of the one-time pad In this section, we make more a more precise analysis of the security of the one-time pad. First, we need to define conditional probability. Let’s consider an example. We know that if it rains Saturday, then there is a reasonable chance that it will rain on Sunday. To make this more precise, we want to compute the probability that it rains on Sunday, given that it rains on Saturday. So we restrict our attention to only those situations where it rains on Saturday and count how often this happens over several years. Then we count how often it rains on both Saturday and Sunday. The ratio gives an estimate of the desired probability. If we call A the event that it rains on Saturday and B the event that it rains on Sunday, then the intersection A ∩ B is when it rains on both days. The conditional probability of A given B is defined to be P (A ∩ B) P (B | A)= , P (A) where P (A) denotes the probability of the event A. This formula can be used to define the conditional probability of one event given another for any two events A and B that have probabilities (we implicitly assume throughout this discussion that any probability that occurs in a denominator has nonzero probability). Events A and B are independent if P (A ∩ B)= P (A) P (B). For example, if Alice flips a fair coin, let A be the event that the coin ends up Heads. If Bob rolls a fair six-sided die, let B be the event that he rolls a 3. -
Revention of Coldboot Attack on Linux Systems Measures to Prevent Coldboot Attack
Special Issue - 2017 International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 ICIATE - 2017 Conference Proceedings Prevention of Coldboot Attack on Linux Systems Measures to Prevent Coldboot Attack Siddhesh Patil Ekta Patel Nutan Dhange Information Technology, Atharva Information Technology, Atharva Assistant Professor College of Engineering College of Engineering Information Technology, Atharva Mumbai University Mumbai University College of Engineering Mumbai, India Mumbai, India Mumbai University Mumbai, India Abstract— Contrary to the popular belief, DDR type RAM boot attack techniques. We implement measures to ensure that data modules retain stored memory even after power is cut off. stays secure on system shutdown. Data security is critical for most Provided physical access to the cryptosystem, a hacker or a of the business and even home computer users. RAM is used to store forensic specialist can retrieve information stored in the RAM non-persistent information into it. When an application is in use, by installing it on another system and booting from a USB drive user-specific or application-specific data may be stored in RAM. to take a RAM dump. With adequate disassembly and analytic This data can be sensitive information like client information, tools, this information stored in the RAM dump can be payment details, personal files, bank account details, etc. All this deciphered. Hackers thrive on such special-case attack information, if fallen into wrong hands, can be potentially techniques to gain access to systems with sensitive information. dangerous. The goal of most unethical hackers / attackers is to An unencrypted RAM module will contain the decryption key disrupt the services and to steal information. -
Related-Key Cryptanalysis of 3-WAY, Biham-DES,CAST, DES-X, Newdes, RC2, and TEA
Related-Key Cryptanalysis of 3-WAY, Biham-DES,CAST, DES-X, NewDES, RC2, and TEA John Kelsey Bruce Schneier David Wagner Counterpane Systems U.C. Berkeley kelsey,schneier @counterpane.com [email protected] f g Abstract. We present new related-key attacks on the block ciphers 3- WAY, Biham-DES, CAST, DES-X, NewDES, RC2, and TEA. Differen- tial related-key attacks allow both keys and plaintexts to be chosen with specific differences [KSW96]. Our attacks build on the original work, showing how to adapt the general attack to deal with the difficulties of the individual algorithms. We also give specific design principles to protect against these attacks. 1 Introduction Related-key cryptanalysis assumes that the attacker learns the encryption of certain plaintexts not only under the original (unknown) key K, but also under some derived keys K0 = f(K). In a chosen-related-key attack, the attacker specifies how the key is to be changed; known-related-key attacks are those where the key difference is known, but cannot be chosen by the attacker. We emphasize that the attacker knows or chooses the relationship between keys, not the actual key values. These techniques have been developed in [Knu93b, Bih94, KSW96]. Related-key cryptanalysis is a practical attack on key-exchange protocols that do not guarantee key-integrity|an attacker may be able to flip bits in the key without knowing the key|and key-update protocols that update keys using a known function: e.g., K, K + 1, K + 2, etc. Related-key attacks were also used against rotor machines: operators sometimes set rotors incorrectly. -
CIS 4360 Secure Computer Systems Attacks Against Boot And
CIS 4360 Secure Computer Systems Attacks against Boot and RAM Professor Qiang Zeng Spring 2017 Previous Class • BIOS-MBR: Generation I system boot – What BIOS and MBR are? – How does it boot the system? // Jumping to MBR – How does multi-boot work? // Chain-loading • The limitations of BIOS and MBR – Disk, memory, file system, multi-booting, security, … • UEFI-GPT: Generation II system boot – What UEFI and GPT are? – How does it boot the system? // UEFI boot manager – How does multi-boot work? // separate dirs in ESP CIS 4360 – Secure Computer Systems 2 Limitations of BIOS-MBR • MBR is very limited – Support ~2TB disk only – 4 primary partitions at most (so four OSes at most) – A MBR can store only one boot loader • BIOS is very restrictive – 16-bit processor mode; 1MB memory space (little spare space to accommodate a file system driver) – Blindly executes whatever code on MBR CIS 4360 – Secure Computer Systems 3 UEFI vs. BIOS • Disk partitioning schemes – GPT (GUID Partition Table): part of UEFI spec.; to replace MBR – MBR supports disk size 232 x 512B = 2TB, while UEFI supports much larger disks (264 x 512B = 8,000,000,000 TB) – MBR supports 4 partitions, while GPT supports 128 • Memory space – BIOS: 20-bit addressing; UEFI: 32-bit or 64-bit • Pre-OS environment – BIOS only provides raw disk access, while UEFI supports the FAT file system (so you can use file names to read files) • Booting – BIOS supports boot through boot sectors (MBR and VBR) – UEFI provides a boot partition of hundreds of megabytes (and boot manager and secure boot) CIS 4360 – Secure Computer Systems 4 Previous Class How does dual-boo-ng of Linux and Windows work in UEFI-GPT? Each vendor has a separate directory storing its own boot loader code and configuraon files in the ESP (EFI System Par--on). -
Low-Cost Mitigation Against Cold Boot Attacks for an Authentication Token
Low-cost Mitigation against Cold Boot Attacks for an Authentication Token Ian Goldberg?1, Graeme Jenkinson2, and Frank Stajano2 1 University of Waterloo (Canada) 2 University of Cambridge (United Kingdom) Abstract. Hardware tokens for user authentication need a secure and usable mechanism to lock them when not in use. The Pico academic project proposes an authentication token unlocked by the proximity of simpler wearable devices that provide shares of the token’s master key. This method, however, is vulnera- ble to a cold boot attack: an adversary who captures a running Pico could extract the master key from its RAM and steal all of the user’s credentials. We present a cryptographic countermeasure—bivariate secret sharing—that protects all the credentials except the one in use at that time, even if the token is captured while it is on. Remarkably, our key storage costs for the wearables that supply the cryp- tographic shares are very modest (256 bits) and remain constant even if the token holds thousands of credentials. Although bivariate secret sharing has been used before in slightly different ways, our scheme is leaner and more efficient and achieves a new property—cold boot protection. We validated the efficacy of our design by implementing it on a commercial Bluetooth Low Energy development board and measuring its latency and energy consumption. For reasonable choices of latency and security parameters, a standard CR2032 button-cell battery can power our prototype for 5–7 months, and we demonstrate a simple enhancement that could make the same battery last for over 9 months. -
The 2006 Analysis of Information Remaining on Disks Offered for Sale on the Second Hand Market
Journal of Digital Forensics, Security and Law Volume 1 Number 3 Article 2 2006 The 2006 Analysis of Information Remaining on Disks Offered for Sale on the Second Hand Market Andy Jones Security Research Center, British Telecommunicationsand Edith Cowan University Craig Valli Edith Cowan University Iain Sutherland University of Glamorgan Paula Thomas University of Glamorgan Follow this and additional works at: https://commons.erau.edu/jdfsl Part of the Computer Engineering Commons, Computer Law Commons, Electrical and Computer Engineering Commons, Forensic Science and Technology Commons, and the Information Security Commons Recommended Citation Jones, Andy; Valli, Craig; Sutherland, Iain; and Thomas, Paula (2006) "The 2006 Analysis of Information Remaining on Disks Offered for Sale on the Second Hand Market," Journal of Digital Forensics, Security and Law: Vol. 1 : No. 3 , Article 2. DOI: https://doi.org/10.15394/jdfsl.2006.1008 Available at: https://commons.erau.edu/jdfsl/vol1/iss3/2 This Article is brought to you for free and open access by the Journals at Scholarly Commons. It has been accepted for inclusion in Journal of Digital Forensics, Security and Law by an authorized administrator of (c)ADFSL Scholarly Commons. For more information, please contact [email protected]. Journal of Digital Forensics, Security and Law, Vol. 1(3) The 2006 Analysis of Information Remaining on Disks Offered for Sale on the Second Hand Market Andy Jones Security Research Center, British Telecommunications and Edith Cowan University [email protected] Phone: +44 1473 646133 Fax: +44 1473 644385 Craig Valli Edith Cowan University Iain Sutherland University of Glamorgan Paula Thomas University of Glamorgan ABSTRACT All organisations, whether in the public or private sector, use computers for the storage and processing of information relating to their business or services, their employees and their customers. -
How Blancco Helps Mobile Resellers & Recyclers Achieve Compliance
How Blancco Helps Mobile Resellers & Recyclers Achieve Compliance with the R2 Standard Mobile resellers and recyclers must comply with several standards and certifications before reselling, remarketing or recycling their devices. Following these rules helps mobile organizations ensure that they are protected from potential data remanence that could expose sensitive information. One of the most prominent certifications is called R2. The latest version of the Standard is the R2:2013. Each provision of the R2 Standard is designed to help ensure the transparency, quality, social and environmental responsibility of R2 Certified electronics facilities such as mobile resellers and recyclers. R2:2013 was developed through a transparent multi-stakeholder process, consistent with ANSI essential requirements. R2 undergoes consistent review to advance the requirements in-line with the needs of the industry. Blancco Mobile Diagnostics & Erasure solutions supply mobile resellers around the globe a certified process so that they can meet (and even exceed) the R2 standard for device testing and data sanitization. Blancco solutions exceed the requirements presented in the Standard, with verification and certification of each data erasure. This ensures that data does not remain on mobile devices following processing and prior to moving into the secondary market via reverse/forward logistics. Section of the Standard How Blancco Helps 1. Tested and Full Functions, R2/Ready for Reuse Blancco Mobile Solutions enables mobile resellers and retailers to (A) “Use effective test methods to confirm that all functions quickly and accurately find the source of mobile device issues and for equipment and components are working properly resolve them. and ready for reuse, including properly configured with appropriate legally licensed software where required for operation of equipment and components, and device specific drivers within the product’s hardware…” 2. -
Chapter 2 the Data Encryption Standard (DES)
Chapter 2 The Data Encryption Standard (DES) As mentioned earlier there are two main types of cryptography in use today - symmet- ric or secret key cryptography and asymmetric or public key cryptography. Symmet- ric key cryptography is the oldest type whereas asymmetric cryptography is only being used publicly since the late 1970’s1. Asymmetric cryptography was a major milestone in the search for a perfect encryption scheme. Secret key cryptography goes back to at least Egyptian times and is of concern here. It involves the use of only one key which is used for both encryption and decryption (hence the use of the term symmetric). Figure 2.1 depicts this idea. It is necessary for security purposes that the secret key never be revealed. Secret Key (K) Secret Key (K) ? ? - - - - Plaintext (P ) E{P,K} Ciphertext (C) D{C,K} Plaintext (P ) Figure 2.1: Secret key encryption. To accomplish encryption, most secret key algorithms use two main techniques known as substitution and permutation. Substitution is simply a mapping of one value to another whereas permutation is a reordering of the bit positions for each of the inputs. These techniques are used a number of times in iterations called rounds. Generally, the more rounds there are, the more secure the algorithm. A non-linearity is also introduced into the encryption so that decryption will be computationally infeasible2 without the secret key. This is achieved with the use of S-boxes which are basically non-linear substitution tables where either the output is smaller than the input or vice versa. 1It is claimed by some that government agencies knew about asymmetric cryptography before this. -
Using Registers As Buffers to Resist Memory Disclosure Attacks Yuan Zhao, Jingqiang Lin, Wuqiong Pan, Cong Xue, Fangyu Zheng, Ziqiang Ma
RegRSA: Using Registers as Buffers to Resist Memory Disclosure Attacks Yuan Zhao, Jingqiang Lin, Wuqiong Pan, Cong Xue, Fangyu Zheng, Ziqiang Ma To cite this version: Yuan Zhao, Jingqiang Lin, Wuqiong Pan, Cong Xue, Fangyu Zheng, et al.. RegRSA: Using Registers as Buffers to Resist Memory Disclosure Attacks. 31st IFIP International Information Security and Privacy Conference (SEC), May 2016, Ghent, Belgium. pp.293-307, 10.1007/978-3-319-33630-5_20. hal-01369563 HAL Id: hal-01369563 https://hal.inria.fr/hal-01369563 Submitted on 21 Sep 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License RegRSA: Using Registers as Buffers to Resist Memory Disclosure Attacks Yuan Zhao1;2;3?, Jingqiang Lin1;2, Wuqiong Pan1;2??, Cong Xue1;2;3, Fangyu Zheng1;2;3, and Ziqiang Ma1;2;3 1 State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, China 2 Data Assurance and Communication Security Research Center, Chinese Academy of Sciences, China 3 University of Chinese Academy of Sciences, China {yzhao,linjq,wqpan,cxue13,fyzheng,zqma13}@is.ac.cn Abstract.