Trna Biogenesis and Specific Aminoacyl-Trna Synthetases Regulate Senescence Stability Under the Control of Mtor

Total Page:16

File Type:pdf, Size:1020Kb

Trna Biogenesis and Specific Aminoacyl-Trna Synthetases Regulate Senescence Stability Under the Control of Mtor bioRxiv preprint doi: https://doi.org/10.1101/2020.04.30.068114; this version posted May 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. tRNA biogenesis and specific Aminoacyl-tRNA Synthetases regulate senescence stability under the control of mTOR Jordan Guillon, Bertrand Toutain, Alice Boissard, Catherine Guette and Olivier Coqueret#. ICO Cancer Center, CRCINA, INSERM, Université de Nantes,Université d’Angers, France. # Corresponding author: Olivier Coqueret [email protected] ICO Cancer Center INSERM U1232, 15 rue Boquel, 49055 ANGERS, France Running title: tRNA deregulation during senescence Keywords: Chemoresistance senescence, mTOR, tRNA, ER stress. 1! bioRxiv preprint doi: https://doi.org/10.1101/2020.04.30.068114; this version posted May 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT nuclear envelope which allows leakage of chromatin fragments within the cytoplasm. These abnormal fragments are detected by the cGAS- Senescence normally prevents the STING DNA sensing pathway which then activates propagation of abnormal cells but is also NF-kB and induces the production of a specific associated with cancer progression and secretome known as the SASP (Senescence- chemotherapy resistance. These contradictory Associated Secretory Phenotype). Mainly effects are related to the stability of epigenetic composed of cytokines and chemokines, this marks and to the senescence-associated secretory secretome maintains senescence and attracts phenotype (SASP). The SASP reinforces the immune cells which then eliminate the senescent proliferative arrest but also induces tumor populations (4-7). Thus, through the up-regulation growth and inflammation during aging. of the p53 and Rb pathways and the activation of Senescence is therefore much more immune responses, senescence prevents the heterogeneous than initially thought. How this propagation of abnormal cells. response varies is not really understood. Although initially described as a definitive Using experimental models of proliferative arrest, we and others have recently senescence escape, we now described that the shown that some cells can escape senescence, deregulation of tRNA biogenesis affects the indicating that distinct stages of light and deep stability of this suppression, leading to senescence should be distinguished (2,7-9). This chemotherapy resistance. Proteomic analyses heterogeneity can be explained by a variable showed that several aminoacyl-tRNA synthetases expression of p16 which is necessary for were down-regulated in senescent cells. tRNA senescence maintenance. The stability of transcription was also inhibited as a consequence senescence also implies that the compaction of of a reduced DNA binding of the type III RNA proliferative genes is maintained within the polymerase. Reducing RNA Pol III activity by SAHFs. Recent results have reported that BRF1 depletion maintained senescence and H3K9Me3 repressive marks can be removed by the blocked cell persistence. Results showed that the JMJD2C and LSD1 demethylases and that this YARS1 and LARS1 aminoacyl-tRNA induces senescence escape (10). The HIRA histone synthetases were necessary for cell emergence chaperone also plays a key role in the deposition of and that their corresponding tRNA-Leu-CAA the histones H3.3 and H4 into the chromatin. Its and tRNA-Tyr-GTA were up-regulated in down-regulation allows senescence escape, persistent cells. On the contrary, the CARS1 indicating again that the stability of epigenetic ligase had no effect on persistence and the marks plays a key role in the maintenance of the expression of the corresponding tRNA-Cys was suppressive arrest. The dynamic nature of not modified. Results also showed that these senescence is also explained by the variability of tRNAs were regulated by mTOR and that this the SASP. Initially described as beneficial, several abnormal tRNA biogenesis induced an ER stress studies have reported that its composition varies which was resolved by the kinase during and that this secretome can also enhance chemotherapy escape. inflammation or tumor progression (11-13). The Overall, these findings highlight a new reason for this variability is not really understood. regulation of tRNA biology during senescence Cancer cell lines also represent an interesting and suggest that specific tRNAs and ligases model of an incomplete senescence response. We contribute to the strength and heterogeneity of and others have shown that this suppression this suppression and to chemotherapy resistance. functions as an adaptive mechanism in response to chemotherapy-induced -senescence (CIS) (7,9). We have described that cancer cells can escape senescence and emerge as more transformed cells INTRODUCTION that resist anoikis and are more invasive (14-17). In addition, we have also shown that cells having an Senescence induces a definitive incomplete senescence response are characterized proliferative arrest in response to telomere by a reduced expression of CD47 (17). As shortening, oncogenes or chemotherapy (1,2). This previously proposed (18,19), this indicates that tumor suppression is most of the time induced by senescent populations are heterogeneous and can be DNA damage and activation of the p53-p21 and identified by cell surface receptors. p16-Rb pathways. A definitive proliferative arrest Taken together, these studies indicate that is then maintained by the Rb-mediated compaction senescence is much more dynamic than initially of proliferative genes within heterochromatin foci thought and that a better characterization of these or SAHFs (Senescence Associated arrested cells is necessary. At the single cell level, Heterochromatin Foci) (3). Senescence is also any modification of epigenetic marks, of the SASP characterized by an increased permeability of the composition or any variability of the oncogenic 2! bioRxiv preprint doi: https://doi.org/10.1101/2020.04.30.068114; this version posted May 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. background will generate heterogeneous analysis indicated that Myc and E2Fs proliferative populations. In this study, we pursued our pathways were reactivated as expected. experiments with the aim of characterizing the Interestingly, a significant up-regulation of mTOR signaling pathways involved in the maintenance of signaling was also detected (Figure 1D). We senescence. We describe in this work that mTOR focused on this kinase since it plays a key role activates tRNAs synthesis during senescence during senescence (21-25). Western blot analysis escape. During the initial steps of this suppressive confirmed that mTOR was up-regulated in LS174T arrest, the transcription of the type III RNA and MCF7 cells following p21 inhibition, as shown polymerase is down-regulated and tRNA synthesis by the phosphorylation of the S6 ribosomal protein, is then reactivated during senescence escape. one of its main target (Figure 1E). We then asked if Depending on the experimental model, results mTOR was involved in CIS escape by treating the showed that specific tRNAs were reactivated, such cells at the beginning of emergence with torin-1 as the tRNALeu-CAA and tRNATyr-GTA tRNAs in and rapamycin, two common drugs used to emergent colorectal cells or breast organoids. In inactivate this kinase. These two inhibitors addition, specific aminoacyl-tRNA synthetases significantly blocked CIS escape following p21 (ARS) such as the Leucyl-and Tyrosyl-tRNA inactivation (Figure 1F). Emergent cells were more ligases were necessary for senescence escape. Our sensitive to mTOR inhibition than parental, results also indicate that this deregulation of tRNA untreated cells (Supplementary Figure 1B). In synthesis led to the activation of the unfolded addition, Rb phosphorylation or cyclin A protein response (UPR) and that this tRNA- expression were not inhibited by the two drugs mediated ER stress is resolved by mTOR to allow (Figure 1G). We then determined if mTOR was also senescence escape. involved in spontaneous CIS escape, in the absence Altogether, these results indicate that of p21 manipulation. Western blot analysis specific pools of tRNAs or ARSs regulate the indicated that the kinase was activated at the early outcome of this suppressive response and of steps of emergence, two days after serum release chemotherapy. We propose that different types of (Figure 1H). In this condition, torin-1 or rapamycin senescence, replicative, oncogenic or mediated by inhibited its activity and significantly blocked CIS chemotherapy might lead to the expression of escape, both in LS174T and MCF7 cells (Figure 1H different pools of tRNA and ARSs. This could and I). partly explain the variability of the SASP and the Altogether these observations indicate deleterious effects of senescence in response to mTOR is necessary for CIS escape, either during treatment. spontaneous emergence or following p21 inactivation. RESULTS Activating ER stress prevents CIS escape mTOR inhibition prevents CIS escape Interestingly, the mass spectrometry analysis also detected a significant deregulation of In breast and colorectal cell lines that do the Unfolded Protein Response (UPR) following not express p16INK4, we have previously
Recommended publications
  • Genetic Variants of Microsomal Epoxide Hydrolase and Glutamate-Cysteine Ligase In
    ERJ Express. Published on July 9, 2008 as doi: 10.1183/09031936.00065308 Genetic variants of microsomal epoxide hydrolase and glutamate-cysteine ligase in COPD Running Title: EPHX1 and GCL variation in COPD Sally Chappell1, Leslie Daly2, Kevin Morgan1, Tamar Guetta-Baranes1, Josep Roca3, Roberto Rabinovich3, Juzer Lotya2,Ann B. Millar4, Seamas C. Donnelly5, Vera Keatings6, William MacNee7, Jan Stolk8, Pieter S. Hiemstra8, Massimo Miniati9, Simonetta Monti9 Clare M. O’Connor5,10 and Noor Kalsheker1,10. 1 The University of Nottingham. Division of Clinical Chemistry, Molecular Medical Sciences, Institute of Genetics, University Hospital, Queens Medical Centre, Nottingham, NG7 2UH, UK 2 University College Dublin. UCD School of Public Health & Population Science, UCD, Belfield, Dublin 4, IRELAND 3 Hospital Clinico y Provincial de Barcelona. Service de Pneumologia, Hospital Clinic, Villarroel, 170, 08036, Barcelona, SPAIN. 4 University of Bristol. Lung Research Group, Department of Clinical Science at North Bristol, Southmead Hospital, Westbury on Trym, Bristol BS10 5NB, UK 5 University College Dublin. UCD School of Medicine and Medical Science, The Conway Institute, UCD, Belfield, Dublin 4, IRELAND 6 Letterkenny General Hospital, Letterkenny, Co. Donegal, Ireland 1 Copyright 2008 by the European Respiratory Society. 7 ELEGI Colt Laboratories, MRC Centre for Inflammation Research, Level 2, Room C2.29, The Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ. 8 Leiden University Medical Center, Department of Pulmonology (C3-P), Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, THE NETHERLANDS 9 CNR Institute of Clinical Physiology, Via G. Moruzzi 1-56124, Pisa, ITALY 10 Joint senior authors. Corresponding author: Professor Noor Kalsheker, Division of Clinical Chemistry, University Hospital, Nottingham, NG7 2UH, UK.
    [Show full text]
  • Aminoacyl-Trna Synthetases: Versatile Players in the Changing Theater of Translation
    Downloaded from rnajournal.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press RNA (2002), 8:1363–1372+ Cambridge University Press+ Printed in the USA+ Copyright © 2002 RNA Society+ DOI: 10+1017/S1355838202021180 MEETING REVIEW Aminoacyl-tRNA synthetases: Versatile players in the changing theater of translation CHRISTOPHER FRANCKLYN,1 JOHN J. PERONA,2 JOERN PUETZ,3 and YA-MING HOU4 1 Department of Biochemistry, University of Vermont, Burlington, Vermont 05405, USA 2 Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, USA 3 UPR9002 du Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, 67084 Cedex, France 4 Department of Biochemistry, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA ABSTRACT Aminoacyl-tRNA synthetases attach amino acids to the 39 termini of cognate tRNAs to establish the specificity of protein synthesis. A recent Asilomar conference (California, January 13–18, 2002) discussed new research into the structure–function relationship of these crucial enzymes, as well as a multitude of novel functions, including par- ticipation in amino acid biosynthesis, cell cycle control, RNA splicing, and export of tRNAs from nucleus to cytoplasm in eukaryotic cells. Together with the discovery of their role in the cellular synthesis of proteins to incorporate selenocysteine and pyrrolysine, these diverse functions of aminoacyl-tRNA synthetases underscore the flexibility and adaptability
    [Show full text]
  • Mdm2 and Mdmx RING Domains Play Distinct Roles in the Regulation of P53 Responses: a Comparative Study of Mdm2 and Mdmx RING Domains in U2OS Cells
    International Journal of Molecular Sciences Article Mdm2 and MdmX RING Domains Play Distinct Roles in the Regulation of p53 Responses: A Comparative Study of Mdm2 and MdmX RING Domains in U2OS Cells Olga Egorova, Heather HC Lau, Kate McGraphery and Yi Sheng * Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada; [email protected] (O.E.); [email protected] (H.H.L.); [email protected] (K.M.) * Correspondence: [email protected]; Tel.: +1-416-736-2100 (ext. 33521) Received: 10 January 2020; Accepted: 9 February 2020; Published: 15 February 2020 Abstract: Dysfunction of the tumor suppressor p53 occurs in most human cancers. Mdm2 and MdmX are homologous proteins from the Mdm (Murine Double Minute) protein family, which play a critical role in p53 inactivation and degradation. The two proteins interact with one another via the intrinsic RING (Really Interesting New Gene) domains to achieve the negative regulation of p53. The downregulation of p53 is accomplished by Mdm2-mediated p53 ubiquitination and proteasomal degradation through the ubiquitin proteolytic system and by Mdm2 and MdmX mediated inhibition of p53 transactivation. To investigate the role of the RING domain of Mdm2 and MdmX, an analysis of the distinct functionalities of individual RING domains of the Mdm proteins on p53 regulation was conducted in human osteosarcoma (U2OS) cell line. Mdm2 RING domain was observed mainly localized in the cell nucleus, contrasting the localization of MdmX RING domain in the cytoplasm. Mdm2 RING was found to possess an endogenous E3 ligase activity, whereas MdmX RING did not.
    [Show full text]
  • T4 DNA Ligase Protocol
    Certificate of Analysis T4 DNA Ligase: Part# 9PIM180 Size Part No. (Weiss units) M180A 100 Revised 4/18 M180B 500 M179A (High Conc.) 500 Ligase Buffer, 10X (C126A, C126B): The Ligase 10X Buffer supplied with this enzyme has a composition of 300mM Tris-HCl (pH 7.8), 100mM MgCl2, 100mM DTT and 10mM ATP. The performance of this buffer depends on the integrity of the ATP. Store the buffer in small aliquots at –20°C to minimize degradation of the ATP and DTT. *AF9PIM180 0418M180* Note: The DTT in the Ligase 10X Buffer may precipitate upon freezing. If this occurs, vortex the buffer until the precipitate AF9PIM180 0418M180 is in solution (typically 1–2 minutes). The performance of the product is not affected provided that the precipitate is resuspended. Enzyme Storage Buffer: T4 DNA Ligase is supplied in 10mM Tris-HCl (pH 7.4), 50mM KCl, 1mM DTT, 0.1mM EDTA and 50% glycerol. Source: E. coli strain expressing a recombinant clone. Unit Definition: 0.01 Weiss unit of T4 DNA Ligase is defined as the amount of enzyme required to catalyze the ligation of greater than 95% of the Hind III fragments of 1µg of Lambda DNA at 16°C in 20 minutes. See the unit concentration on the Product Information Label. Storage Temperature: Store at –20°C. Avoid multiple freeze-thaw cycles and exposure to frequent temperature changes. See the expiration date on the Product Information Label. Promega Corporation 2800 Woods Hollow Road Madison, WI 53711-5399 USA Quality Control Assays Telephone 608-274-4330 Toll Free 800-356-9526 Activity Assays Fax 608-277-2516 Internet www.promega.com Blue/White Assay: pGEM®-3Zf(+) Vector is digested with representative restriction enzymes (leaving 5´-termini, 3´-termini or blunt ends).
    [Show full text]
  • UBE3A Gene Ubiquitin Protein Ligase E3A
    UBE3A gene ubiquitin protein ligase E3A Normal Function The UBE3A gene provides instructions for making a protein called ubiquitin protein ligase E3A. Ubiquitin protein ligases are enzymes that target other proteins to be broken down (degraded) within cells. These enzymes attach a small molecule called ubiquitin to proteins that should be degraded. Cellular structures called proteasomes recognize and digest these ubiquitin-tagged proteins. Protein degradation is a normal process that removes damaged or unnecessary proteins and helps maintain the normal functions of cells. Studies suggest that ubiquitin protein ligase E3A plays a critical role in the normal development and function of the nervous system. Studies suggest that it helps control ( regulate) the balance of protein synthesis and degradation (proteostasis) at the junctions between nerve cells (synapses) where cell-to-cell communication takes place. Regulation of proteostasis is important for the synapses to change and adapt over time in response to experience, a characteristic called synaptic plasticity. Synaptic plasticity is critical for learning and memory. People normally inherit two copies of the UBE3A gene, one from each parent. Both copies of the gene are turned on (active) in most of the body's tissues. In certain areas of the brain, however, only the copy inherited from a person's mother (the maternal copy) is active. This parent-specific gene activation results from a phenomenon known as genomic imprinting. Health Conditions Related to Genetic Changes Angelman syndrome A loss of UBE3A gene function in the brain likely causes many of the characteristic features of Angelman syndrome, a complex genetic disorder that primarily affects the nervous system.
    [Show full text]
  • E3 Ubiquitin Ligase APC/Ccdh1 Negatively Regulates FAH Protein Stability by Promoting Its Polyubiquitination
    International Journal of Molecular Sciences Article E3 Ubiquitin Ligase APC/CCdh1 Negatively Regulates FAH Protein Stability by Promoting Its Polyubiquitination 1, 1, 1 1 1 Kamini Kaushal y, Sang Hyeon Woo y, Apoorvi Tyagi , Dong Ha Kim , Bharathi Suresh , Kye-Seong Kim 1,2,* and Suresh Ramakrishna 1,2,* 1 Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; [email protected] (K.K.); [email protected] (S.H.W.); [email protected] (A.T.); [email protected] (D.H.K.); [email protected] (B.S.) 2 College of Medicine, Hanyang University, Seoul 04763, Korea * Correspondence: [email protected] (K.-S.K.); [email protected] (S.R.) These authors have contributed equally. y Received: 1 October 2020; Accepted: 16 November 2020; Published: 18 November 2020 Abstract: Fumarylacetoacetate hydrolase (FAH) is the last enzyme in the degradation pathway of the amino acids tyrosine and phenylalanine in mammals that catalyzes the hydrolysis of 4-fumarylacetoacetate into acetoacetate and fumarate. Mutations of the FAH gene are associated with hereditary tyrosinemia type I (HT1), resulting in reduced protein stability, misfolding, accelerated degradation and deficiency in functional proteins. Identifying E3 ligases, which are necessary for FAH protein stability and degradation, is essential. In this study, we demonstrated that the FAH protein level is elevated in liver cancer tissues compared to that in normal tissues. Further, we showed that the FAH protein undergoes 26S proteasomal degradation and its protein turnover is regulated by the anaphase-promoting complex/cyclosome-Cdh1 (APC/C)Cdh1 E3 ubiquitin ligase complex. APC/CCdh1 acts as a negative stabilizer of FAH protein by promoting FAH polyubiquitination and decreases the half-life of FAH protein.
    [Show full text]
  • Pairs of Dipeptides Synergistically Activate the Binding of Substrate by Ubiquitin Ligase Through Dissociation of Its Autoinhibitory Domain
    Pairs of dipeptides synergistically activate the binding of substrate by ubiquitin ligase through dissociation of its autoinhibitory domain Fangyong Du*, Federico Navarro-Garcia†, Zanxian Xia, Takafumi Tasaki, and Alexander Varshavsky‡ Division of Biology, California Institute of Technology, Pasadena, CA 91125 Contributed by Alexander Varshavsky, August 29, 2002 Protein degradation by the ubiquitin (Ub) system controls the con- S. cerevisiae N-end rule pathway is the control of peptide import centrations of many regulatory proteins. The degradation signals through regulated degradation of the 35-kDa homeodomain pro- (degrons) of these proteins are recognized by the system’s Ub ligases tein CUP9, a transcriptional repressor of the di- and tripeptide (complexes of E2 and E3 enzymes). Two substrate-binding sites of transporter PTR2 (13, 24, 25). CUP9 contains an internal (C UBR1, the E3 of the N-end rule pathway in the yeast Saccharomyces terminus-proximal) degron which is recognized by a third substrate- cerevisiae, recognize basic (type 1) and bulky hydrophobic (type 2) binding site of UBR1. Previous work (13) has shown that the N-terminal residues of proteins or short peptides. A third substrate- UBR1-dependent degradation of CUP9 is allosterically activated by binding site of UBR1 targets CUP9, a transcriptional repressor of the dipeptides with destabilizing N-terminal residues. In the resulting peptide transporter PTR2, through an internal (non-N-terminal) de- positive feedback, imported dipeptides bind to UBR1 and accel- gron of CUP9. Previous work demonstrated that dipeptides with erate the UBR1-dependent degradation of CUP9, thereby dere- destabilizing N-terminal residues allosterically activate UBR1, leading pressing the expression of PTR2 and increasing the cell’s capacity to accelerated in vivo degradation of CUP9 and the induction of PTR2 to import peptides (13).
    [Show full text]
  • The Structure of Carbamoyl Phosphate Synthetase Determined to 2.1 A
    research papers Acta Crystallographica Section D Biological The structure of carbamoyl phosphate synthetase Crystallography determined to 2.1 AÊ resolution ISSN 0907-4449 James B. Thoden,a Frank M. Carbamoyl phosphate synthetase catalyzes the formation of Received 10 March 1998 Raushel,b Matthew M. Benning,a carbamoyl phosphate from one molecule of bicarbonate, two Accepted 29 April 1998 2+ Ivan Raymenta and Hazel M. molecules of Mg ATP and one molecule of glutamine or a ammonia depending upon the particular form of the enzyme PDB Reference: carbamoyl Holden * phosphate synthetase, 1jdb. under investigation. As isolated from Escherichia coli, the enzyme is an , -heterodimer consisting of a small subunit aInstitute for Enzyme Research, The Graduate that hydrolyzes glutamine and a large subunit that catalyzes School, and Department of Biochemistry, the two required phosphorylation events. Here the three- College of Agricultural and Life Sciences, University of Wisconsin±Madison, 1710 dimensional structure of carbamoyl phosphate synthetase University Avenue, Madison, Wisconsin 53705, from E. coli re®ned to 2.1 AÊ resolution with an R factor of USA, and bDepartment of Chemistry, Texas 17.9% is described. The small subunit is distinctly bilobal with A&M University, College Station, Texas 77843, a catalytic triad (Cys269, His353 and Glu355) situated USA between the two structural domains. As observed in those enzymes belonging to the = -hydrolase family, the active-site Correspondence e-mail: nucleophile, Cys269, is perched at the top of a tight turn. The [email protected] large subunit consists of four structural units: the carboxypho- sphate synthetic component, the oligomerization domain, the carbamoyl phosphate synthetic component and the allosteric domain.
    [Show full text]
  • Viewed in (104)]
    The Role in Translation of Editing and Multi-Synthetase Complex Formation by Aminoacyl-tRNA Synthetases Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Medha Vijay Raina, M.Sc. Ohio State Biochemistry Graduate Program The Ohio State University 2014 Dissertation Committee: Dr. Michael Ibba, Advisor Dr. Juan Alfonzo Dr. Irina Artsimovitch Dr. Kurt Fredrick Dr. Karin Musier-Forsyth Copyright by Medha Vijay Raina 2014 ABSTRACT Aminoacyl-tRNA synthetases (aaRSs) catalyze the first step of translation, aminoacylation. These enzymes attach amino acids (aa) to their cognate tRNAs to form aminoacyl-tRNA (aa-tRNA), an important substrate in protein synthesis, which is delivered to the ribosome as a ternary complex with translation elongation factor 1A (EF1A) and GTP. All aaRSs have an aminoacylation domain, which is the active site that recognizes the specific amino acid, ATP, and the 3′ end of the bound tRNA to catalyze the aminoacylation reaction. Apart from the aminoacylation domain, some aaRSs have evolved additional domains that are involved in interacting with other proteins, recognizing and binding the tRNA anticodon, and editing misacylated tRNA thereby expanding their role in and beyond translation. One such function of the aaRS is to form a variety of complexes with each other and with other factors by interacting via additional N or C terminal extensions. For example, several archaeal and eukaryotic aaRSs are known to associate with EF1A or other aaRSs forming higher order complexes, although the role of these multi-synthetase complexes (MSC) in translation remains largely unknown.
    [Show full text]
  • Structure and Function of the First Full-Length Murein Peptide Ligase (Mpl) Cell Wall Recycling Protein
    Structure and Function of the First Full-Length Murein Peptide Ligase (Mpl) Cell Wall Recycling Protein Debanu Das1,2, Mireille Herve´ 3,4, Julie Feuerhelm1,5, Carol L. Farr1,6, Hsiu-Ju Chiu1,2, Marc-Andre´ Elsliger1,6, Mark W. Knuth1,5, Heath E. Klock1,5, Mitchell D. Miller1,2, Adam Godzik1,7,8, Scott A. Lesley1,5,6, Ashley M. Deacon1,2, Dominique Mengin-Lecreulx3,4*, Ian A. Wilson1,6* 1 Joint Center for Structural Genomics ( http://www.jcsg.org), 2 Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, United States of America, 3 Universite´ Paris-Sud, Laboratoire des Enveloppes Bacte´riennes et Antibiotiques, Orsay, France, 4 Centre National de la Recherche Scientifique, Institut de Biochimie et Biophysique Mole´culaire et Cellulaire, Orsay, France, 5 Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America, 6 Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America, 7 Center for Research in Biological Systems, University of California San Diego, La Jolla, California, United States of America, 8 Program on Bioinformatics and Systems Biology, Sanford- Burnham Medical Research Institute, La Jolla, California, United States of America Abstract Bacterial cell walls contain peptidoglycan, an essential polymer made by enzymes in the Mur pathway. These proteins are specific to bacteria, which make them targets for drug discovery. MurC, MurD, MurE and MurF catalyze the synthesis of the peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanyl-c-D-glutamyl-meso-diaminopimelyl-D-alanyl-D-alanine by the sequential addition of amino acids onto UDP-N-acetylmuramic acid (UDP-MurNAc).
    [Show full text]
  • Emerging Roles of Deubiquitinating Enzymes in Human Cancer1
    Acta Pharmacol Sin 2007 Sep; 28 (9): 1325–1330 Invited review Emerging roles of deubiquitinating enzymes in human cancer1 Jin-ming YANG2 Department of Pharmacology, The Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey/Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903, USA Key words Abstract ubiquitin; cancer; deubiquitinating enzymes Protein modifications by the covalent linkage of ubiquitin have significant in- volvement in many cellular processes, including stress response, oncogenesis, 1 Project supported by grants from the US Health Service NIH/NCI (No CA109371) and viral infection, transcription, protein turnover, organelle biogenesis, DNA repair, (No CA66077). cellular differentiation, and cell cycle control. Protein ubiquitination and subse- 2 Correspondence to Dr Jin-ming YANG. quent degradation by the proteasome require the participation of both Phn 1-732-235-8075. Fax 1-732-235-8094. ubiquitinating enzymes and deubiquitinating enzymes. Although deubiquitinating E-mail [email protected] enzymes constitute a large family in the ubiquitin system, the study of this class of proteins is still in its infant stage. Recent studies have revealed a variety of Received 2007-04-24 Accepted 2007-07-12 molecular and biological functions of deubiquitinating enzymes and their associa- tion with human diseases. In this review we will discuss the possible roles that doi: 10.1111/j.1745-7254.2007.00687.x deubiquitinating enzymes may play in cancers. Introduction the ubiquitin/aggresome pathway. An important function of this mechanism is the degradation of abnormal proteins gen- The post-translational modification of proteins by the erated under normal and stress conditions.
    [Show full text]
  • Identification of a Specific Inhibitor for DNA Ligase I in Human Cells (Regulation/Replication/Repair/Recombinatlon) SHU-WEI YANG, FREDERICK F
    Proc. Natl. Acad. Sci. USA Vol. 89, pp. 2227-2231, March 1992 Biochemistry Identification of a specific inhibitor for DNA ligase I in human cells (regulation/repLication/repair/recombinatlon) SHU-WEI YANG, FREDERICK F. BECKER, AND JOHN Y.-H. CHAN* Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030 Communicated by Howard A. Nash, November 18, 1991 (receivedfor review October 10, 1991) ABSTRACT A protein inhibitor for human DNA ligase I DNA ligase II contained a 67-kDa polypeptide; only DNA has recently been identified. It was copurified with a fraction ligase II could utilize poly(rA)-p(dT)16 as a substrate. Phos- of the enzymes from HeLa cells through several steps of phocellulose, DEAE-agarose (Bio-Gel), CM-agarose (Bio- chromatography. The inhibitor was first identified by the Gel), hydroxylapatite, and protein standards were purchased absence of ligation activity of the associated enzyme, while it from Bio-Rad; heparin-Sepharose, Mono S HR 5/5 column, retained the ability to form the ligase-[32P]AMP adducts. The Superose 12 column, poly(dA), poly(rA), and (dT)16 were inhibitor was eluted as a single peak at -0.250.30 M NaCl from Pharmacia LKB; DNA-cellulose was from Sigma; re- from a Mono S column. It inhibited the ligation of both striction enzyme Bgl II, phage T4 DNA ligase, and T4 kinase double-stranded and single-stranded breaks by purified DNA were from GIBCO-BRL; [a-32P]ATP (3000 Ci/mmol; 1 Ci = ligase I but not by T4 DNA ligase and DNA ligase II.
    [Show full text]