Downloaded 09/27/21 03:55 PM UTC 1340 WEATHER and FORECASTING VOLUME 33
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Severe Storms in the Midwest
Informational/Education Material 2006-06 Illinois State Water Survey SEVERE STORMS IN THE MIDWEST Stanley A. Changnon Kenneth E. Kunkel SEVERE STORMS IN THE MIDWEST By Stanley A. Changnon and Kenneth E. Kunkel Midwestern Regional Climate Center Illinois State Water Survey Champaign, IL Illinois State Water Survey Report I/EM 2006-06 i This report was printed on recycled and recyclable papers ii TABLE OF CONTENTS Abstract........................................................................................................................................... v Chapter 1. Introduction .................................................................................................................. 1 Chapter 2. Thunderstorms and Lightning ...................................................................................... 7 Introduction ........................................................................................................................ 7 Causes ................................................................................................................................. 8 Temporal and Spatial Distributions .................................................................................. 12 Impacts.............................................................................................................................. 13 Lightning........................................................................................................................... 14 References ....................................................................................................................... -
National Weather Service Reference Guide
National Weather Service Reference Guide Purpose of this Document he National Weather Service (NWS) provides many products and services which can be T used by other governmental agencies, Tribal Nations, the private sector, the public and the global community. The data and services provided by the NWS are designed to fulfill us- ers’ needs and provide valuable information in the areas of weather, hydrology and climate. In addition, the NWS has numerous partnerships with private and other government entities. These partnerships help facilitate the mission of the NWS, which is to protect life and prop- erty and enhance the national economy. This document is intended to serve as a reference guide and information manual of the products and services provided by the NWS on a na- tional basis. Editor’s note: Throughout this document, the term ―county‖ will be used to represent counties, parishes, and boroughs. Similarly, ―county warning area‖ will be used to represent the area of responsibility of all of- fices. The local forecast office at Buffalo, New York, January, 1899. The local National Weather Service Office in Tallahassee, FL, present day. 2 Table of Contents Click on description to go directly to the page. 1. What is the National Weather Service?…………………….………………………. 5 Mission Statement 6 Organizational Structure 7 County Warning Areas 8 Weather Forecast Office Staff 10 River Forecast Center Staff 13 NWS Directive System 14 2. Non-Routine Products and Services (watch/warning/advisory descriptions)..…….. 15 Convective Weather 16 Tropical Weather 17 Winter Weather 18 Hydrology 19 Coastal Flood 20 Marine Weather 21 Non-Precipitation 23 Fire Weather 24 Other 25 Statements 25 Other Non-Routine Products 26 Extreme Weather Wording 27 Verification and Performance Goals 28 Impact-Based Decision Support Services 30 Requesting a Spot Fire Weather Forecast 33 Hazardous Materials Emergency Support 34 Interactive Warning Team 37 HazCollect 38 Damage Surveys 40 Storm Data 44 Information Requests 46 3. -
National Weather Service Reference Guide
National Weather Service Reference Guide Purpose of this Document he National Weather Service (NWS) provides many products and services which can be T used by other governmental agencies, Tribal Nations, the private sector, the public and the global community. The data and services provided by the NWS are designed to fulfill us- ers’ needs and provide valuable information in the areas of weather, hydrology and climate. In addition, the NWS has numerous partnerships with private and other government entities. These partnerships help facilitate the mission of the NWS, which is to protect life and prop- erty and enhance the national economy. This document is intended to serve as a reference guide and information manual of the products and services provided by the NWS on a na- tional basis. Editor’s note: Throughout this document, the term ―county‖ will be used to represent counties, parishes, and boroughs. Similarly, ―county warning area‖ will be used to represent the area of responsibility of all of- fices. The local forecast office at Buffalo, New York, January, 1899. The local National Weather Service Office in Tallahassee, FL, present day. 2 Table of Contents Click on description to go directly to the page. 1. What is the National Weather Service?…………………….………………………. 5 Mission Statement 6 Organizational Structure 7 County Warning Areas 8 Weather Forecast Office Staff 10 River Forecast Center Staff 13 NWS Directive System 14 2. Non-Routine Products and Services (watch/warning/advisory descriptions)..…….. 15 Convective Weather 16 Tropical Weather 17 Winter Weather 18 Hydrology 19 Coastal Flood 20 Marine Weather 21 Non-Precipitation 23 Fire Weather 24 Other 25 Statements 25 Other Non-Routine Products 26 Extreme Weather Wording 27 Verification and Performance Goals 28 Impact-Based Decision Support Services 30 Requesting a Spot Fire Weather Forecast 33 Hazardous Materials Emergency Support 34 Interactive Warning Team 37 HazCollect 38 Damage Surveys 40 Storm Data 44 Information Requests 46 3. -
Program Agenda (Updated 10 October 2011) National Weather
Program Agenda (Updated 10 October 2011) changes or additions from previous update in red National Weather Association 36th Annual Meeting Wynfrey Hotel, Birmingham, Alabama October 15-20, 2011 Theme: The End Game - From Research and Technology to Best Forecast and Response See the main meeting page http://www.nwas.org/meetings/nwa2011/ for information on the meeting hotel, exhibits, sponsorships and registration Authors, please inform the Program Committee at [email protected] for any corrections or changes required in the listing of your presentations or abstracts as soon as possible. This agenda will be updated periodically as changes occur. Instructions for uploading your presentation to the FTP site can be found here. All presenters please read the presentation tips which explain the AV systems, poster board sizes and provide suggestions for good presentations. All activities will be held in the Wynfrey Hotel unless otherwise noted. Please check in at the NWA Information and Registration desk at the Wynfrey Hotel earliest to receive nametags, program and the most current information. Saturday, October 15 10:00am NWA Aviation Workshop at the Southern Museum of Flight. Contact Terry Lankford [email protected] for more information. The workshop is from 10 am until 1 pm. 10:00am NWA WeatherFest at the McWane Science Center. Contact James-Paul Dice [email protected] for more information. The event is from 10 am until 2 pm. 11:00am NWA Ninth Annual Scholarship Golf Outing, Bent Brook Golf Course, sponsored by Baron Services. Contact Betsy Kling [email protected] for more information or to sign-up. -
Mesoscale Convective Systems
OCTOBER 2007 S T E I G E R E T A L . 3303 Total Lightning Signatures of Thunderstorm Intensity over North Texas. Part II: Mesoscale Convective Systems SCOTT M. STEIGER Department of Earth Sciences, State University of New York at Oswego, Oswego, New York RICHARD E. ORVILLE AND LAWRENCE D. CAREY Department of Atmospheric Sciences, Texas A&M University, College Station, Texas (Manuscript received 4 April 2006, in final form 25 January 2007) ABSTRACT Total lightning data from the Lightning Detection and Ranging (LDAR II) research network in addition to cloud-to-ground flash data from the National Lightning Detection Network (NLDN) and data from the Dallas–Fort Worth, Texas, Weather Surveillance Radar-1988 Doppler (WSR-88D) station (KFWS) were examined from individual cells within mesoscale convective systems that crossed the Dallas–Fort Worth region on 13 October 2001, 27 May 2002, and 16 June 2002. LDAR II source density contours were comma shaped, in association with severe wind events within mesoscale convective systems (MCSs) on 13 October 2001 and 27 May 2002. This signature is similar to the radar reflectivity bow echo. The source density comma shape was apparent 15 min prior to a severe wind report and lasted more than 20 min during the 13 October storm. Consistent relationships between severe straight-line winds, radar, and lightning storm cell characteristics (e.g., lightning heights) were not found for cells within MCSs as was the case for severe weather in supercells in Part I of this study. Cell interactions within MCSs are believed to weaken these relationships as reflectivity and lightning from nearby storms contaminate the cells of interest. -
Severe Weather in the United States
Module 18: Severe Thunderstorms in the United States Tuscaloosa, Alabama May 18, 2011 Dan Koopman 2011 What is “Severe Weather”? Any meteorological condition that has potential to cause damage, serious social disruption, or loss of human life. American Meteorological Society: In general, any destructive storm, but usually applied to severe local storms in particular, that is, intense thunderstorms, hailstorms, and tornadoes. Three Stages of Thunderstorm Development Stage 1: Cumulus • A warm parcel of air begins ascending vertically into the atmosphere. • In an unstable environment, the parcel will continue to rise as long as it is warmer than the air around it. • Billowing, puffy Cumulus Congestus Clouds continue to build in towers. Stage 2: Mature • At a certain altitude, the parcel is no longer warmer than its environment. It is unable to rise any further and develops the distinctive “Anvil” shape as seen in this figure. • In cases of particularly strong updrafts, the vertical velocity of the updraft may be sufficient to penetrate this altitude causing an “overshooting top” to develop above the flat top of the anvil. Stage 3: Dissipating • Convective inflow shut off by strong downdrafts, no more cloud droplet formation, downdrafts continue and gradually weaken until light precipitation rains out • Water droplets aloft being to coalesce until they are too heavy to support and begin to fall to the surface, strengthening the downdraft. Basic Ingredients for Thunderstorms • Moisture • Unstable Air • Forcing Mechanism Moisture Thunderstorms development generally requires dewpoints > 50°F Unstable Air Stable is resistant to change. When the air is stable, even if a parcel of air is lifted above its original position (say by a mountain for example), its temperature will always remain cooler than its environment, meaning that it will resist upwards movement. -
The Historic Derecho of June 29, 2012
Service Assessment The Historic Derecho of June 29, 2012 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Weather Service Silver Spring, Maryland Cover Photograph: Visible satellite image at 5 p.m. Eastern Daylight Time (EDT) June 29, 2012, as the derecho moved across Ohio. National Lightning Data Network (NLDN) Cloud to ground (CG) lightning strikes for the 1-hour period, 4-5 p.m. EDT, are plotted in red. Surface observations are plotted in green. Smaller insets show radar reflectivity images of the derecho during the afternoon and evening. ii Service Assessment The Historic Derecho of June 29, 2012 January 2013 National Weather Service Laura K. Furgione Acting Assistant Administrator for Weather Services iii Preface On June 29, 2012, a derecho of historic proportions struck the Ohio Valley and Mid-Atlantic states. The derecho traveled for 700 miles, impacting 10 states and Washington, D.C. The hardest hit states were Ohio, West Virginia, Virginia, and Maryland, as well as Washington, D.C. The winds generated by this system were intense, with several measured gusts exceeding 80 mph. Unfortunately, 13 people were killed by the extreme winds, mainly by falling trees. An estimated 4 million customers lost power for up to a week. The region impacted by the derecho was also in the midst of a heat wave. The heat, coupled with the loss of power, led to a life-threatening situation. Heat claimed 34 lives in areas without power following the derecho. Due to the significance of this event, the National Oceanic and Atmospheric Administration’s National Weather Service formed a Service Assessment Team to evaluate the National Weather Service’s performance before and during the event. -
STORM BASED WARNINGS: a REVIEW of the FIRST YEAR October 1, 2007 Through June 30, 2008 Report from NOAA/NWS, Office of Climate, Water and Weather Services
STORM BASED WARNINGS: A REVIEW OF THE FIRST YEAR October 1, 2007 through June 30, 2008 Report from NOAA/NWS, Office of Climate, Water and Weather Services Executive Summary October 1, 2007 marked a major milestone for the NWS’ Severe Storms Services Program with the operational national implementation of a new Storm-Based Warning (SBW) system. SBWs replaced the existing county-based warning system to alert the public of significant threats due to severe thunderstorms, tornadoes, flash floods and dangerous off-shore conditions. At the heart of the SBW system is the provision of forecaster capability to specifically warn for those areas under the greatest hydrometeorological threat, rather than requiring the warning of entire counties for what are often very small scale events. NWS forecasters indicate these threat areas via the use of computer-drawn “polygons” with specific latitude-longitude coordinates, thereby enabling partner ingest and display using a variety of visual media, including television and the Internet. An active severe weather period began almost immediately after implementation of SBWs and continued through the first severe weather season. By all standard metrics, SBWs have been a success with levels of performance exceeding expectations. Still, there are significant issues that require continued evolution of software and policy to address. This report is focused on the period of October 1, 2007 through June 30, 2008 and treats warning performance with respect to severe thunderstorms and tornadoes only. Also, this report was written in mid-September 2008, so the official verification is only available through June 2008. However, this period encompasses a historically active severe weather season, so this report provides a statistically sound evaluation of SBW performance. -
Tornado Warnings: Delivery, Economics, & Public Perception
Tornado Warnings: Delivery, Economics, & Public Perception Bibliography Katie Rowley, Librarian, NOAA Central Library Trevor Riley, Head of Public Services, NOAA Central Library Christine Reed, Librarian, Oklahoma University/NOAA NCRL subject guide 2018-15 10.7289/V5/SG-NCRL-18-15 June 2018 U.S. Department of Commerce National Oceanic and Atmospheric Administration Office of Oceanic and Atmospheric Research NOAA Central Library – Silver Spring, Maryland Table of Contents Background & Scope ................................................................................................................................. 3 Sources Reviewed ..................................................................................................................................... 3 Section I: Economic Impact, Risk & Mitigation ......................................................................................... 4 Section II: Public Perception & Behavior ................................................................................................ 11 Section III: Tornado Identification & Technology ................................................................................... 30 Section IV: Warning Process, Development, & Delivery ......................................................................... 36 2 Background & Scope The Weather Research and Forecasting Innovation Act of 2017 requires the National Oceanic and Atmospheric Administration (NOAA) to prioritize weather research to improve weather data, modeling, computing, forecasts, -
Thunderstorm Anatomy and Dynamics
THUNDERSTORM ANATOMY AND DYNAMICS An Overview Prepared by LCDR Bill Nisley MR 3421 • Cloud Physics Naval Postgraduate School • Monterey, California [email protected] Photo credits: Thunderstorm Cell and Mammatus Clouds by: Michael Bath; Tornado by Daphne Zaras / NSSL; Supercell Thunderstorm by: AMOS; Wall Cloud by: Greg Michels 1. Introduction The purpose of this paper is to present a broad overview of the various cloud structures displayed during the life cycle of a thunderstorm and the atmospheric dynamics associated with each. Knowledge of atmospheric dynamics provides for a keener understanding of the physical processes related to the “why and how” certain cloud features form. Accordingly, observation of cloud features presents visual queuing of changes in the atmosphere. 2. Thunderstorm Formation and Stages of Development Thunderstorm development is dependent on three basic components: moisture, instability, and some form of lifting mechanism. 2.1 Moisture – As air near the surface is lifted higher in the atmosphere and cooled, available water vapor condenses into small water droplets which form clouds. As condensation of water vapor occurs, latent heat is released making the rising air warmer and less dense than its surroundings (figure 1). The added heat allows the air (parcel) to continue to rise and form an updraft within the developing cloud structure. 2.1.1 In general1, low level moisture increases instability simply by making more latent heat available to the lower atmosphere. Increasing mid level moisture can decrease instability in the atmosphere because moist air is less dense than dry air and therefor is unable to evaporate • Figure 1 – Positive buoyancy / instability as a result of precipitation and cloud droplets as condensation and release of latent heat. -
Satellite INVESTIGATION INTO the JUNE 10, 1984 THUNDERSTORM VINCENNES, INDIANA
National Weather Digest Satellite INVESTIGATION INTO THE JUNE 10, 1984 THUNDERSTORM VINCENNES, INDIANA by Mark S. Binkley (1) Department of Geography Indiana State University Terre Haute, Indiana 47809 ABSTRACT SYNOPTIC SETTING On June 10, 1984, a thunderstorm of unusual severity produced heavy precipitation in a small area As is evident in the 160 I GMT image, Vincennes centered on Vincennes, Indiana. Sequential analysis (in southwestern Indiana) has not e xperienced any of the development of the storm using satellite type of significant weathe r. However, several imagery and radar data indicates its origin as part of variables might suggest trouble in the near future. a weak cold front. The active storm cell resulted from the merging of two active cells. Full As is common in summer, the Azores-Bermuda explanation of the event draws upon examination of High has increased in strength and has begun to block prevailing synoptic conditions following the approaching frontal systems. This resulted in a weakening of a blocking High. prolonged period of dry weather in much of the eastern United States during the summer of I 98 If. Terre Haute, IN (55 miles north of Vincennes) went 21f days without precipitation (May 28 through June INTRODUCTION 21, including June 10). The State of Indiana on this date was between At midnight, Sunday, June 10, 1981f, the United the blocking Be rmuda High and the cold front States was bisected by a long, nar row cold front. advancing from the plains. Pressures had fallen This front extended from a Low in northern Wisconsin slightly during this period as the 1020.0 millibar line and stretched southwest to the Texas Panhandle. -
Weather Products
Forecast Products The Zone Forecast Product highlights the expected sky condition, type and probability of precipitation, visibility restrictions, and temperature Zone affecting individual counties for each 12-hour period out through 7 days. Forecast ZFP Wind direction and speed are also included in the forecast out to 60 hours. WFO Paducah issues the zone forecast by 4 a.m. and 3:30 p.m. under the Product header ZFPPAH. This forecast is updated as needed to meet changing weather conditions. Refer to Appendix A for a guide to ZFP terminology. WFO Paducah provides detailed digital forecast data via the Area/Point Forecast Matrices. These products display forecast weather parameters in 3, 6, and 12-hour intervals through 7 days. Incorporated into a matrix format, this product creates a highly detailed forecast, allowing for an at-a- Area/Point AFM glance view of a large number of forecast elements. The AFM contains Forecast forecasts for each county within the WFO Paducah forecast area, while PFM the PFM shows forecasts for specific cities. WFO Paducah issues the Matrices Area/Point Forecast Matrices by 4 a.m. and 3:30 p.m. under the respective headers of AFMPAH and PFMPAH. These products are updated every 3 hours and as needed to meet changing weather conditions. Refer to Appendix B for a detailed guide to interpreting the AFM and PFM. WFO Paducah issues the Area Forecast Discussion twice daily by 4 a.m. and 3:30 p.m. under the header AFDPAH. This product provides scientific Area insight into the thought process of the forecast team at Paducah.