Characterization of a Novel Pharmacological TRPC3-Activator

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of a Novel Pharmacological TRPC3-Activator Diplomarbeit Zur Erlangung des akademischen Grades Magister der Pharmazie an der Naturwissenschaftlichen Fakultät der Karl-Franzens-Universität Graz Characterization of a Novel Pharmacological TRPC3-Activator Eingereicht von Mohamad-Ali Baradaran Graz, Jänner 2016 Der experimentelle Teil der vorliegenden Arbeit wurde im Zeitraum von September 2014 bis Februar 2015 am Institut für Biophysik der Medizinischen Universität Graz durchgeführt. Ich möchte mich bei Prof. Dr. Klaus Groschner für die Themenstellung und die freundliche Betreuung, sowie für die Korrektur meiner Arbeit recht herzlich bedanken. Für die Einführung in die praktische Arbeitstechnik und als Ansprechpartner für Probleme während der Durchführung der Arbeit gebührt mein Dank Herrn Dr. Michael Poteser. Außerdem bedanke ich mich bei Frau Dr. Michaela Lichtenegger für die freundliche Hilfe im Laboralltag. Des Weiteren danke ich allen Mitarbeitern des Instituts für das angenehme Arbeitsklima. Zu guter Letzt danke ich meiner Familie für die jahrelange Unterstützung. 2 Table of Content 1) Introduction 4 1.1 TRP Channels 4 1.2 TRPC Channels 7 1.3 TRPC3 9 1.4 TRPC3-Activation 11 1.4.1 Activation-Mechanisms 11 1.4.2 Carbachol 16 1.4.3 GSK1702934A 16 1.5 Physiological / Pathophysiological Roles of TRPC3 17 1.5.1 Cardiovascular System 17 1.5.2 Nervous System 21 1.6 Pore structure and gating processes in TRPCs – the TRPC3G652A mutation 22 2) Aim 23 3) Material and Methods 25 3.1 Patch-Clamp Technique 25 3.2 Cell Culture 31 3.2.1 HEK-293 Cells 31 3.2.2 Cell Culture Performance 32 3.3 Solutions 33 3.4 Equipment and Analysis Software 37 4) Results 38 4.1 TRPC3 - Wildtype 38 4.1.1 Experiments in physiological extracellular Solution 38 4.1.2 Experiments with Ca2+ as the only extracellular charge carrier 42 4.2 TRPC3 - G652A 45 4.2.1 Experiments in physiological extracellular Solution 45 4.2.2 Experiments with Ca2+ as the only extracellular charge carrier 49 5) Discussion 52 5.1 Decreased lipid-sensitivity of TRPC3 by the G652A mutation 52 5.2 Pharmacological plasticity of the TRPC3 channel pore 53 5.3 Pharmacotherapeutic relevance of GSK1702934A 57 6) Abstract 59 7) Abbreviations 61 8) References 62 3 Introduction 1) Introduction 1.1 TRP Channels “Transient receptor potential” ( TRP )-proteins form a superfamily of non-selective cation channels which are mostly permeable for Ca2+ and monovalent cations. TRP channels seem to play important roles in many divergent physiological and pathophysiological processes, for example in the cardiovascular system, or in the nervous system. These Roles are not well understood yet, and because of that pharmacological strategies based on TRP channels as targets have so far not been developed. Therefore these channels are the subject of intensive scientific research. “The founding member of this superfamily was identified as a Drosophila gene product required for visual transduction, which in the fruit fly is a phospholipase C- dependent process” [ 1 ]. “The name transient receptor potential is based on the transient rather than sustained response to light of Drosophila flies carrying a mutant in the TRP locus” [2]. This TRP-mutant has a defect in light-induced Ca2+ influx [ 3 ]. Based on protein homology the TRP-Superfamily is subdivided into seven subfamilies: 1) TRPC “Classical” ( TRPC1-TRPC7 ); they show greatest similarity to Drosophila TRP. 2) TRPV “Vanilloid” ( TRPV1-TRPV6 ) 3) TRPM “Melastatin” ( TRPM1-TRPM8 ) 4) TRPA “Ankyrin” ( TRPA1 ) 5) TRPN „non mechanoreceptor potential C“ ( not expressed in humans ) 6) TRPP “Polycystin” ( TRPP2, TRPP3, TRPP5 ) 7) TRPML “Mucolipin” ( TRPML1-TRPML3 ) 4 Introduction Figure 1 : Transmembrane topology and phylogenetic tree of mammalian TRP channels “(A) Transmembrane topology (left) and the quartenary structure of TRP channels (right). The TRP protein has six putative transmembrane domains, a pore region between the fifth and sixth transmembrane domains and a TRP domain in the C-terminal region. The TRP protein assembles into homo-tetramers or hetero-tetramers to form channels. (B) Phylogenetic tree of mammalian TRP channels based on their homology.” [ 4 ]. 5 Introduction Figure 2 : Domain Structure of the TRP Superfamily [ 5 ] 6 Introduction 1.2 TRPC Channels The subfamily of the TRPC channels contains seven different non-selective cation channel isoforms ( TRPC1-TRPC7 ). The name “transient receptor potential classical” ( or “canonical” ) is because of the fact that within the superfamily of TRP-Channels, this subfamily shows the highest sequence similarity to Drosophila TRP-channel proteins. TRPC-Channels are non-selective cation channels which show permeability to Ca2+ and Na+-Ions. However, the permeability-ratio differs from channel to channel [ 6 ]. Due to structural and functional similarities these channels can be further subdivided into four groups: -TRPC1 -TRPC2 -TRPC3/6/7 -TRPC4/5 TRPC2, as a pseudogene is not expressed in humans [ 7 ]. 7 Introduction Figure 3: Expression and functions of TRPCs [ 8 ] 8 Introduction 1.3 TRPC3 TRPC3 Proteins form non-selective cation channels with predominant permeability for Ca2+ and Na+. TRPC3 Channels are expressed ubiquitously in both excitable and non-excitable cells, but their expression is predominant in specific regions of the brain and heart [ 9 ]. The understanding and picture of architecture of TRPC3 channels is still incomplete. The human TRPC3 protein consists of 848 amino acids with intracellular N- and C- termini [10]. However, different splicing variations of the TRPC3-gene have been identified. TRPC3 is supposed to be an integral membrane protein with seven membrane-spanning hydrophobic regions. Six of these hydrophobic domains form the transmembrane core domain ( TM1-TM6 ) [11]. The first hydrophobic region, is an intracellular, membrane-associated segment. The region between TM5 and TM6 is supposed to be the pore region of the channel. TRPC3 most likely forms tetrameric channel complexes. Figure 4: Topology diagram of single subunit of Pore region TRPC3 The N-terminus shows four ankyrin domains. These are followed by a linker and a coiled-coil domain. The C-terminus contains a coiled-coil domain, with the CIRB-Region ( CaM-IP3R-binding-site ) and the TRP-box. [12] 9 Introduction Figure 5: Cryo-reconstruction of TRPC3 [13] Figure 6: Molecular Structure of TRPC3: Side-view: Structural domains in TRPC3. One subunit is colored. The foremost TM1-TM4 module was removed for clarity. Top-view: Four subunits (chain A–D) forming the complete TRPC3 tetramer. [14] 10 Introduction 1.4 TRPC3-Activation 1.4.1 Activation-Mechanisms Physiologically, TRPC3 channels, which also show a significant basal activity [6], can apparently be activated through different ways. There is a common agreement that the channel is activated in response to receptor stimulation ( non-store-operated Ca2+-Entry , non-SOCE ) or through store depletion of intracellular Ca2+-stores ( store- operated Ca2+-Entry, SOCE ) [ 15 ]. Receptor stimulated Activation of TRPC3 Figure 7: Receptor stimulated Regulation of TRPC3-Acitivity. [16] 11 Introduction Stimulation of Gq-protein coupled receptors ( such as the mGluR1 receptor, the muscarinic acetylcholine receptors M1, M3, M5 , or the AT1 receptor for Angiotensin II ), as well as receptor tyrosine kinase membrane receptors ( such as the TrkB receptor ) leads to an activation of Phospholipase C ( PI-PLC ) which catalyzes the hydrolysis of phosphatidylinositol 4,5-bis-phosphate (PIP2) to generate inositol- 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). Through interacting with the IP3- Receptor in the endoplasmatic reticulum ( ER ) membrane, IP3 causes a release of Ca2+ from the ER [ 15 ]. Diacylglycerol, a lipid mediator, accumulates in the plasmamembrane in the form of discrete droplets. These droplets localize within microdomains of the site of its origin [ 17 ]. The increase of the DAG concentration in the membrane is suggested to cause a “membrane curvature packing stress” which makes a physical stretch likely leading to channel activation [ 15 ]. PIP2 is needed for the activation of TRPC3 through DAG. The activation of TRPC3 leads to a Na+ and Ca2+ Influx into the cell. All in all, the activation of the PI-PLC Pathway results in a depletion of the intracellular Ca2+ stores and also in a Na+ and Ca2+ Influx from outside the Cell ending in an increase of the cytosolic Na+ and Ca2+ concentrations. This has various effects on cellular functions. For Example, it is supposed that the Na+ entry causes the depolarization necessary to activate voltage-operated (voltage- gated ) Ca2+ channels (VOC). It is also proposed that this Na+ entry causes a Ca2+ Uptake into the cell through the Na+/Ca2+ Exchanger ( NCX ) [ 16 ]. DAG also activates the Protein kinase C, which inhibits the TRPC3 channel directly through phosphorylation or through the Protein kinase G. How is this paradox effect of DAG explicable? It is possible that a compartmentalization of this signaling route exists, which could explain this functional property of DAG. A “lipid annulus” exists around many ion channels and transporters, such as the nicotinic acetylcholine receptor, and is essential for their proper function [ 18 ]. If such a lipid annulus exists around the TRPC3 Channel, it could be possible that DAG accumulation within this compartment would just activate the channel without reaching the protein kinase C, therefore it would not come to a PKC activation. With continuing accumulation of DAG, and after reaching a certain threshold it would be possible for DAG to
Recommended publications
  • TRP Channel Transient Receptor Potential Channels
    TRP Channel Transient receptor potential channels TRP Channel (Transient receptor potential channel) is a group of ion channels located mostly on the plasma membrane of numerous human and animal cell types. There are about 28 TRP channels that share some structural similarity to each other. These are grouped into two broad groups: Group 1 includes TRPC ("C" for canonical), TRPV ("V" for vanilloid), TRPM ("M" for melastatin), TRPN, and TRPA. In group 2, there are TRPP ("P" for polycystic) and TRPML ("ML" for mucolipin). Many of these channels mediate a variety of sensations like the sensations of pain, hotness, warmth or coldness, different kinds of tastes, pressure, and vision. TRP channels are relatively non-selectively permeable to cations, including sodium, calcium and magnesium. TRP channels are initially discovered in trp-mutant strain of the fruit fly Drosophila. Later, TRP channels are found in vertebrates where they are ubiquitously expressed in many cell types and tissues. TRP channels are important for human health as mutations in at least four TRP channels underlie disease. www.MedChemExpress.com 1 TRP Channel Inhibitors, Antagonists, Agonists, Activators & Modulators (-)-Menthol (E)-Cardamonin Cat. No.: HY-75161 ((E)-Cardamomin; (E)-Alpinetin chalcone) Cat. No.: HY-N1378 (-)-Menthol is a key component of peppermint oil (E)-Cardamonin ((E)-Cardamomin) is a novel that binds and activates transient receptor antagonist of hTRPA1 cation channel with an IC50 potential melastatin 8 (TRPM8), a of 454 nM. Ca2+-permeable nonselective cation channel, to 2+ increase [Ca ]i. Antitumor activity. Purity: >98.0% Purity: 99.81% Clinical Data: Launched Clinical Data: No Development Reported Size: 10 mM × 1 mL, 500 mg, 1 g Size: 10 mM × 1 mL, 5 mg, 10 mg, 25 mg, 50 mg, 100 mg (Z)-Capsaicin 1,4-Cineole (Zucapsaicin; Civamide; cis-Capsaicin) Cat.
    [Show full text]
  • FEPS 2019 – BOLOGNA (ITALY) Abstracts of the Joint Meeting
    www.actaphysiol.org September 2019 • Volume 227 • Supplement 718 OFFICIAL JOURNAL OF THE FEDERATION OF EUROPEAN PHYSIOLOGICAL SOCIETIES FEPS 2019 – BOLOGNA (ITALY) Joint Meeting of the Federation of European Physiological Societies (FEPS) and the Italian Physiological Society (SIF) Bologna (Italy), September 10th – 13th 2019 Abstracts of the Joint Meeting A Joint International Meeting celebrating the 70th Anniversary of the Italian Physiological Society PUBLICATION HISTORY Acta Physiologica 2006– Acta Physiologica Scandinavica 1940–2005 Skandinavisches Archiv für Physiologie 1889–1939 AAPHA_v227_s718_issueinfo.inddPHA_v227_s718_issueinfo.indd 1 88/28/2019/28/2019 9:07:319:07:31 AAMM Chief Editor INFORMATION FOR SUBSCRIBERS Pontus B. Persson, Berlin Acta Physiologica is published in 12 issues per year. Subscription prices for 2019 € Editors are: Institutional: 1059 (Europe), $1582 (The Americas), $1849 (Rest of World). Cardiovascular Physiology – Frantisek Kolar, Prague; Holger Nilsson, Gothenburg Prices are exclusive of tax. Australian GST, Canadian GST/HST and European and William E. Louch, Oslo VAT will be applied at the appropriate rates. For more information on current tax Cell Biology – Sari Lauri, Helsinki rates, please go to www.wileyonlinelibrary.com/tax-vat. The price includes online Chronobiology and Endocrinology – Charna Dibner, Geneva access to the current and all online back fi les to January 1st 2015, where available. Exercise Physiology – Jan Henriksson, Stockholm For other pricing options, including access information
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]
  • Polyhexamethylene Guanidine Phosphate Damages Tight Junctions and the F-Actin Architecture by Activating Calpain-1 Via the P2RX7/Ca2+ Signaling Pathway
    cells Article Polyhexamethylene Guanidine Phosphate Damages Tight Junctions and the F-Actin Architecture by Activating Calpain-1 via the P2RX7/Ca2+ Signaling Pathway Sun Woo Jin y, Gi Ho Lee y, Hoa Thi Pham, Jae Ho Choi and Hye Gwang Jeong * College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; [email protected] (S.W.J.); [email protected] (G.H.L.); [email protected] (H.T.P.); [email protected] (J.H.C.) * Correspondence: [email protected]; Tel.: +82-42-821-5936 These authors contributed equally to this work. y Received: 14 November 2019; Accepted: 22 December 2019; Published: 24 December 2019 Abstract: Polyhexamethylene guanidine phosphate (PHMG-p), a member of the polymeric guanidine family, has strong antimicrobial activity and may increase the risk of inflammation-associated pulmonary fibrosis. However, the effect of PHMG-p on the barrier function of the bronchial epithelium is unknown. Epithelial barrier functioning is maintained by tight junctions (TJs); damage to these TJs is the major cause of epithelial barrier breakdown during lung inflammation. The present study showed that, in BEAS-2B human bronchial epithelial cells, exposure to PHMG-p reduced the number of TJs and the E-cadherin level and impaired the integrity of the F-actin architecture. Furthermore, exposure to PHMG-p stimulated the calcium-dependent protease calpain-1, which breaks down TJs. However, treatment with the calpain-1 inhibitor, ALLN, reversed the PHMG-p-mediated impairment of TJs and the F-actin architecture. Furthermore, exposure to PHMG-p increased the intracellular Ca2+ level via P2X purinoreceptor 7 (P2RX7) and inhibition of P2RX7 abolished the PHMG-p-induced calpain-1 activity and protein degradation and increased the intracellular Ca2+ level.
    [Show full text]
  • TRP Channel Transient Receptor Potential Channels
    TRP Channel Transient receptor potential channels TRP Channel (Transient receptor potential channel) is a group of ion channels located mostly on the plasma membrane of numerous human and animal cell types. There are about 28 TRP channels that share some structural similarity to each other. These are grouped into two broad groups: Group 1 includes TRPC ("C" for canonical), TRPV ("V" for vanilloid), TRPM ("M" for melastatin), TRPN, and TRPA. In group 2, there are TRPP ("P" for polycystic) and TRPML ("ML" for mucolipin). Many of these channels mediate a variety of sensations like the sensations of pain, hotness, warmth or coldness, different kinds of tastes, pressure, and vision. TRP channels are relatively non-selectively permeable to cations, including sodium, calcium and magnesium. TRP channels are initially discovered in trp-mutant strain of the fruit fly Drosophila. Later, TRP channels are found in vertebrates where they are ubiquitously expressed in many cell types and tissues. TRP channels are important for human health as mutations in at least four TRP channels underlie disease. www.MedChemExpress.com 1 TRP Channel Antagonists, Inhibitors, Agonists, Activators & Modulators (-)-Menthol (E)-Cardamonin Cat. No.: HY-75161 ((E)-Cardamomin; (E)-Alpinetin chalcone) Cat. No.: HY-N1378 (-)-Menthol is a key component of peppermint oil (E)-Cardamonin ((E)-Cardamomin) is a novel that binds and activates transient receptor antagonist of hTRPA1 cation channel with an IC50 potential melastatin 8 (TRPM8), a of 454 nM. Ca2+-permeable nonselective cation channel, to 2+ increase [Ca ]i. Antitumor activity. Purity: ≥98.0% Purity: 99.81% Clinical Data: Launched Clinical Data: No Development Reported Size: 10 mM × 1 mL, 500 mg, 1 g Size: 10 mM × 1 mL, 5 mg, 10 mg, 25 mg, 50 mg, 100 mg (Z)-Capsaicin 1,4-Cineole (Zucapsaicin; Civamide; cis-Capsaicin) Cat.
    [Show full text]
  • Novel Approach to Chronic Cough
    Moksliniai darbai ir apžvalgos Novel approach to chronic cough NAUJAS POŽIŪRIS Į LĖTINĮ KOSULĮ LAIMA KONDRATAVIČIENĖ, KRISTINA BIEKŠIENĖ, SKAIDRIUS MILIAUSKAS Department of Pulmonology, Medical Academy, Lithuanian University of Health Sciences Summary. Cough is the most common symptom for which people seek medical advice. A multitude of reasons can cause it. In clinical practice, a new term “Cough hypersensitivity syndrome“ was proposed, which defines unaccountable reasons for cough and different groups of patients with chronic cough. Adenosine triphosphate (ATP) as a driver of chronic cough is the most important target in nowadays clinical trials. Extracellular ATP activates P2X purinoreceptor 3 (P2X3) receptor channels, which are expressed in sensory neurons. New treatment methods that block P2X3 receptors are being developed. Keywords: chronic cough, cough hypersensitivity syndrome, adenosine triphosphate, novel treatment options. Santrauka. Lėtinis kosulys yra dažniausias skundas, dėl kurio pacientai kreipiasi į gydytojus. Kosulį sukelia įvairios priežastys ir sutrikimai. Klinikinėje praktikoje vartojamas naujas terminas „Kosulio hiperjautrumo sindromas“, kuris apima neaiškos kilmės kosulio priežastis bei skirtingas pacientų, besiskundžiančių lėtiniu kosuliu, grupes. Adenozino trifosfatas (ATP), kaip vienas pagrindinių kosulį sukeliančių veiksnių, šiuo metu yra dažniausiai klinikiniuose tyrimuose tiriama cheminė medžiaga. ATP aktyvuoja P2X purino receptoriaus 3 (P2X3) jonų kanalus, kurie yra išreikšti jutiminiuose neuronuose. Nauji
    [Show full text]
  • Sugar Causes Obesity and Metabolic Syndrome in Mice Independently of Sweet Taste
    Am J Physiol Endocrinol Metab 319: E276–E290, 2020. First published June 23, 2020; doi:10.1152/ajpendo.00529.2019. RESEARCH ARTICLE Sugar causes obesity and metabolic syndrome in mice independently of sweet taste Ana Andres-Hernando,1 Masanari Kuwabara,1 X David J. Orlicky,2 Aurelie Vandenbeuch,3,4 Christina Cicerchi,1 Sue C. Kinnamon,3,4 Thomas E. Finger,4,5 X Richard J. Johnson,1 and X Miguel A. Lanaspa1 1Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, University of Colorado, Aurora, Colorado; 2Department of Pathology, University of Colorado School of Medicine, University of Colorado, Aurora, Colorado; 3Department of Otolaryngology, University of Colorado School of Medicine, University of Colorado, Aurora, Colorado; 4Rocky Mountain Taste & Smell Center, University of Colorado School of Medicine, University of Colorado, Aurora, Colorado; and 5Department of Cell and Developmental Biology, University of Colorado School of Medicine, University of Colorado, Aurora, Colorado Submitted 5 December 2019; accepted in final form 16 June 2020 Andres-Hernando A, Kuwabara M, Orlicky DJ, Vandenbeuch caloric sweeteners has skyrocketed over the last several cen- A, Cicerchi C, Kinnamon SC, Finger TE, Johnson RJ, Lanaspa turies, from an intake (based on sales) of ~4 pounds per capita MA. Sugar causes obesity and metabolic syndrome in mice indepen- per year in 1700 to over 150 pounds per capita per year in 2000 dently of sweet taste. Am J Physiol Endocrinol Metab 319: E276– E290, 2020. First published June 23, 2020; doi:10.1152/ajpendo. (12). Today nearly 70% of processed foods and beverages in 00529.2019.—Intake of sugars, especially the fructose component, is US supermarkets contain these sweeteners, including many strongly associated with the development of obesity and metabolic foods that one might initially not consider to contain such syndrome, but the relative role of taste versus metabolism in driving additives (30).
    [Show full text]
  • TRPC3 Contributes to Regulation of Cardiac Contractility and Arrhythmogenesis by Dynamic Interaction with NCX1
    Cardiovascular Research (2015) 106, 163–173 doi:10.1093/cvr/cvv022 TRPC3 contributes to regulation of cardiac contractility and arrhythmogenesis by dynamic interaction with NCX1 Bernhard Doleschal1, Uwe Primessnig2,3, Gerald Wo¨ lkart1, Stefan Wolf1, Michaela Schernthaner4, Michaela Lichtenegger1, Toma N. Glasnov5,6, C. Oliver Kappe5, Bernd Mayer1, Gudrun Antoons2,3, Frank Heinzel2,3, Michael Poteser4, and Klaus Groschner3,4* 1Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria; 2Department of Cardiology, Medical University of Graz, Graz, Austria; 3Ludwig Boltzmann Institute of Translational Heart Failure Research, Graz, Austria; 4Institute of Biophysics, Medical University of Graz, Harrachgasse 21, Graz 8010, Austria; 5Institute of Chemistry, University of Graz, Graz, Austria; and 6Christian Doppler Laboratory for Continuous Flow Chemistry, Institute of Chemistry, University of Graz, Graz, Austria Received 17 October 2014; revised 17 December 2014; accepted 19 January 2015; online publish-ahead-of-print 28 January 2015 Time for primary review: 31 days + Aim TRPC3 is a non-selective cation channel, which forms a Ca2 entry pathway involved in cardiac remodelling. Our aim was to analyse acute electrophysiological and contractile consequences of TRPC3 activation in the heart. ..................................................................................................................................................................................... Methods We used a murine model of cardiac TRPC3 overexpression and
    [Show full text]
  • Ion Channels and Transporters in Lymphocyte Function and Immunity
    REVIEWS Ion channels and transporters in lymphocyte function and immunity Stefan Feske1, Edward Y. Skolnik2 and Murali Prakriya3 Abstract | Lymphocyte function is regulated by a network of ion channels and transporters in the plasma membrane of B and T cells. These proteins modulate the cytoplasmic concentrations of diverse cations, such as calcium, magnesium and zinc ions, which function as second messengers to regulate crucial lymphocyte effector functions, including cytokine production, differentiation and cytotoxicity. The repertoire of ion-conducting proteins includes calcium release-activated calcium (CRAC) channels, P2X receptors, transient receptor potential (TRP) channels, potassium channels, chloride channels and magnesium and zinc transporters. This Review discusses the roles of ion conduction pathways in lymphocyte function and immunity. Ion channels and ion transporters function as gateways Store-operated calcium channels Ion channels 2+ Pore-forming transmembrane for charged ions that cannot freely diffuse across lipid Ca is a well-established second messenger in lympho­ proteins that enable the flow of membrane barriers. They regulate the intracellular cytes that regulates proliferation, gene expression, motil- ions down an electrochemical concentration of various ions, such as calcium (Ca2+), ity and other functions. Similarly to in other mamm­alian gradient. magnesium (Mg2+) and zinc (Zn2+). The movement of cell types, the intracellular Ca2+ concentration in unstim- Ion transporters these cations across the plasma membrane depends on ulated B and T cells is maintained at ~50–100 nM, which 4 2+ Pore-forming transmembrane electrical gradients that are maintained in turn by potas- is ~10 -fold lower than the Ca concentration in the proteins that carry ions sium (K+), sodium (Na+) and chloride (Cl−) channels.
    [Show full text]
  • Potential Drug Candidates to Treat TRPC6 Channel Deficiencies in The
    cells Review Potential Drug Candidates to Treat TRPC6 Channel Deficiencies in the Pathophysiology of Alzheimer’s Disease and Brain Ischemia Veronika Prikhodko 1,2,3, Daria Chernyuk 1 , Yurii Sysoev 1,2,3,4, Nikita Zernov 1, Sergey Okovityi 2,3 and Elena Popugaeva 1,* 1 Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; [email protected] (V.P.); [email protected] (D.C.); [email protected] (Y.S.); [email protected] (N.Z.) 2 Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical Pharmaceutical University, 197022 St. Petersburg, Russia; [email protected] 3 N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 St. Petersburg, Russia 4 Institute of Translational Biomedicine, Saint Petersburg State University, 199034 St. Petersburg, Russia * Correspondence: [email protected] Received: 31 August 2020; Accepted: 20 October 2020; Published: 24 October 2020 Abstract: Alzheimer’s disease and cerebral ischemia are among the many causative neurodegenerative diseases that lead to disabilities in the middle-aged and elderly population. There are no effective disease-preventing therapies for these pathologies. Recent in vitro and in vivo studies have revealed the TRPC6 channel to be a promising molecular target for the development of neuroprotective agents. TRPC6 channel is a non-selective cation plasma membrane channel that is permeable to Ca2+. Its Ca2+-dependent pharmacological effect is associated with the stabilization and protection of excitatory synapses. Downregulation as well as upregulation of TRPC6 channel functions have been observed in Alzheimer’s disease and brain ischemia models.
    [Show full text]
  • Direct Activation of TRPC3 Channels by the Antimalarial Agent Artemisinin
    cells Article Direct Activation of TRPC3 Channels by the Antimalarial Agent Artemisinin Nicole Urban and Michael Schaefer * Leipzig University, Medical Faculty, Rudolf Boehm Institute of Pharmacology and Toxicology, Härtelstraße 16-18, 04107 Leipzig, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-341-97-24600 Received: 29 November 2019; Accepted: 9 January 2020; Published: 14 January 2020 Abstract: (1) Background: Members of the TRPC3/TRPC6/TRPC7 subfamily of canonical transient receptor potential (TRP) channels share an amino acid similarity of more than 80% and can form heteromeric channel complexes. They are directly gated by diacylglycerols in a protein kinase C-independent manner. To assess TRPC3 channel functions without concomitant protein kinase C activation, direct activators are highly desirable. (2) Methods: By screening 2000 bioactive compounds in a Ca2+ influx assay, we identified artemisinin as a TRPC3 activator. Validation and characterization of the hit was performed by applying fluorometric Ca2+ influx assays and electrophysiological patch-clamp experiments in heterologously or endogenously TRPC3-expressing cells. (3) Results: Artemisinin elicited Ca2+ entry through TRPC3 or heteromeric TRPC3:TRPC6 channels, but did not or only weakly activated TRPC6 and TRPC7. Electrophysiological recordings confirmed the reversible and repeatable TRPC3 activation by artemisinin that was inhibited by established TRPC3 channel blockers. Rectification properties and reversal potentials were similar to those observed after stimulation with a diacylglycerol mimic, indicating that artemisinin induces a similar active state as the physiological activator. In rat pheochromocytoma PC12 cells that endogenously express TRPC3, artemisinin induced a Ca2+ influx and TRPC3-like currents. (4) Conclusions: Our findings identify artemisinin as a new biologically active entity to activate recombinant or native TRPC3-bearing channel complexes in a membrane-confined fashion.
    [Show full text]
  • Inhibition of P2X4R Attenuates White Matter Injury in Mice After
    Fu et al. Journal of Neuroinflammation (2021) 18:184 https://doi.org/10.1186/s12974-021-02239-3 RESEARCH Open Access Inhibition of P2X4R attenuates white matter injury in mice after intracerebral hemorrhage by regulating microglial phenotypes Xiongjie Fu†, Guoyang Zhou†, Xinyan Wu†, Chaoran Xu, Hang Zhou, Jianfeng Zhuang, Yucong Peng, Yang Cao, Hanhai Zeng, Yin Li, Jianru Li, Liansheng Gao, Gao Chen* , Lin Wang* and Feng Yan* Abstract Background: White matter injury (WMI) is a major neuropathological event associated with intracerebral hemorrhage (ICH). P2X purinoreceptor 4 (P2X4R) is a member of the P2X purine receptor family, which plays a crucial role in regulating WMI and neuroinflammation in central nervous system (CNS) diseases. Our study investigated the role of P2X4R in the WMI and the inflammatory response in mice, as well as the possible mechanism of action after ICH. Methods: ICH was induced in mice via collagenase injection. Mice were treated with 5-BDBD and ANA-12 to inhibit P2X4R and tropomyosin-related kinase receptor B (TrkB), respectively. Immunostaining and quantitative polymerase chain reaction (qPCR) were performed to detect microglial phenotypes after the inhibition of P2X4R. Western blots (WB) and immunostaining were used to examine WMI and the underlying molecular mechanisms. Cylinder, corner turn, wire hanging, and forelimb placement tests were conducted to evaluate neurobehavioral function. Results: After ICH, the protein levels of P2X4R were upregulated, especially on day 7 after ICH, and were mainly located in the microglia. The inhibition of P2X4R via 5-BDBD promoted neurofunctional recovery after ICH as well as the transformation of the pro-inflammatory microglia induced by ICH into an anti-inflammatory phenotype, and attenuated ICH-induced WMI.
    [Show full text]