Characterization of a Novel Pharmacological TRPC3-Activator
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TRP Channel Transient Receptor Potential Channels
TRP Channel Transient receptor potential channels TRP Channel (Transient receptor potential channel) is a group of ion channels located mostly on the plasma membrane of numerous human and animal cell types. There are about 28 TRP channels that share some structural similarity to each other. These are grouped into two broad groups: Group 1 includes TRPC ("C" for canonical), TRPV ("V" for vanilloid), TRPM ("M" for melastatin), TRPN, and TRPA. In group 2, there are TRPP ("P" for polycystic) and TRPML ("ML" for mucolipin). Many of these channels mediate a variety of sensations like the sensations of pain, hotness, warmth or coldness, different kinds of tastes, pressure, and vision. TRP channels are relatively non-selectively permeable to cations, including sodium, calcium and magnesium. TRP channels are initially discovered in trp-mutant strain of the fruit fly Drosophila. Later, TRP channels are found in vertebrates where they are ubiquitously expressed in many cell types and tissues. TRP channels are important for human health as mutations in at least four TRP channels underlie disease. www.MedChemExpress.com 1 TRP Channel Inhibitors, Antagonists, Agonists, Activators & Modulators (-)-Menthol (E)-Cardamonin Cat. No.: HY-75161 ((E)-Cardamomin; (E)-Alpinetin chalcone) Cat. No.: HY-N1378 (-)-Menthol is a key component of peppermint oil (E)-Cardamonin ((E)-Cardamomin) is a novel that binds and activates transient receptor antagonist of hTRPA1 cation channel with an IC50 potential melastatin 8 (TRPM8), a of 454 nM. Ca2+-permeable nonselective cation channel, to 2+ increase [Ca ]i. Antitumor activity. Purity: >98.0% Purity: 99.81% Clinical Data: Launched Clinical Data: No Development Reported Size: 10 mM × 1 mL, 500 mg, 1 g Size: 10 mM × 1 mL, 5 mg, 10 mg, 25 mg, 50 mg, 100 mg (Z)-Capsaicin 1,4-Cineole (Zucapsaicin; Civamide; cis-Capsaicin) Cat. -
FEPS 2019 – BOLOGNA (ITALY) Abstracts of the Joint Meeting
www.actaphysiol.org September 2019 • Volume 227 • Supplement 718 OFFICIAL JOURNAL OF THE FEDERATION OF EUROPEAN PHYSIOLOGICAL SOCIETIES FEPS 2019 – BOLOGNA (ITALY) Joint Meeting of the Federation of European Physiological Societies (FEPS) and the Italian Physiological Society (SIF) Bologna (Italy), September 10th – 13th 2019 Abstracts of the Joint Meeting A Joint International Meeting celebrating the 70th Anniversary of the Italian Physiological Society PUBLICATION HISTORY Acta Physiologica 2006– Acta Physiologica Scandinavica 1940–2005 Skandinavisches Archiv für Physiologie 1889–1939 AAPHA_v227_s718_issueinfo.inddPHA_v227_s718_issueinfo.indd 1 88/28/2019/28/2019 9:07:319:07:31 AAMM Chief Editor INFORMATION FOR SUBSCRIBERS Pontus B. Persson, Berlin Acta Physiologica is published in 12 issues per year. Subscription prices for 2019 € Editors are: Institutional: 1059 (Europe), $1582 (The Americas), $1849 (Rest of World). Cardiovascular Physiology – Frantisek Kolar, Prague; Holger Nilsson, Gothenburg Prices are exclusive of tax. Australian GST, Canadian GST/HST and European and William E. Louch, Oslo VAT will be applied at the appropriate rates. For more information on current tax Cell Biology – Sari Lauri, Helsinki rates, please go to www.wileyonlinelibrary.com/tax-vat. The price includes online Chronobiology and Endocrinology – Charna Dibner, Geneva access to the current and all online back fi les to January 1st 2015, where available. Exercise Physiology – Jan Henriksson, Stockholm For other pricing options, including access information -
Ion Channels
UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. -
Polyhexamethylene Guanidine Phosphate Damages Tight Junctions and the F-Actin Architecture by Activating Calpain-1 Via the P2RX7/Ca2+ Signaling Pathway
cells Article Polyhexamethylene Guanidine Phosphate Damages Tight Junctions and the F-Actin Architecture by Activating Calpain-1 via the P2RX7/Ca2+ Signaling Pathway Sun Woo Jin y, Gi Ho Lee y, Hoa Thi Pham, Jae Ho Choi and Hye Gwang Jeong * College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; [email protected] (S.W.J.); [email protected] (G.H.L.); [email protected] (H.T.P.); [email protected] (J.H.C.) * Correspondence: [email protected]; Tel.: +82-42-821-5936 These authors contributed equally to this work. y Received: 14 November 2019; Accepted: 22 December 2019; Published: 24 December 2019 Abstract: Polyhexamethylene guanidine phosphate (PHMG-p), a member of the polymeric guanidine family, has strong antimicrobial activity and may increase the risk of inflammation-associated pulmonary fibrosis. However, the effect of PHMG-p on the barrier function of the bronchial epithelium is unknown. Epithelial barrier functioning is maintained by tight junctions (TJs); damage to these TJs is the major cause of epithelial barrier breakdown during lung inflammation. The present study showed that, in BEAS-2B human bronchial epithelial cells, exposure to PHMG-p reduced the number of TJs and the E-cadherin level and impaired the integrity of the F-actin architecture. Furthermore, exposure to PHMG-p stimulated the calcium-dependent protease calpain-1, which breaks down TJs. However, treatment with the calpain-1 inhibitor, ALLN, reversed the PHMG-p-mediated impairment of TJs and the F-actin architecture. Furthermore, exposure to PHMG-p increased the intracellular Ca2+ level via P2X purinoreceptor 7 (P2RX7) and inhibition of P2RX7 abolished the PHMG-p-induced calpain-1 activity and protein degradation and increased the intracellular Ca2+ level. -
TRP Channel Transient Receptor Potential Channels
TRP Channel Transient receptor potential channels TRP Channel (Transient receptor potential channel) is a group of ion channels located mostly on the plasma membrane of numerous human and animal cell types. There are about 28 TRP channels that share some structural similarity to each other. These are grouped into two broad groups: Group 1 includes TRPC ("C" for canonical), TRPV ("V" for vanilloid), TRPM ("M" for melastatin), TRPN, and TRPA. In group 2, there are TRPP ("P" for polycystic) and TRPML ("ML" for mucolipin). Many of these channels mediate a variety of sensations like the sensations of pain, hotness, warmth or coldness, different kinds of tastes, pressure, and vision. TRP channels are relatively non-selectively permeable to cations, including sodium, calcium and magnesium. TRP channels are initially discovered in trp-mutant strain of the fruit fly Drosophila. Later, TRP channels are found in vertebrates where they are ubiquitously expressed in many cell types and tissues. TRP channels are important for human health as mutations in at least four TRP channels underlie disease. www.MedChemExpress.com 1 TRP Channel Antagonists, Inhibitors, Agonists, Activators & Modulators (-)-Menthol (E)-Cardamonin Cat. No.: HY-75161 ((E)-Cardamomin; (E)-Alpinetin chalcone) Cat. No.: HY-N1378 (-)-Menthol is a key component of peppermint oil (E)-Cardamonin ((E)-Cardamomin) is a novel that binds and activates transient receptor antagonist of hTRPA1 cation channel with an IC50 potential melastatin 8 (TRPM8), a of 454 nM. Ca2+-permeable nonselective cation channel, to 2+ increase [Ca ]i. Antitumor activity. Purity: ≥98.0% Purity: 99.81% Clinical Data: Launched Clinical Data: No Development Reported Size: 10 mM × 1 mL, 500 mg, 1 g Size: 10 mM × 1 mL, 5 mg, 10 mg, 25 mg, 50 mg, 100 mg (Z)-Capsaicin 1,4-Cineole (Zucapsaicin; Civamide; cis-Capsaicin) Cat. -
Novel Approach to Chronic Cough
Moksliniai darbai ir apžvalgos Novel approach to chronic cough NAUJAS POŽIŪRIS Į LĖTINĮ KOSULĮ LAIMA KONDRATAVIČIENĖ, KRISTINA BIEKŠIENĖ, SKAIDRIUS MILIAUSKAS Department of Pulmonology, Medical Academy, Lithuanian University of Health Sciences Summary. Cough is the most common symptom for which people seek medical advice. A multitude of reasons can cause it. In clinical practice, a new term “Cough hypersensitivity syndrome“ was proposed, which defines unaccountable reasons for cough and different groups of patients with chronic cough. Adenosine triphosphate (ATP) as a driver of chronic cough is the most important target in nowadays clinical trials. Extracellular ATP activates P2X purinoreceptor 3 (P2X3) receptor channels, which are expressed in sensory neurons. New treatment methods that block P2X3 receptors are being developed. Keywords: chronic cough, cough hypersensitivity syndrome, adenosine triphosphate, novel treatment options. Santrauka. Lėtinis kosulys yra dažniausias skundas, dėl kurio pacientai kreipiasi į gydytojus. Kosulį sukelia įvairios priežastys ir sutrikimai. Klinikinėje praktikoje vartojamas naujas terminas „Kosulio hiperjautrumo sindromas“, kuris apima neaiškos kilmės kosulio priežastis bei skirtingas pacientų, besiskundžiančių lėtiniu kosuliu, grupes. Adenozino trifosfatas (ATP), kaip vienas pagrindinių kosulį sukeliančių veiksnių, šiuo metu yra dažniausiai klinikiniuose tyrimuose tiriama cheminė medžiaga. ATP aktyvuoja P2X purino receptoriaus 3 (P2X3) jonų kanalus, kurie yra išreikšti jutiminiuose neuronuose. Nauji -
Sugar Causes Obesity and Metabolic Syndrome in Mice Independently of Sweet Taste
Am J Physiol Endocrinol Metab 319: E276–E290, 2020. First published June 23, 2020; doi:10.1152/ajpendo.00529.2019. RESEARCH ARTICLE Sugar causes obesity and metabolic syndrome in mice independently of sweet taste Ana Andres-Hernando,1 Masanari Kuwabara,1 X David J. Orlicky,2 Aurelie Vandenbeuch,3,4 Christina Cicerchi,1 Sue C. Kinnamon,3,4 Thomas E. Finger,4,5 X Richard J. Johnson,1 and X Miguel A. Lanaspa1 1Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, University of Colorado, Aurora, Colorado; 2Department of Pathology, University of Colorado School of Medicine, University of Colorado, Aurora, Colorado; 3Department of Otolaryngology, University of Colorado School of Medicine, University of Colorado, Aurora, Colorado; 4Rocky Mountain Taste & Smell Center, University of Colorado School of Medicine, University of Colorado, Aurora, Colorado; and 5Department of Cell and Developmental Biology, University of Colorado School of Medicine, University of Colorado, Aurora, Colorado Submitted 5 December 2019; accepted in final form 16 June 2020 Andres-Hernando A, Kuwabara M, Orlicky DJ, Vandenbeuch caloric sweeteners has skyrocketed over the last several cen- A, Cicerchi C, Kinnamon SC, Finger TE, Johnson RJ, Lanaspa turies, from an intake (based on sales) of ~4 pounds per capita MA. Sugar causes obesity and metabolic syndrome in mice indepen- per year in 1700 to over 150 pounds per capita per year in 2000 dently of sweet taste. Am J Physiol Endocrinol Metab 319: E276– E290, 2020. First published June 23, 2020; doi:10.1152/ajpendo. (12). Today nearly 70% of processed foods and beverages in 00529.2019.—Intake of sugars, especially the fructose component, is US supermarkets contain these sweeteners, including many strongly associated with the development of obesity and metabolic foods that one might initially not consider to contain such syndrome, but the relative role of taste versus metabolism in driving additives (30). -
TRPC3 Contributes to Regulation of Cardiac Contractility and Arrhythmogenesis by Dynamic Interaction with NCX1
Cardiovascular Research (2015) 106, 163–173 doi:10.1093/cvr/cvv022 TRPC3 contributes to regulation of cardiac contractility and arrhythmogenesis by dynamic interaction with NCX1 Bernhard Doleschal1, Uwe Primessnig2,3, Gerald Wo¨ lkart1, Stefan Wolf1, Michaela Schernthaner4, Michaela Lichtenegger1, Toma N. Glasnov5,6, C. Oliver Kappe5, Bernd Mayer1, Gudrun Antoons2,3, Frank Heinzel2,3, Michael Poteser4, and Klaus Groschner3,4* 1Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria; 2Department of Cardiology, Medical University of Graz, Graz, Austria; 3Ludwig Boltzmann Institute of Translational Heart Failure Research, Graz, Austria; 4Institute of Biophysics, Medical University of Graz, Harrachgasse 21, Graz 8010, Austria; 5Institute of Chemistry, University of Graz, Graz, Austria; and 6Christian Doppler Laboratory for Continuous Flow Chemistry, Institute of Chemistry, University of Graz, Graz, Austria Received 17 October 2014; revised 17 December 2014; accepted 19 January 2015; online publish-ahead-of-print 28 January 2015 Time for primary review: 31 days + Aim TRPC3 is a non-selective cation channel, which forms a Ca2 entry pathway involved in cardiac remodelling. Our aim was to analyse acute electrophysiological and contractile consequences of TRPC3 activation in the heart. ..................................................................................................................................................................................... Methods We used a murine model of cardiac TRPC3 overexpression and -
Ion Channels and Transporters in Lymphocyte Function and Immunity
REVIEWS Ion channels and transporters in lymphocyte function and immunity Stefan Feske1, Edward Y. Skolnik2 and Murali Prakriya3 Abstract | Lymphocyte function is regulated by a network of ion channels and transporters in the plasma membrane of B and T cells. These proteins modulate the cytoplasmic concentrations of diverse cations, such as calcium, magnesium and zinc ions, which function as second messengers to regulate crucial lymphocyte effector functions, including cytokine production, differentiation and cytotoxicity. The repertoire of ion-conducting proteins includes calcium release-activated calcium (CRAC) channels, P2X receptors, transient receptor potential (TRP) channels, potassium channels, chloride channels and magnesium and zinc transporters. This Review discusses the roles of ion conduction pathways in lymphocyte function and immunity. Ion channels and ion transporters function as gateways Store-operated calcium channels Ion channels 2+ Pore-forming transmembrane for charged ions that cannot freely diffuse across lipid Ca is a well-established second messenger in lympho proteins that enable the flow of membrane barriers. They regulate the intracellular cytes that regulates proliferation, gene expression, motil- ions down an electrochemical concentration of various ions, such as calcium (Ca2+), ity and other functions. Similarly to in other mammalian gradient. magnesium (Mg2+) and zinc (Zn2+). The movement of cell types, the intracellular Ca2+ concentration in unstim- Ion transporters these cations across the plasma membrane depends on ulated B and T cells is maintained at ~50–100 nM, which 4 2+ Pore-forming transmembrane electrical gradients that are maintained in turn by potas- is ~10 -fold lower than the Ca concentration in the proteins that carry ions sium (K+), sodium (Na+) and chloride (Cl−) channels. -
Potential Drug Candidates to Treat TRPC6 Channel Deficiencies in The
cells Review Potential Drug Candidates to Treat TRPC6 Channel Deficiencies in the Pathophysiology of Alzheimer’s Disease and Brain Ischemia Veronika Prikhodko 1,2,3, Daria Chernyuk 1 , Yurii Sysoev 1,2,3,4, Nikita Zernov 1, Sergey Okovityi 2,3 and Elena Popugaeva 1,* 1 Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; [email protected] (V.P.); [email protected] (D.C.); [email protected] (Y.S.); [email protected] (N.Z.) 2 Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical Pharmaceutical University, 197022 St. Petersburg, Russia; [email protected] 3 N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 St. Petersburg, Russia 4 Institute of Translational Biomedicine, Saint Petersburg State University, 199034 St. Petersburg, Russia * Correspondence: [email protected] Received: 31 August 2020; Accepted: 20 October 2020; Published: 24 October 2020 Abstract: Alzheimer’s disease and cerebral ischemia are among the many causative neurodegenerative diseases that lead to disabilities in the middle-aged and elderly population. There are no effective disease-preventing therapies for these pathologies. Recent in vitro and in vivo studies have revealed the TRPC6 channel to be a promising molecular target for the development of neuroprotective agents. TRPC6 channel is a non-selective cation plasma membrane channel that is permeable to Ca2+. Its Ca2+-dependent pharmacological effect is associated with the stabilization and protection of excitatory synapses. Downregulation as well as upregulation of TRPC6 channel functions have been observed in Alzheimer’s disease and brain ischemia models. -
Direct Activation of TRPC3 Channels by the Antimalarial Agent Artemisinin
cells Article Direct Activation of TRPC3 Channels by the Antimalarial Agent Artemisinin Nicole Urban and Michael Schaefer * Leipzig University, Medical Faculty, Rudolf Boehm Institute of Pharmacology and Toxicology, Härtelstraße 16-18, 04107 Leipzig, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-341-97-24600 Received: 29 November 2019; Accepted: 9 January 2020; Published: 14 January 2020 Abstract: (1) Background: Members of the TRPC3/TRPC6/TRPC7 subfamily of canonical transient receptor potential (TRP) channels share an amino acid similarity of more than 80% and can form heteromeric channel complexes. They are directly gated by diacylglycerols in a protein kinase C-independent manner. To assess TRPC3 channel functions without concomitant protein kinase C activation, direct activators are highly desirable. (2) Methods: By screening 2000 bioactive compounds in a Ca2+ influx assay, we identified artemisinin as a TRPC3 activator. Validation and characterization of the hit was performed by applying fluorometric Ca2+ influx assays and electrophysiological patch-clamp experiments in heterologously or endogenously TRPC3-expressing cells. (3) Results: Artemisinin elicited Ca2+ entry through TRPC3 or heteromeric TRPC3:TRPC6 channels, but did not or only weakly activated TRPC6 and TRPC7. Electrophysiological recordings confirmed the reversible and repeatable TRPC3 activation by artemisinin that was inhibited by established TRPC3 channel blockers. Rectification properties and reversal potentials were similar to those observed after stimulation with a diacylglycerol mimic, indicating that artemisinin induces a similar active state as the physiological activator. In rat pheochromocytoma PC12 cells that endogenously express TRPC3, artemisinin induced a Ca2+ influx and TRPC3-like currents. (4) Conclusions: Our findings identify artemisinin as a new biologically active entity to activate recombinant or native TRPC3-bearing channel complexes in a membrane-confined fashion. -
Inhibition of P2X4R Attenuates White Matter Injury in Mice After
Fu et al. Journal of Neuroinflammation (2021) 18:184 https://doi.org/10.1186/s12974-021-02239-3 RESEARCH Open Access Inhibition of P2X4R attenuates white matter injury in mice after intracerebral hemorrhage by regulating microglial phenotypes Xiongjie Fu†, Guoyang Zhou†, Xinyan Wu†, Chaoran Xu, Hang Zhou, Jianfeng Zhuang, Yucong Peng, Yang Cao, Hanhai Zeng, Yin Li, Jianru Li, Liansheng Gao, Gao Chen* , Lin Wang* and Feng Yan* Abstract Background: White matter injury (WMI) is a major neuropathological event associated with intracerebral hemorrhage (ICH). P2X purinoreceptor 4 (P2X4R) is a member of the P2X purine receptor family, which plays a crucial role in regulating WMI and neuroinflammation in central nervous system (CNS) diseases. Our study investigated the role of P2X4R in the WMI and the inflammatory response in mice, as well as the possible mechanism of action after ICH. Methods: ICH was induced in mice via collagenase injection. Mice were treated with 5-BDBD and ANA-12 to inhibit P2X4R and tropomyosin-related kinase receptor B (TrkB), respectively. Immunostaining and quantitative polymerase chain reaction (qPCR) were performed to detect microglial phenotypes after the inhibition of P2X4R. Western blots (WB) and immunostaining were used to examine WMI and the underlying molecular mechanisms. Cylinder, corner turn, wire hanging, and forelimb placement tests were conducted to evaluate neurobehavioral function. Results: After ICH, the protein levels of P2X4R were upregulated, especially on day 7 after ICH, and were mainly located in the microglia. The inhibition of P2X4R via 5-BDBD promoted neurofunctional recovery after ICH as well as the transformation of the pro-inflammatory microglia induced by ICH into an anti-inflammatory phenotype, and attenuated ICH-induced WMI.