NMFS Prof Paper 9.Indd

Total Page:16

File Type:pdf, Size:1020Kb

NMFS Prof Paper 9.Indd NOAA Professional Paper NMFS 9 U.S. Department of Commerce December 2007 Genetic and morphological identification of pelagic juvenile rockfish collected from the Gulf of Alaska Arthur W. Kendall Jr. Christine Kondzela Zhuozhuo Li David Clausen Anthony J. Gharrett U.S. Department of Commerce NOAA Professional Carlos M. Gutierrez Secretary National Oceanic Papers NMFS and Atmospheric Administration Vice Admiral Scientific Editor Conrad C. Lautenbacher Jr., Dr. Adam Moles USN (ret.) Under Secretary for Associate Editor Oceans and Atmosphere Elizabeth Calvert National Marine Fisheries Service, NOAA National Marine 17109 Point Lena Loop Road Fisheries Service Juneau, Alaska 99801-8626 James W. Balsiger Acting Assistant Administrator for Fisheries Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Dr. Ann C. Matarese National Marine Fisheries Service Dr. James W. Orr National Marine Fisheries Service Dr. Bruce L. Wing National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is published by the Scientific Publications Office, National Marine Fisheries Service, The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original NOAA, 7600 Sand Point Way NE, research reports, taxonomic keys, species synopses, flora and fauna studies, and data-in- Seattle, WA 98115. tensive reports on investigations in fishery science, engineering, and economics. Copies The Secretary of Commerce has of the NOAA Professional Paper NMFS series are available free in limited numbers to determined that the publication of government agencies, both federal and state. They are also available in exchange for this series is necessary in the transac- tion of the public business required by other scientific and technical publications in the marine sciences. Professional Papers law of this Department. Use of funds are published online in PDF format at http://spo.nmfs.noaa.gov for printing of this series has been ap- proved by the Director of the Office NOTICE: This series was established in 2003 to replace the NOAA Technical Report of Management and Budget. NMFS series. NOAA Professional Paper NMFS 9 Genetic and morphological identification of pelagic juvenile rockfish collected from the Gulf of Alaska Arthur W. Kendall Jr. Christine Kondzela Zhuozhuo Li David Clausen Anthony J. Gharrett December 2007 U.S. Department of Commerce Seattle, Washington Suggested reference Kendall, Arthur W., Jr., Christine Kondzela, Zhuozhuo Li, David Clausen, and Anthony J. Gharrett. 2007. Genetic and morphological identification of pelagic juvenile rockfish collected from the Gulf of Alaska. NOAA Professional Paper NMFS 9. 26 p. Online dissemination This report is posted online in PDF format at http://spo.nmfs.noaa.gov (click on Professional Papers link). Purchasing additional copies Additional copies of this report may be available for purchase in paper copy or microfiche from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161; 1-800-553-NTIS; http://www.ntis.gov. Copyright law Although the contents of the Professional Papers have not been copyrighted and may be reprinted entirely, reference to source is appreciated. Proprietary products The National Marine Fisheries Service (NMFS) does not approve, recommend, or endorse any proprietary product or proprietary material mentioned in this publication. No reference shall be made to NMFS, or to this publication fur- nished by NMFS, in any advertising or sales promotion which would indicate or imply that NMFS approves, recommends, or endorses any proprietary product or proprietary material mentioned herein, or which has as its purpose an intent to cause directly or indirectly the advertised product to be used or purchased because of this NMFS publication. Abstract—Pelagic juvenile rockfish (Se- Genetic and morphological identification bastes spp.) collected in surveys designed to assess juvenile salmonids and other species of pelagic juvenile rockfish collected in the Gulf of Alaska in 1998 and 2000–2003 provide an opportunity to document the oc- from the Gulf of Alaska currence of the pelagic juveniles of several species of rockfish. Often, species identifica- Arthur W. Kendall Jr.1, Christine Kondzela2, tion of rockfish is difficult or impossible at 3 2 3 this stage of development (~20 to 60 mm), Zhuozhuo Li , David Clausen , and Anthony J. Gharrett and few species indigenous to Alaska waters 1 AJALA Enterprises have been described. Use of mitochondrial 635 Wanapum Drive DNA markers for rockfish species allowed LaConner, WA 98257 unequivocal identification of ten species (S. Email: [email protected] aleutianus, S. alutus, S. borealis, S. entomelas, S. flavidus, S. melanops, S. pinniger, S. proriger, S. 2 Auke Bay Laboratories reedi, and S. ruberrimus) in subsamples from Alaska Fisheries Science Center the collections. Other specimens were ge- National Marine Fisheries Service netically assignable to groups of two or three National Oceanic and Atmospheric Administration species. Sebastes borealis, S. crameri, and S. reedi 17109 Point Lena Loop Road were identified using morphological data. Juneau, AK 99801 Combining genetic and morphological data 3 School of Fisheries and Ocean Sciences allowed successful resolution of the other University of Alaska Fairbanks species as S. emphaeus, probably S. ciliatus 11120 Glacier Highway (although S. polyspinis cannot be totally Juneau, AK 99801 ruled out), and S. polyspinis. Many specimens were initially morphologically indistinguish- able from S. alutus, and several morpho- logical groups included fish genetically identified as S. alutus. This paper details the characteristics of these pelagic juveniles to facilitate morphological identification of these species in future collections. Introduction and fisheries management efforts into pelagic juveniles, and some include restricting or closing fish- species remain in the water column Rockfishes (Sebastes spp.) form ing and creating marine reserves for several months, while others set- an ecologically and economically to rebuild populations. Assessing tle to the bottom or to kelp within important group of fishes in the the size of the populations at vari- a few weeks (Moser and Boehlert, Northeast Pacific (Love et al., ous times in their life histories is 1991). The pelagic juvenile stage, 2002). They are quite diverse taxo- required to evaluate the effective- which may last for over six months nomically with about 70 species ness of fisheries management ef- (Boehlert, 1977), is ecologically occurring in the region and up to forts. Such assessments and other and morphologically distinct from 30 in one location, and also eco- fisheries research on these fishes the generally demersal adult phase, logically diverse with, for example, are hampered by the inability to and may be important in determin- some species occurring in tidepools identify their planktonic larval and ing year-class strength. and others at depths >1000 m. As pelagic juvenile stages in field col- Sampling for pelagic juvenile adults, most species are demersal lections. Adult morphological char- rockfish off central California pro- and associate with hard bottoms, acters are not fully developed in vides an index of year-class strength but some are semi-pelagic. All spe- pelagic juveniles; however, genetic for several species (Ralston and cies are viviparous, with individuals characters, which persist through- Howard, 1995; Ralston and Ianelli, of some species yearly bearing up out life history stages, and distinct 1998; Sakuma et al., 2006). Also, to 105 yolk-sac planktonic larvae. pigment and other morphological relationships between ocean con- Some species are among the long- features unique to the juvenile life ditions and the abundance and est living fishes, reaching ages of history stage can be applied to spe- growth of juvenile rockfish have over 100 years. Severe overfishing cies identification of juveniles. been documented through these has reduced some species to less After a larval stage of a few weeks, surveys (Woodbury and Ralston, than 10% of their virgin biomass, many rockfish species transform 1991). Such studies are predicated 2 Professional Paper NMFS 9 on the ability to identify the rockfish juveniles that are same specimens. Such analyses are needed to develop collected in these surveys. Although morphological diagnostic morphological criteria to distinguish the spe- identification criteria for juveniles have been developed cies of field-collected pelagic juveniles of Sebastes spp. for many rockfish species that occur off California (Lai- dig and Adams, 1991), additional research is needed to identify species occurring off Alaska, due to latitudinal Methods differences in species composition. At present, little is known about the ecology of pe- Samples lagic juvenile rockfish off Alaska. Most species have not even been described at this stage of development (see The first batch of specimens (n = 23) to be examined Kendall, 1991), and it is presently difficult or impossible was collected by the International Pacific Halibut Com- to identify the larvae and juveniles of many species of mission (and supplied to Alaska Department of Fish rockfish from their morphology (Gray et al., 2006). and Game) on 25 and 27 September 2002 in Shelikof Consequently, it is not possible to trace their early lives, Bay, off the coast of Southeast Alaska (Fig. 1; Table 1). to investigate their ecology, or to use them for popula- The samples
Recommended publications
  • CHECKLIST and BIOGEOGRAPHY of FISHES from GUADALUPE ISLAND, WESTERN MEXICO Héctor Reyes-Bonilla, Arturo Ayala-Bocos, Luis E
    ReyeS-BONIllA eT Al: CheCklIST AND BIOgeOgRAphy Of fISheS fROm gUADAlUpe ISlAND CalCOfI Rep., Vol. 51, 2010 CHECKLIST AND BIOGEOGRAPHY OF FISHES FROM GUADALUPE ISLAND, WESTERN MEXICO Héctor REyES-BONILLA, Arturo AyALA-BOCOS, LUIS E. Calderon-AGUILERA SAúL GONzáLEz-Romero, ISRAEL SáNCHEz-ALCántara Centro de Investigación Científica y de Educación Superior de Ensenada AND MARIANA Walther MENDOzA Carretera Tijuana - Ensenada # 3918, zona Playitas, C.P. 22860 Universidad Autónoma de Baja California Sur Ensenada, B.C., México Departamento de Biología Marina Tel: +52 646 1750500, ext. 25257; Fax: +52 646 Apartado postal 19-B, CP 23080 [email protected] La Paz, B.C.S., México. Tel: (612) 123-8800, ext. 4160; Fax: (612) 123-8819 NADIA C. Olivares-BAñUELOS [email protected] Reserva de la Biosfera Isla Guadalupe Comisión Nacional de áreas Naturales Protegidas yULIANA R. BEDOLLA-GUzMáN AND Avenida del Puerto 375, local 30 Arturo RAMíREz-VALDEz Fraccionamiento Playas de Ensenada, C.P. 22880 Universidad Autónoma de Baja California Ensenada, B.C., México Facultad de Ciencias Marinas, Instituto de Investigaciones Oceanológicas Universidad Autónoma de Baja California, Carr. Tijuana-Ensenada km. 107, Apartado postal 453, C.P. 22890 Ensenada, B.C., México ABSTRACT recognized the biological and ecological significance of Guadalupe Island, off Baja California, México, is Guadalupe Island, and declared it a Biosphere Reserve an important fishing area which also harbors high (SEMARNAT 2005). marine biodiversity. Based on field data, literature Guadalupe Island is isolated, far away from the main- reviews, and scientific collection records, we pres- land and has limited logistic facilities to conduct scien- ent a comprehensive checklist of the local fish fauna, tific studies.
    [Show full text]
  • Rockfish (Sebastes) That Are Evolutionarily Isolated Are Also
    Biological Conservation 142 (2009) 1787–1796 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Rockfish (Sebastes) that are evolutionarily isolated are also large, morphologically distinctive and vulnerable to overfishing Karen Magnuson-Ford a,b, Travis Ingram c, David W. Redding a,b, Arne Ø. Mooers a,b,* a Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby BC, Canada V5A 1S6 b IRMACS, Simon Fraser University, 8888 University Drive, Burnaby BC, Canada V5A 1S6 c Department of Zoology and Biodiversity Research Centre, University of British Columbia, #2370-6270 University Blvd., Vancouver, Canada V6T 1Z4 article info abstract Article history: In an age of triage, we must prioritize species for conservation effort. Species more isolated on the tree of Received 23 September 2008 life are candidates for increased attention. The rockfish genus Sebastes is speciose (>100 spp.), morpho- Received in revised form 10 March 2009 logically and ecologically diverse and many species are heavily fished. We used a complete Sebastes phy- Accepted 18 March 2009 logeny to calculate a measure of evolutionary isolation for each species and compared this to their Available online 22 April 2009 morphology and imperilment. We found that evolutionarily isolated species in the northeast Pacific are both larger-bodied and, independent of body size, morphologically more distinctive. We examined Keywords: extinction risk within rockfish using a compound measure of each species’ intrinsic vulnerability to Phylogenetic diversity overfishing and categorizing species as commercially fished or not. Evolutionarily isolated species in Extinction risk Conservation priorities the northeast Pacific are more likely to be fished, and, due to their larger sizes and to life history traits Body size such as long lifespan and slow maturation rate, they are also intrinsically more vulnerable to overfishing.
    [Show full text]
  • Southward Range Extension of the Goldeye Rockfish, Sebastes
    Acta Ichthyologica et Piscatoria 51(2), 2021, 153–158 | DOI 10.3897/aiep.51.68832 Southward range extension of the goldeye rockfish, Sebastes thompsoni (Actinopterygii: Scorpaeniformes: Scorpaenidae), to northern Taiwan Tak-Kei CHOU1, Chi-Ngai TANG2 1 Department of Oceanography, National Sun Yat-sen University, Kaohsiung, Taiwan 2 Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan http://zoobank.org/5F8F5772-5989-4FBA-A9D9-B8BD3D9970A6 Corresponding author: Tak-Kei Chou ([email protected]) Academic editor: Ronald Fricke ♦ Received 18 May 2021 ♦ Accepted 7 June 2021 ♦ Published 12 July 2021 Citation: Chou T-K, Tang C-N (2021) Southward range extension of the goldeye rockfish, Sebastes thompsoni (Actinopterygii: Scorpaeniformes: Scorpaenidae), to northern Taiwan. Acta Ichthyologica et Piscatoria 51(2): 153–158. https://doi.org/10.3897/ aiep.51.68832 Abstract The goldeye rockfish,Sebastes thompsoni (Jordan et Hubbs, 1925), is known as a typical cold-water species, occurring from southern Hokkaido to Kagoshima. In the presently reported study, a specimen was collected from the local fishery catch off Keelung, northern Taiwan, which represents the first specimen-based record of the genus in Taiwan. Moreover, the new record ofSebastes thompsoni in Taiwan represented the southernmost distribution of the cold-water genus Sebastes in the Northern Hemisphere. Keywords cold-water fish, DNA barcoding, neighbor-joining, new recorded genus, phylogeny, Sebastes joyneri Introduction On an occasional survey in a local fish market (25°7.77′N, 121°44.47′E), a mature female individual of The rockfish genusSebastes Cuvier, 1829 is the most spe- Sebastes thompsoni (Jordan et Hubbs, 1925) was obtained ciose group of the Scorpaenidae, which comprises about in the local catches, which were caught off Keelung, north- 110 species worldwide (Li et al.
    [Show full text]
  • Common Fishes of California
    COMMON FISHES OF CALIFORNIA Updated July 2016 Blue Rockfish - SMYS Sebastes mystinus 2-4 bands around front of head; blue to black body, dark fins; anal fin slanted Size: 8-18in; Depth: 0-200’+ Common from Baja north to Canada North of Conception mixes with mostly with Olive and Black R.F.; South with Blacksmith, Kelp Bass, Halfmoons and Olives. Black Rockfish - SMEL Sebastes melanops Blue to blue-back with black dots on their dorsal fins; anal fin rounded Size: 8-18 in; Depth: 8-1200’ Common north of Point Conception Smaller eyes and a bit more oval than Blues Olive/Yellowtail Rockfish – OYT Sebastes serranoides/ flavidus Several pale spots below dorsal fins; fins greenish brown to yellow fins Size: 10-20in; Depth: 10-400’+ Midwater fish common south of Point Conception to Baja; rare north of Conception Yellowtail R.F. is a similar species are rare south of Conception, while being common north Black & Yellow Rockfish - SCHR Sebastes chrysomelas Yellow blotches of black/olive brown body;Yellow membrane between third and fourth dorsal fin spines Size: 6-12in; Depth: 0-150’ Common central to southern California Inhabits rocky areas/crevices Gopher Rockfish - SCAR Sebastes carnatus Several small white blotches on back; Pale blotch extends from dorsal spine onto back Size: 6-12 in; Depth: 8-180’ Common central California Inhabits rocky areas/crevice. Territorial Copper Rockfish - SCAU Sebastes caurinus Wide, light stripe runs along rear half on lateral line Size:: 10-16in; Depth: 10-600’ Inhabits rocky reefs, kelpbeds,
    [Show full text]
  • A Checklist of the Fishes of the Monterey Bay Area Including Elkhorn Slough, the San Lorenzo, Pajaro and Salinas Rivers
    f3/oC-4'( Contributions from the Moss Landing Marine Laboratories No. 26 Technical Publication 72-2 CASUC-MLML-TP-72-02 A CHECKLIST OF THE FISHES OF THE MONTEREY BAY AREA INCLUDING ELKHORN SLOUGH, THE SAN LORENZO, PAJARO AND SALINAS RIVERS by Gary E. Kukowski Sea Grant Research Assistant June 1972 LIBRARY Moss L8ndillg ,\:Jrine Laboratories r. O. Box 223 Moss Landing, Calif. 95039 This study was supported by National Sea Grant Program National Oceanic and Atmospheric Administration United States Department of Commerce - Grant No. 2-35137 to Moss Landing Marine Laboratories of the California State University at Fresno, Hayward, Sacramento, San Francisco, and San Jose Dr. Robert E. Arnal, Coordinator , ·./ "':., - 'I." ~:. 1"-"'00 ~~ ~~ IAbm>~toriesi Technical Publication 72-2: A GI-lliGKL.TST OF THE FISHES OF TtlE MONTEREY my Jl.REA INCLUDING mmORH SLOUGH, THE SAN LCRENZO, PAY-ARO AND SALINAS RIVERS .. 1&let~: Page 14 - A1estria§.·~iligtro1ophua - Stone cockscomb - r-m Page 17 - J:,iparis'W10pus." Ribbon' snailt'ish - HE , ,~ ~Ei 31 - AlectrlQ~iu.e,ctro1OphUfi- 87-B9 . .', . ': ". .' Page 31 - Ceb1diehtlrrs rlolaCewi - 89 , Page 35 - Liparis t!01:f-.e - 89 .Qhange: Page 11 - FmWulns parvipin¢.rl, add: Probable misidentification Page 20 - .BathopWuBt.lemin&, change to: .Mhgghilu§. llemipg+ Page 54 - Ji\mdJ11ui~~ add: Probable. misidentifioation Page 60 - Item. number 67, authOr should be .Hubbs, Clark TABLE OF CONTENTS INTRODUCTION 1 AREA OF COVERAGE 1 METHODS OF LITERATURE SEARCH 2 EXPLANATION OF CHECKLIST 2 ACKNOWLEDGEMENTS 4 TABLE 1
    [Show full text]
  • Multiple Paternity and Maintenance of Genetic Diversity in the Live-Bearing Rockfishes Sebastes Spp
    Vol. 357: 245–253, 2008 MARINE ECOLOGY PROGRESS SERIES Published April 7 doi: 10.3354/meps07296 Mar Ecol Prog Ser Multiple paternity and maintenance of genetic diversity in the live-bearing rockfishes Sebastes spp. John R. Hyde1, 2,*, Carol Kimbrell2, Larry Robertson2, Kevin Clifford3, Eric Lynn2, Russell Vetter2 1Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, California 92093-0203, USA 2Southwest Fisheries Science Center, NOAA/NMFS, 8604 La Jolla Shores Dr., La Jolla, California 92037, USA 3Oregon Coast Aquarium, 2820 SE Ferry Slip Rd, Newport, Oregon 97365, USA ABSTRACT: The understanding of mating systems is key to the proper management of exploited spe- cies, particularly highly fecund, r-selected fishes, which often show strong discrepancies between census and effective population sizes. The development of polymorphic genetic markers, such as codominant nuclear microsatellites, has made it possible to study the paternity of individuals within a brood, helping to elucidate the species’ mating system. In the present study, paternity analysis was performed on 35 broods, representing 17 species of the live-bearing scorpaenid genus Sebastes. We report on the finding of multiple paternity from several species of Sebastes and show that at least 3 sires can contribute paternity to a single brood. A phylogenetically and ecologically diverse sample of Sebastes species was examined, with multiple paternity found in 14 of the 35 broods and 10 of the 17 examined species, we suggest that this behavior is not a rare event within a single species and is likely common throughout the genus. Despite high variance in reproductive success, Sebastes spp., in general, show moderate to high levels of genetic diversity.
    [Show full text]
  • U.S. West Coast Groundfish Buyers Manual
    U.S. West Coast groundfish manual Powered by FISHCHOICE.COM The U.S. West Coast groundfish fishery is the backbone of many fishing communities. Consisting of more than 90 different species of flatfish, rockfish and roundfish caught in waters off of California, Oregon and Washington, the fishery is a true environmental success story. After being declared a federal disaster in 2000, this fishery has made dramatic improvements through full catch accountability, ecosystem protections, incentives to reduce bycatch and avoidance of overfished species. In 2014, the fishery received Marine Stewardship Council certification and Seafood Watch removed 21 species from “Avoid (red)” status and moved them to either “Good Alternative (yellow)” or “Best Choice (green).” The abundance, variety, and quality of these fish are still under- appreciated in the marketplace, however, and more than half the fishing quota goes uncaught every year. This Groundfish Manual is your guide to some of the West Coast’s most prominent species. Inside, you will find photos of the fish whole and filleted, along with cooking suggestions, flavor profiles, and details on availability, sustainability and more. We have chosen these 13 species to profile because they are among the best recognized and studied, but keep in mind that many lesser known species from this fishery, including a number of species of rockfish, are also managed sustainably and deserve a place on America’s table. Help make U.S. West Coast Groundfish a success story for the ocean, American fishing communities
    [Show full text]
  • Guide to the Coastal Marine Fishes of California
    STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF FISH AND GAME FISH BULLETIN 157 GUIDE TO THE COASTAL MARINE FISHES OF CALIFORNIA by DANIEL J. MILLER and ROBERT N. LEA Marine Resources Region 1972 ABSTRACT This is a comprehensive identification guide encompassing all shallow marine fishes within California waters. Geographic range limits, maximum size, depth range, a brief color description, and some meristic counts including, if available: fin ray counts, lateral line pores, lateral line scales, gill rakers, and vertebrae are given. Body proportions and shapes are used in the keys and a state- ment concerning the rarity or commonness in California is given for each species. In all, 554 species are described. Three of these have not been re- corded or confirmed as occurring in California waters but are included since they are apt to appear. The remainder have been recorded as occurring in an area between the Mexican and Oregon borders and offshore to at least 50 miles. Five of California species as yet have not been named or described, and ichthyologists studying these new forms have given information on identification to enable inclusion here. A dichotomous key to 144 families includes an outline figure of a repre- sentative for all but two families. Keys are presented for all larger families, and diagnostic features are pointed out on most of the figures. Illustrations are presented for all but eight species. Of the 554 species, 439 are found primarily in depths less than 400 ft., 48 are meso- or bathypelagic species, and 67 are deepwater bottom dwelling forms rarely taken in less than 400 ft.
    [Show full text]
  • Localized Depletion of Three Alaska Rockfish Species Dana Hanselman NOAA Fisheries, Alaska Fisheries Science Center, Auke Bay Laboratory, Juneau, Alaska
    Biology, Assessment, and Management of North Pacific Rockfishes 493 Alaska Sea Grant College Program • AK-SG-07-01, 2007 Localized Depletion of Three Alaska Rockfish Species Dana Hanselman NOAA Fisheries, Alaska Fisheries Science Center, Auke Bay Laboratory, Juneau, Alaska Paul Spencer NOAA Fisheries, Alaska Fisheries Science Center, Resource Ecology and Fisheries Management (REFM) Division, Seattle, Washington Kalei Shotwell NOAA Fisheries, Alaska Fisheries Science Center, Auke Bay Laboratory, Juneau, Alaska Rebecca Reuter NOAA Fisheries, Alaska Fisheries Science Center, REFM Division, Seattle, Washington Abstract The distributions of some rockfish species in Alaska are clustered. Their distribution and relatively sedentary movement patterns could make localized depletion of rockfish an ecological or conservation concern. Alaska rockfish have varying and little-known genetic stock structures. Rockfish fishing seasons are short and intense and usually confined to small areas. If allowable catches are set for large management areas, the genetic, age, and size structures of the population could change if the majority of catch is harvested from small concentrated areas. In this study, we analyzed data collected by the North Pacific Observer Program from 1991 to 2004 to assess localized depletion of Pacific ocean perch (Sebastes alutus), northern rockfish S.( polyspinis), and dusky rockfish (S. variabilis). The data were divided into blocks with areas of approxi- mately 10,000 km2 and 5,000 km2 of consistent, intense fishing. We used two different block sizes to consider the size for which localized deple- tion could be detected. For each year, the Leslie depletion estimator was used to determine whether catch-per-unit-effort (CPUE) values in each 494 Hanselman et al.—Three Alaska Rockfish Species block declined as a function of cumulative catch.
    [Show full text]
  • Guide to Rockfishes (Scorpaenidae) of the Genera Sebastes, Sebastolobus, and Adelosebastes of the Northeast Pacific Ocean, Second Edition
    NOAA Technical Memorandum NMFS-AFSC-117 Guide to Rockfishes (Scorpaenidae) of the Genera Sebastes, Sebastolobus, and Adelosebastes of the Northeast Pacific Ocean, Second Edition by James Wilder Orr, Michael A. Brown, and David C. Baker U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center August 2000 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The new NMFS-NWFSC series will be used by the Northwest Fisheries Science Center. This document should be cited as follows: Orr, J. W., M. A. Brown, and D. C. Baker. 2000. Guide to rockfishes (Scorpaenidae) of the genera Sebastes, Sebastolobus, and Adelosebastes of the Northeast Pacific Ocean, second edition. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-117, 47 p. Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-117 Guide to Rockfishes (Scorpaenidae) of the Genera Sebastes, Sebastolobus, and Adelosebastes of the Northeast Pacific Ocean, Second Edition by J. W. Orr,1 M. A. Brown, 2 and D. C. Baker 2 1 Resource Assessment and Conservation Engineering Division Alaska Fisheries Science Center 7600 Sand Point Way N.E.
    [Show full text]
  • Gopher Rockfish
    Summary of Data Sources for Stock Assessments for the Species in the Nearshore Fisheries Management Plan (NFMP) Teresa Ish1,2 Meisha Key3 Yasmin Lucero1 1 Center for Stock Assessment Research (CSTAR), Department of Applied Mathematics and Statistics, UC Santa Cruz, Santa Cruz, CA 95064 2 Also with Sustainable Fishery Advocates, P.O. Box 233, Santa Cruz, CA 95061 3 California Department of Fish and Game, 20 Lower Ragsdale Drive, #100 Monterey, CA 93940 February 1, 2005 Table of Contents Scope and structure of report 1 Table 1: Ranking of species by data richness 2 Descriptions of data sources 3 Table 2: Summary of data by data source 10 Individual species reports and data summary tables Black rockfish (Sebastes melanops) 12 Black and yellow rockfish (Sebastes chrysomelas) 16 Blue rockfish (Sebastes mystinus) 20 Brown rockfish (Sebastes auriculatus) 24 Cabezon (Scorpaenichthys marmoratus) 28 Calico rockfish (Sebastes dalli) 32 China rockfish (Sebastes nebulosus) 35 Copper rockfish (Sebastes caurinus) 39 Gopher rockfish (Sebastes carnatus) 42 Grass rockfish (Sebastes rastrelliger) 46 Kelp greenling (Hexagrammos decagrammus) 50 Kelp rockfish (Sebastes atrovirens) 53 Monkeyface prickleback eel (Cebidichthys violaceus) 57 Olive rockfish (Sebastes serranoides) 60 Quillback rockfish (Sebastes maliger) 63 Rock greenling (Hexagrammos lagocephalus) 66 Scorpionfish (Scorpaena guttata) 68 Sheephead (Semicossyphus pulcher) 71 Treefish (Sebastes serriceps) 74 Scope and structure of report The purpose of this report is to summarize the data sources that are available for the 19 nearshore species identified in the Nearshore Fisheries Management Plan (NFMP), to provide a means for the California Fish and Game to determine which species have enough data to assess and where more data need to be collected.
    [Show full text]
  • (Scorpaeniformes, Scorpaenidae): GENOME CHARACT
    МОЛЕКУЛЯРНАЯ БИОЛОГИЯ, 2011, том 45, № 3, с. 434–445 ГЕНОМИКА. ТРАНСКРИПТОМИКА УДК 577.21 THE COMPLETE MITOCHONDRIAL GENOME OF THE MARBLED ROCKFISH Sebastiscus marmoratus (Scorpaeniformes, Scorpaenidae): GENOME CHARACTERIZATION AND PHYLOGENETIC CONSIDERATIONS © 2011 TianJun Xu, YuanZhi Cheng, XueZhu Liu, Ge Shi, RiXin Wang* Key Laboratory for Marine Living Resources and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, China Received April 02, 2010 Accepted for publication May 12, 2010 The complete mitochondrial genome sequence of the marbled rockfish Sebastiscus marmoratus (Scorpaeni formes, Scorpaenidae) was determined and phylogenetic analysis was conducted to elucidate the evolutionary relationship of the marbled rockfish with other Sebastinae species. This mitochondrial genome, consisting of 17301 bp, is highly similar to that of most other vertebrates, containing the same gene order and an identical number of genes or regions, including 13 proteincoding genes, two ribosomal RNAs, 22 transfer RNAs, and one putative control region. Most of the genes are encoded on the Hstrand, while the ND6 and seven tRNA genes (for Gln, Ala, Asn, Tyr, Ser (UCA), Glu, and Pro) are encoded on the Lstrand. The reading frame of two pairs of genes overlapped on the same strand (the ATPase 8 and 6 genes overlapped by ten nucleotides; ND4L and ND4 genes overlapped by seven nucleotides). The possibly nonfunctional lightstrand replication origin folded into a typical stemloop secondary structure and a conserved motif (5'GCCGG3') was found at the base of the stem within the tRNACys gene. An extent terminationassociated sequence (ETAS) and conserved sequence blocks (CSB) were identified in the control region, except for CSB1; unusual long tandem repeats were found at the 3' end of the control region.
    [Show full text]