Sequent Calculus Proof Systems for Inductive Definitions

Total Page:16

File Type:pdf, Size:1020Kb

Sequent Calculus Proof Systems for Inductive Definitions Sequent calculus proof systems for inductive definitions James Brotherston Doctor of Philosophy Laboratory for Foundations of Computer Science School of Informatics University of Edinburgh 2006 Abstract Inductive definitions are the most natural means by which to represent many families of struc- tures occurring in mathematics and computer science, and their corresponding induction / re- cursion principles provide the fundamental proof techniques by which to reason about such families. This thesis studies formal proof systems for inductive definitions, as needed, e.g., for inductive proof support in automated theorem proving tools. The systems are formulated as sequent calculi for classical first-order logic extended with a framework for (mutual) inductive definitions. The default approach to reasoning with inductive definitions is to formulate the induction principles of the inductively defined relations as suitable inference rules or axioms, which are incorporated into the reasoning framework of choice. Our first system LKID adopts this direct approach to inductive proof, with the induction rules formulated as rules for introducing atomic formulas involving inductively defined predicates on the left of sequents. We show this system to be sound and cut-free complete with respect to a natural class of Henkin models. As a corollary, we obtain cut-admissibility for LKID. The well-known method of infinite descent `ala Fermat, which exploits the fact that there are no infinite descending chains of elements of well-ordered sets, provides an alternative approach to reasoning with inductively defined relations. Our second proof system LKIDω formalises this approach. In this system, the left-introduction rules for formulas involving inductively defined predicates are not induction rules but simple case distinction rules, and an infinitary, global soundness condition on proof trees — formulated in terms of “traces” on infinite paths in the tree — is required to ensure soundness. This condition essentially ensures that, for every infinite branch in the proof, there is an inductive definition that is unfolded infinitely often along the branch. By an infinite descent argument based upon the well-foundedness of inductive definitions, the infinite branches of the proof can thus be disregarded, whence the remaining portion of proof is well-founded and hence sound. We show this system to be cut- free complete with respect to standard models, and again infer the admissibility of cut. The infinitary system LKIDω is unsuitable for formal reasoning. However, it has a natural restriction to proofs given by regular trees, i.e. to those proofs representable by finite graphs. This restricted “cyclic” proof system, CLKIDω, is suitable for formal reasoning since proofs have finite representations and the soundness condition on proofs is thus decidable. We show how the formulation of our systems LKIDω and CLKIDω can be generalised to obtain soundness conditions for a general class of infinite proof systems and their correspond- ing cyclic restrictions. We provide machinery for manipulating and analysing the structure of proofs in these essentially arbitrary cyclic systems, based primarily on viewing them as gen- erating regular infinite trees, and we show that any proof can be converted into an equivalent proof with a restricted cycle structure. For proofs in this “cycle normal form”, a finitary, lo- i calised soundness condition exists that is strictly stronger than the general, infinitary soundness condition, but provides more explicit information about the proof. Finally, returning to the specific setting of our systems for inductive definitions, we show that any LKID proof can be transformed into a CLKIDω proof (that, in fact, satisfies the finitary soundness condition). We conjecture that the two systems are in fact equivalent, i.e. that proof by induction is equivalent to regular proof by infinite descent. ii Acknowledgements I owe a debt of thanks — and in some cases, money — to several people and organisations without whom this thesis would not exist. First, and foremost, I should like to extend my sincerest gratitude and respect to my super- visor, Alex Simpson. Alex contributed technical advice, ideas, references, culture, detailed and constructive feedback, and personal support, and generally taught me an awful lot about how to be a researcher. It’s a real privilege to have been his student, and I can only hope that some of his insight and critical ability turns out to have rubbed off on me. I should also like to thank my second supervisor Alan Smaill, and Alberto Momigliano who acted as my second supervisor while Alan was on sabbatical for a year. I am also grateful to my PhD advisory panel, which consisted of the two aforementioned gentlemen and also Alan Bundy, for providing useful annual feedback on my overall progress. I would like to especially thank Ren´eVestergaard for introducing me to academic research in the first place, as well as hosting me on a visit to JAIST in October 2004, and offering many useful pieces of advice during our acquaintance. I’m also indebted to colleagues and those in the academic community who offered helpful discussions, references and advice including (but probably not limited to) Lucas Dixon, Ross Duncan, Peter Dybjer, Roy Dyckhoff, Jeremy Gow, Geoff Hamilton, Conor McBride, Dale Miller, Sara Negri, Claus Peter-Wirth, Frank Pfenning, and Christoph Sprenger, as well as those mentioned previously. This PhD was made possible in the first place by the LFCS in the School of Informatics — who hosted me and provided a first-class research environment, as well as office space and logistical support — and by EPSRC, who funded the first three years of the work through an EPSRC PhD studentship. For the period thereafter, I would like to extend my gratitude to the the University of Edinburgh Hardship Fund (a charitable organisation), who were able to provide help when it was most needed, and to the generous people who fed me and bought me drinks. The figures appearing in this thesis were produced with Paul Gastin’s gastex package (for LaTeX), and the sequent calculus proofs were produced using Paul Taylor’s prooftree package. Both are excellent, as is the WinEdt program I used for editing the thesis. I would like to sincerely thank my friends and family for all their support, particularly during the long and fraught writing-up period. By writing a long list I run the very real risk of accidentally leaving someone out, so I will simply say that you all know who you are: thank you and I’ll buy you a beer. Having said that, there is nevertheless one very special person who deserves a proper men- tion. Jennie Fraser has been doing her utmost to keep me sane and solvent for the last couple of years, and I can’t thank her enough for all her love and support, except perhaps by offering all mine in return. Thank you, Jennie. iii Declaration I declare that this thesis was composed by myself, that the work contained herein is my own except where explicitly stated otherwise in the text, and that this work has not been submitted for any other degree or professional qualification except as specified. (James Brotherston) iv Table of Contents 1 Introduction 1 1.1 Overview ..................................... 1 1.2 Mathematical induction . ... 2 1.3 Infinitedescent .................................. 6 1.4 Ourapproach ................................... 9 1.5 Synopsis...................................... 12 2 First-order logic with inductive definitions (FOLID) 15 2.1 First-order logic with equality . ...... 16 2.2 Inductive definitions and standard semantics for FOLID ............. 20 2.3 Henkin semantics for FOLID ........................... 26 3 LKID: a proof system for explicit induction in FOLID 36 3.1 Sequent calculus proof rules for FOLID ..................... 37 3.2 HenkinsoundnessofLKID. 44 3.3 Cut-free Henkin completeness of LKID . ..... 51 3.4 LKID, second-order logic, and Peano arithmetic . .......... 65 3.4.1 Embedding LKID in L2K ........................ 65 3.4.2 LKIDandPeanoarithmetic . 69 ω 4 LKID : a proof system for infinite descent in FOLID 72 4.1 Sequent calculus proof rules for LKIDω ..................... 73 4.2 Infinite proofs in LKIDω ............................. 77 4.2.1 Generalised trace-based infinite proof systems . ......... 81 4.3 Cut-free completeness of LKIDω ......................... 83 5 Cyclic proofs in trace-based infinitary proof systems 94 5.1 The cyclic restriction of a trace-based infinitary proof system . 95 ω 5.2 CLKID : a cyclic proof system for FOLID .................... 99 v 6 Cycle normalisation for cyclic proofs 103 6.1 Tree-unfolding equivalence on cyclic proofs . ..........104 6.2 Cycle normalisation via tree-unfoldings . .........109 6.3 Cycle normalisation via iterated unfoldings . ..........113 7 Trace manifolds 121 7.1 Analysing the general trace condition . .......122 7.2 Tracemanifolds.................................. 126 7.3 Translation of LKID into CLKIDω ........................134 7.3.1 The Sprenger-Dam translation from global to local proof in the µ-calculus139 7.3.2 Connections with Walukiewicz’ completeness for the µ-calculus . 141 8 Conclusions 144 8.1 Summary of our contributions . 144 8.2 Futurework....................................145 A Decidability of proof in trace-based cyclic proof systems 147 Bibliography 155 vi Chapter 1 Introduction 1.1 Overview Inductive definitions are frequently encountered throughout mathematics and computer sci- ence, and the corresponding use of inductive proof methods to reason about inductively defined structures constitutes a fundamental part of mathematical reasoning. In all cases the aim of in- ductive reasoning is to exploit recursion in the definition of the inductively defined structures under consideration in order to prove general properties about those structures. The canonical example of an inductively defined structure occurring in mathematics is the set N of natural numbers, which can be given by the following inductive definition: 0 is a natural number; • if n is a natural number, then so is s(n) (the successor of n, i.e. n + 1). • Mathematical reasoning about inductively defined structures is most often formulated in one of two main styles.
Recommended publications
  • Sequent Calculus and the Specification of Computation
    Sequent Calculus and the Specification of Computation Lecture Notes Draft: 5 September 2001 These notes are being used with lectures for CSE 597 at Penn State in Fall 2001. These notes had been prepared to accompany lectures given at the Marktoberdorf Summer School, 29 July – 10 August 1997 for a course titled “Proof Theoretic Specification of Computation”. An earlier draft was used in courses given between 27 January and 11 February 1997 at the University of Siena and between 6 and 21 March 1997 at the University of Genoa. A version of these notes was also used at Penn State for CSE 522 in Fall 2000. For the most recent version of these notes, contact the author. °c Dale Miller 321 Pond Lab Computer Science and Engineering Department The Pennsylvania State University University Park, PA 16802-6106 USA Office: +(814)865-9505 [email protected] http://www.cse.psu.edu/»dale Contents 1 Overview and Motivation 5 1.1 Roles for logic in the specification of computations . 5 1.2 Desiderata for declarative programming . 6 1.3 Relating algorithm and logic . 6 2 First-Order Logic 8 2.1 Types and signatures . 8 2.2 First-order terms and formulas . 8 2.3 Sequent calculus . 10 2.4 Classical, intuitionistic, and minimal logics . 10 2.5 Permutations of inference rules . 12 2.6 Cut-elimination . 12 2.7 Consequences of cut-elimination . 13 2.8 Additional readings . 13 2.9 Exercises . 13 3 Logic Programming Considered Abstractly 15 3.1 Problems with proof search . 15 3.2 Interpretation as goal-directed search .
    [Show full text]
  • Chapter 1 Preliminaries
    Chapter 1 Preliminaries 1.1 First-order theories In this section we recall some basic definitions and facts about first-order theories. Most proofs are postponed to the end of the chapter, as exercises for the reader. 1.1.1 Definitions Definition 1.1 (First-order theory) —A first-order theory T is defined by: A first-order language L , whose terms (notation: t, u, etc.) and formulas (notation: φ, • ψ, etc.) are constructed from a fixed set of function symbols (notation: f , g, h, etc.) and of predicate symbols (notation: P, Q, R, etc.) using the following grammar: Terms t ::= x f (t1,..., tk) | Formulas φ, ψ ::= t1 = t2 P(t1,..., tk) φ | | > | ⊥ | ¬ φ ψ φ ψ φ ψ x φ x φ | ⇒ | ∧ | ∨ | ∀ | ∃ (assuming that each use of a function symbol f or of a predicate symbol P matches its arity). As usual, we call a constant symbol any function symbol of arity 0. A set of closed formulas of the language L , written Ax(T ), whose elements are called • the axioms of the theory T . Given a closed formula φ of the language of T , we say that φ is derivable in T —or that φ is a theorem of T —and write T φ when there are finitely many axioms φ , . , φ Ax(T ) such ` 1 n ∈ that the sequent φ , . , φ φ (or the formula φ φ φ) is derivable in a deduction 1 n ` 1 ∧ · · · ∧ n ⇒ system for classical logic. The set of all theorems of T is written Th(T ). Conventions 1.2 (1) In this course, we only work with first-order theories with equality.
    [Show full text]
  • Theorem Proving in Classical Logic
    MEng Individual Project Imperial College London Department of Computing Theorem Proving in Classical Logic Supervisor: Dr. Steffen van Bakel Author: David Davies Second Marker: Dr. Nicolas Wu June 16, 2021 Abstract It is well known that functional programming and logic are deeply intertwined. This has led to many systems capable of expressing both propositional and first order logic, that also operate as well-typed programs. What currently ties popular theorem provers together is their basis in intuitionistic logic, where one cannot prove the law of the excluded middle, ‘A A’ – that any proposition is either true or false. In classical logic this notion is provable, and the_: corresponding programs turn out to be those with control operators. In this report, we explore and expand upon the research about calculi that correspond with classical logic; and the problems that occur for those relating to first order logic. To see how these calculi behave in practice, we develop and implement functional languages for propositional and first order logic, expressing classical calculi in the setting of a theorem prover, much like Agda and Coq. In the first order language, users are able to define inductive data and record types; importantly, they are able to write computable programs that have a correspondence with classical propositions. Acknowledgements I would like to thank Steffen van Bakel, my supervisor, for his support throughout this project and helping find a topic of study based on my interests, for which I am incredibly grateful. His insight and advice have been invaluable. I would also like to thank my second marker, Nicolas Wu, for introducing me to the world of dependent types, and suggesting useful resources that have aided me greatly during this report.
    [Show full text]
  • Propositional Calculus
    CSC 438F/2404F Notes Winter, 2014 S. Cook REFERENCES The first two references have especially influenced these notes and are cited from time to time: [Buss] Samuel Buss: Chapter I: An introduction to proof theory, in Handbook of Proof Theory, Samuel Buss Ed., Elsevier, 1998, pp1-78. [B&M] John Bell and Moshe Machover: A Course in Mathematical Logic. North- Holland, 1977. Other logic texts: The first is more elementary and readable. [Enderton] Herbert Enderton: A Mathematical Introduction to Logic. Academic Press, 1972. [Mendelson] E. Mendelson: Introduction to Mathematical Logic. Wadsworth & Brooks/Cole, 1987. Computability text: [Sipser] Michael Sipser: Introduction to the Theory of Computation. PWS, 1997. [DSW] M. Davis, R. Sigal, and E. Weyuker: Computability, Complexity and Lan- guages: Fundamentals of Theoretical Computer Science. Academic Press, 1994. Propositional Calculus Throughout our treatment of formal logic it is important to distinguish between syntax and semantics. Syntax is concerned with the structure of strings of symbols (e.g. formulas and formal proofs), and rules for manipulating them, without regard to their meaning. Semantics is concerned with their meaning. 1 Syntax Formulas are certain strings of symbols as specified below. In this chapter we use formula to mean propositional formula. Later the meaning of formula will be extended to first-order formula. (Propositional) formulas are built from atoms P1;P2;P3;:::, the unary connective :, the binary connectives ^; _; and parentheses (,). (The symbols :; ^ and _ are read \not", \and" and \or", respectively.) We use P; Q; R; ::: to stand for atoms. Formulas are defined recursively as follows: Definition of Propositional Formula 1) Any atom P is a formula.
    [Show full text]
  • Focusing in Linear Meta-Logic: Extended Report Vivek Nigam, Dale Miller
    Focusing in linear meta-logic: extended report Vivek Nigam, Dale Miller To cite this version: Vivek Nigam, Dale Miller. Focusing in linear meta-logic: extended report. [Research Report] Maybe this file need a better style. Specially the proofs., 2008. inria-00281631 HAL Id: inria-00281631 https://hal.inria.fr/inria-00281631 Submitted on 24 May 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Focusing in linear meta-logic: extended report Vivek Nigam and Dale Miller INRIA & LIX/Ecole´ Polytechnique, Palaiseau, France nigam at lix.polytechnique.fr dale.miller at inria.fr May 24, 2008 Abstract. It is well known how to use an intuitionistic meta-logic to specify natural deduction systems. It is also possible to use linear logic as a meta-logic for the specification of a variety of sequent calculus proof systems. Here, we show that if we adopt different focusing annotations for such linear logic specifications, a range of other proof systems can also be specified. In particular, we show that natural deduction (normal and non-normal), sequent proofs (with and without cut), tableaux, and proof systems using general elimination and general introduction rules can all be derived from essentially the same linear logic specification by altering focusing annotations.
    [Show full text]
  • On Synthetic Undecidability in Coq, with an Application to the Entscheidungsproblem
    On Synthetic Undecidability in Coq, with an Application to the Entscheidungsproblem Yannick Forster Dominik Kirst Gert Smolka Saarland University Saarland University Saarland University Saarbrücken, Germany Saarbrücken, Germany Saarbrücken, Germany [email protected] [email protected] [email protected] Abstract like decidability, enumerability, and reductions are avail- We formalise the computational undecidability of validity, able without reference to a concrete model of computation satisfiability, and provability of first-order formulas follow- such as Turing machines, general recursive functions, or ing a synthetic approach based on the computation native the λ-calculus. For instance, representing a given decision to Coq’s constructive type theory. Concretely, we consider problem by a predicate p on a type X, a function f : X ! B Tarski and Kripke semantics as well as classical and intu- with 8x: p x $ f x = tt is a decision procedure, a function itionistic natural deduction systems and provide compact д : N ! X with 8x: p x $ ¹9n: д n = xº is an enumer- many-one reductions from the Post correspondence prob- ation, and a function h : X ! Y with 8x: p x $ q ¹h xº lem (PCP). Moreover, developing a basic framework for syn- for a predicate q on a type Y is a many-one reduction from thetic computability theory in Coq, we formalise standard p to q. Working formally with concrete models instead is results concerning decidability, enumerability, and reducibil- cumbersome, given that every defined procedure needs to ity without reference to a concrete model of computation. be shown representable by a concrete entity of the model.
    [Show full text]
  • The Sequent Calculus
    Chapter udf The Sequent Calculus This chapter presents Gentzen's standard sequent calculus LK for clas- sical first-order logic. It could use more examples and exercises. To include or exclude material relevant to the sequent calculus as a proof system, use the \prfLK" tag. seq.1 Rules and Derivations fol:seq:rul: For the following, let Γ; ∆, Π; Λ represent finite sequences of sentences. sec Definition seq.1 (Sequent). A sequent is an expression of the form Γ ) ∆ where Γ and ∆ are finite (possibly empty) sequences of sentences of the lan- guage L. Γ is called the antecedent, while ∆ is the succedent. The intuitive idea behind a sequent is: if all of the sentences in the an- explanation tecedent hold, then at least one of the sentences in the succedent holds. That is, if Γ = h'1;:::;'mi and ∆ = h 1; : : : ; ni, then Γ ) ∆ holds iff ('1 ^ · · · ^ 'm) ! ( 1 _···_ n) holds. There are two special cases: where Γ is empty and when ∆ is empty. When Γ is empty, i.e., m = 0, ) ∆ holds iff 1 _···_ n holds. When ∆ is empty, i.e., n = 0, Γ ) holds iff :('1 ^ · · · ^ 'm) does. We say a sequent is valid iff the corresponding sentence is valid. If Γ is a sequence of sentences, we write Γ; ' for the result of appending ' to the right end of Γ (and '; Γ for the result of appending ' to the left end of Γ ). If ∆ is a sequence of sentences also, then Γ; ∆ is the concatenation of the two sequences. 1 Definition seq.2 (Initial Sequent).
    [Show full text]
  • Sequent Calculus for Predicate Logic
    CHAPTER 13 Sequent calculus for predicate logic 1. Classical sequent calculus The axioms and rules of the classical sequent calculus are: Γ;' ) ∆;' for atomic ' Axioms Γ; ?) ∆ Left Right ^ Γ,α1,α2)∆ Γ)β1;∆ Γ)β2;∆ Γ,α1^α2)∆ Γ)β1^β2;∆ Γ,β1)∆ Γ,β2)∆ Γ)α1,α2;∆ _ Γ,β1_β2)∆ Γ)α1_α2;∆ ! Γ)∆,β1 Γ,β2)∆ Γ,α1)α2;∆ Γ,β1!β2)∆ Γ)α1!α2;∆ Γ;'[t=x])∆ Γ)∆;'[y=x] 8 Γ;8x ')∆ Γ)∆;8x ' Γ;'[y=x])∆ Γ)∆;'[t=x] 9 Γ;9x ')∆ Γ)∆;9x ' The side condition in 9L and 8R is that the variable y may not occur in Γ; ∆ or ' (this variable is sometimes called an eigenvariable). In addition, we have the following cut rule: Γ ) '; ∆ Γ;' ) ∆ Γ ) ∆ We outline a proof of cut elimination. First a definition: Definition 1.1. The logical depth dp(') of a formula is defined inductively as follows: the logical depth of an atomic formula is 0, while the logical depth of ' is max(dp('); dp( ))+1. Finally, the logical depth of 8x ' or 9x ' is dp(') + 1. The rank rk(') of a formula ' will be defined as dp(') + 1. If there is an application of the cut rule Γ ) '; ∆ Γ;' ) ∆ ; Γ ) ∆ then we call ' a cut formula. If π is a derivation, then we define its cut rank to be 0, if it contains no cut formulas (i.e., is cut free). If, on the other hand, it contains applications of the 1 2 13. SEQUENT CALCULUS FOR PREDICATE LOGIC cut rule, then we define the cut rank of π to be the rank of any cut formula in π which has greatest possible rank.
    [Show full text]
  • Set Theory As a Computational Logic: I
    Set Theory as a Computational Logic: I. From Foundations to Functions¤ Lawrence C. Paulson Computer Laboratory University of Cambridge 4 November 1992 Abstract Zermelo-Fraenkel (ZF) set theory is widely regarded as unsuitable for au- tomated reasoning. But a computational logic has been formally derived from the ZF axioms using Isabelle. The library of theorems and derived rules, with Isabelle's proof tools, support a natural style of proof. The paper describes the derivation of rules for descriptions, relations and functions, and discusses interactive proofs of Cantor's Theorem, the Composition of Homomorphisms challenge [3], and Ramsey's Theorem [2]. Copyright c 1992 by Lawrence C. Paulson ¤Research funded by SERC grant GR/G53279 and by the ESPRIT Basic Research Action 3245 `Logical Frameworks'. Isabelle has enjoyed long-standing support from the British SERC, dating from the Alvey Programme (grant GR/E0355.7). Contents 1 Introduction 1 2 Isabelle 1 3 Set theory 3 3.1 Which axiom system? ::::::::::::::::::::::::::: 4 3.2 The Zermelo-Fraenkel axioms in Isabelle :::::::::::::::: 4 3.3 Natural deduction rules for set theory :::::::::::::::::: 5 3.4 A simpli¯ed form of Replacement :::::::::::::::::::: 6 3.5 Functional Replacement ::::::::::::::::::::::::: 6 3.6 Separation ::::::::::::::::::::::::::::::::: 7 4 Deriving a theory of functions 7 4.1 Finite sets and the boolean operators :::::::::::::::::: 7 4.2 Descriptions :::::::::::::::::::::::::::::::: 8 4.3 Ordered pairs ::::::::::::::::::::::::::::::: 8 4.4 Cartesian products ::::::::::::::::::::::::::::
    [Show full text]
  • Second-Order Classical Sequent Calculus
    Second-Order Classical Sequent Calculus Philip Johnson-Freyd Abstract We present a sequent calculus that allows to abstract over a type variable. The introduction of the abstraction on the right-hand side of a sequent corresponds to the universal quantification; whereas, the introduction of the abstraction on the left- hand side of a sequent corresponds to the existential quantification. The calculus provides a correspondence with second-order classical propositional logic. To show consistency of the logic and consequently of the type system, we prove the property of strong normalization. The proof is based on an extension of the reducibility method, consisting of associating to each type two sets: a set of of strong normalizing terms and a set of strong normalizing co-terms. 1 Introduction A persistent challenge in programming language design is combining features. Many fea- tures have been proposed that are of interest individually, but the interplay of features can be non-obvious. Particularly troublesome can be efforts to intermix dynamic features such as powerful control operators with static features such as advanced type systems: How do we design a language which combines Scheme's continuations with ML's modules? How do C#'s generators interact with its generic types? Should the difference in evaluation order between ML and Haskell lead to differences in their type systems? In order to reason about programming languages, it is often helpful to design core calculi that exhibit the features we are interested in. By rigorously analyzing these calculi we can gain important insights of importance not just to language design and implementation but also to reasoning about programs.
    [Show full text]
  • Linear Logic As a Framework for Specifying Sequent Calculus
    LINEAR LOGIC AS A FRAMEWORK FOR SPECIFYING SEQUENT CALCULUS DALE MILLER AND ELAINE PIMENTEL Abstract. In recent years, intuitionistic logic and type systems have been used in numerous computational systems as frameworks for the specification of natural deduction proof systems. As we shall illustrate here, linear logic can be used similarly to specify the more general setting of sequent calculus proof systems. Linear logic’s meta theory can be used also to analyze properties of a specified object-level proof system. We shall present several example encodings of sequent calculus proof systems using the Forum presentation of linear logic. Since the object-level encodings result in logic programs (in the sense of Forum), various aspects of object-level proof systems can be automated. x1. Introduction. Logics and type systems have been exploited in recent years as frameworks for the specification of deduction in a number of logics. Such meta logics or logical frameworks have generally been based on intuitionis- tic logic in which quantification at (non-predicate) higher-order types is available. Identifying a framework that allows the specification of a wide range of logics has proved to be most practical since a single implementation of such a framework can then be used to provide various degrees of automation of object-logics. For example, Isabelle [26] and ¸Prolog [25] are implementations of an intuitionistic logic subset of Church’s Simple Theory of Types, while Elf [27] is an implementa- tion of a dependently typed ¸-calculus [16]. These computer systems have been used as meta languages to automate various aspects of various logics.
    [Show full text]
  • 0.1 Sequent Calculus
    0.1 Sequent Calculus Differences between ND and Sequent Calculus 1. Rules applies to sequents 2. connectives are always introduced 3. four kinds of rules: axioms, cut, structural rules, logical rules 0.1.1 Sequent Calculi LK and LJ Definition 0.1.1 (Sequent). A1,...,An ⊢ B. S S S Definition 0.1.2 (Inference Rule). 1 or 1 2 where S ,S ,S are sequents. S S 1 2 Definition 0.1.3 (Rules of the LJ sequent calculus). • Axioms: Γ ⊢ A (derivability assertion) if A ∈ Γ Γ ⊢ A Σ, A ⊢ B • Cut: (CUT) Γ, Σ ⊢ B • Structural Rules: Γ,B,A, ∆ ⊢ C (exchange,l) Γ,A,B, ∆ ⊢ C Γ ⊢ B Γ ⊢ (weakening,l) (weakening,r) empty RHS is a contradiction (⊥) Γ, A ⊢ B Γ ⊢ B Γ, A, A, ∆ ⊢ C (contraction,l) Γ, A, ∆ ⊢ C • Logical Rules: Γ, A ⊢ C Γ, B ⊢ C Γ ⊢ A1 Γ ⊢ A2 (∨,l) (∨,r)1 (∨,r)2 Γ, A ∨ B ⊢ C Γ ⊢ A1 ∨ A2 Γ ⊢ A1 ∨ A2 Γ, A1 ⊢ C Γ, A2 ⊢ C Γ ⊢ A Γ ⊢ B (∧,l)1 (∧,l)2 (∧,r) Γ, A1 ∧ A2 ⊢ C Γ, A1 ∧ A2 ⊢ C Γ ⊢ A ∧ B Γ, B ⊢ C Γ ⊢ A Γ, A ⊢ B (→,l) (→,r) Γ, A → B ⊢ C Γ ⊢ A → B Γ ⊢ A Γ, A ⊢ (¬,l) (¬,r) Γ, ¬A ⊢ Γ ⊢ ¬A 1 The calculus above is sound and complete for IL. Note that, except for (CUT), the following holds Corollary 0.1.1 (Subformula property). everything that appears in the rules’s premises appears in the conclusion To obtain a calculus for classical logic we need to introduce a rule corresponding to (RAA), such as Γ, ¬A ⊢ (RAA) Γ ⊢ A Example 0.1.1.
    [Show full text]