Introduction to Complexity

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Complexity Precise complexity classes Introduction to Complexity • DTIME(T(n)) = {problems that can be (part 2) solved deterministically in T(n) time} • NTIME(T(n)) = {problems that can be solved non-deterministically in T(n) time} • DSPACE(S(n)) = {problems that can be Richard Borie University of Alabama solved deterministically in S(n) space} November 18, 2005 • NSPACE(S(n)) = {problems that can be solved non-deterministically in S(n) space} General complexity classes Formal definitions k • P = deterministic polynomial time •P = ∪c≥0,k≥0 DTIME(cn ) k • NP = non-det. polynomial time •NP = ∪c≥0,k≥0 NTIME(cn ) k • PSPACE = det. polynomial space •PSPACE = ∪c≥0,k≥0 DSPACE(cn ) k • NPSPACE = non-det. polynomial space • NPSPACE = ∪c≥0,k≥0 NSPACE(cn ) nk • EXP = det. exponential time •EXP = ∪c≥0,k≥0 DTIME(c ) nk • NEXP = non-det. exponential time •NEXP = ∪c≥0,k≥0 NTIME(c ) nk • EXPSPACE = det. exponential space •EXPSPACE = ∪c≥0,k≥0 DSPACE(c ) nk • NEXPSPACE = non-det. exponential space • NEXPSPACE = ∪c≥0,k≥0 NSPACE(c ) Notes on time complexity Notes on space complexity • Precise time complexity is often affected • Precise space complexity is usually by the underlying model of computation independent of the model – Checking whether or not a string is a – Thus general space complexity is too 2 palindrome takes O(n ) time on a Turing • Space complexity is sometimes defined machine but only O(n) time on a random by ignoring the space used for the input access machine and/or output, so S(n)=o(n) is possible • However, general time complexity is – Only permitted if input is only read once, usually independent of the model and/or if output is not read after it’s written 2 –Both O(n) and O(n) are polynomial time, and – Assume a one-way read-only input stream so the problem is in class P either way and/or a one-way write-only output stream 1 Time-space relationships More time-space relationships Consider any function f(n) Consider any function f(n) ≥ lg n • DTIME(f(n)) ⊆ NTIME(f(n)) •NSPACE(f(n)) ⊆ DTIME(cf(n)) for some c –So P ⊆ NP and EXP ⊆ NEXP –So NPSPACE ⊆ EXP ⊆ 2 • NTIME(f(n)) ⊆ DSPACE(f(n)) •NSPACE(f(n)) DSPACE(f(n) ) –So NPSPACE ⊆ PSPACE and NEXPSPACE ⊆ ⊆ ⊆ –So NP PSPACE and NEXP EXPSPACE EXPSPACE •DSPACE(f(n)) ⊆ NSPACE(f(n)) • Putting it all together – So PSPACE ⊆ NPSPACE and EXPSPACE ⊆ –P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXP ⊆ NEXP NEXPSPACE ⊆ EXPSPACE = NEXPSPACE Constructible functions Hierarchy theorems •Function T(n) is time-constructible if •If T1(n) and T2(n) are time-constructible there exists a program P such that for functions such that limn→∞ T1(n)/T2(n) = 0, each n there exists input x of length n then there exists a language that is in such that P takes exactly T(n) time on DTIME(T2(n) lg T2(n) ) but not in input x DTIME(T1(n)) • Function S(n) is space-constructible if •If S1(n) and S2(n) are space-constructible there exists a program P such that for functions such that limn→∞ S1(n)/S2(n) = 0 each n there exists input x of length n and S2(n) ≥ lg n, then there exists a such that P takes exactly S(n) space on language that is in DSPACE(S2(n)) but not input x in DSPACE(S1(n)) Gap theorems Speed-up theorems Consider any function g(n) Consider any function g(n) [ex. g(n) = lg n] • There exists T(n) such that • There exists language L such that for any DTIME(T(n)) = DTIME(g(T(n))) program P1 for L, there exists program P2 • There exists T(n) such that for L and constant n0 such that TP2(n) ≤ NTIME(T(n)) = NTIME(g(T(n))) g(TP1(n)) for all n ≥ n0 • There exists S(n) such that • There exists language L such that for any DSPACE(S(n)) = DSPACE(g(S(n))) program P1 for L, there exists program P2 • There exists S(n) such that for L and constant n such that S (n) ≤ NSPACE(S(n)) = NSPACE(g(S(n))) 0 P2 g(SP1(n)) for all n ≥ n0 2 Union theorems Interesting but useless theorem Consider any set of functions {gk(n): k ≥ 0} • There exists a function h(n) such that such that g (n) ≥ g (n) for all k and n DTIME(h(n)) = NTIME(h(n)) = k+1 k DSPACE(h(n)) = NSPACE(h(n)). • There exists T(n) such that • Proof: For all functions f(n), ∪ DTIME(T(n)) = k≥0 DTIME(gk(n)) NSPACE(f(n)) ⊆ DTIME(cf(n)) ⊆ • There exists S(n) such that NTIME(cf(n)) ⊆ DSPACE(cf(n)) ⊆ f(n) f(n) DSPACE(S(n)) = ∪k≥0 DSPACE(gk(n))) NSPACE(c ) ⊆ NSPACE(f(n) ). Letting g(n)=nn in the gap theorem, NSPACE(f(n)) = NSPACE(f(n)f(n)) for some f(n), so let h(n) = f(n)f(n). Defining other complexity classes Other complexity classes • Let C = any complexity class •Examples – co-C = {complements of problems in C} – co-PSPACE – C-easy = {problems Q such that Q ≤T Q’ –EXP-easy for some Q’ ∈ C} – NEXPSPACE-hard – C-hard = {problems Q such that Q’ ≤T Q – P-complete (defined using log-space for some Q’ ∈ C-complete} reductions) – C-complete = {problems Q∈C such that for all Q’∈C, there exists Q’ ≤m Q} • Each of the above reductions can be defined as taking either polynomial-time (Q’ ≤ P Q) or logarithmic-space (Q’ ≤ log Q) More about oracles Some observations • Can you prove each of these statements? • Let C, D = any complexity classes – If P=NP then NP=co-NP • Recall DQ = {Q’ : Q’ ≤ D Q} • Note: the converse is not necessarily true T – If P=NP then P=NP∩co-NP – Q denotes a problem solved by an oracle • Note: the converse is not necessarily true • Also recall DC = ∪ {DQ : Q∈C} – If NP=co-NP and P=NP∩co-NP then P=NP • Theorem: DQ = DC if Q is C-complete • Each of P=NP, NP=co-NP, and P=NP∩co-NP is an important unresolved question •Example: PNP = PSAT NP PSPACE QBF co-NP •Example: NP = NP P NP-complete co-NP-complete 3 Why are P=NP, NP=co-NP, and Future topics in complexity P=NP∩co-NP difficult to resolve? • All the theorems discussed today • Counting classes such as #P, ⊕P continue to hold when DTIME, NSPACE, • Randomized classes RP, ZPP, PP, BPP etc. are extended to oracle machines • Interactive and zero-knowledge proofs • But oracles U,V,W,X,Y,Z exist such that • Non-approximability –PU = NPU and PV ≠ NPV –NPW = co-NPW and NPX ≠ co-NPX • Classes inside P –PY = NPY ∩ co-NPY and PZ ≠ NPZ ∩ co-NPZ – LOGTIME, LOGSPACE • So none of today’s results will be any help – Parallel classes NC, AC, SC to resolve these open questions • New proof techniques are needed 4.
Recommended publications
  • CS601 DTIME and DSPACE Lecture 5 Time and Space Functions: T, S
    CS601 DTIME and DSPACE Lecture 5 Time and Space functions: t, s : N → N+ Definition 5.1 A set A ⊆ U is in DTIME[t(n)] iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. A = L(M) ≡ w ∈ U M(w)=1 , and 2. ∀w ∈ U, M(w) halts within c · t(|w|) steps. Definition 5.2 A set A ⊆ U is in DSPACE[s(n)] iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. A = L(M), and 2. ∀w ∈ U, M(w) uses at most c · s(|w|) work-tape cells. (Input tape is “read-only” and not counted as space used.) Example: PALINDROMES ∈ DTIME[n], DSPACE[n]. In fact, PALINDROMES ∈ DSPACE[log n]. [Exercise] 1 CS601 F(DTIME) and F(DSPACE) Lecture 5 Definition 5.3 f : U → U is in F (DTIME[t(n)]) iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. f = M(·); 2. ∀w ∈ U, M(w) halts within c · t(|w|) steps; 3. |f(w)|≤|w|O(1), i.e., f is polynomially bounded. Definition 5.4 f : U → U is in F (DSPACE[s(n)]) iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. f = M(·); 2. ∀w ∈ U, M(w) uses at most c · s(|w|) work-tape cells; 3. |f(w)|≤|w|O(1), i.e., f is polynomially bounded. (Input tape is “read-only”; Output tape is “write-only”.
    [Show full text]
  • Interactive Proof Systems and Alternating Time-Space Complexity
    Theoretical Computer Science 113 (1993) 55-73 55 Elsevier Interactive proof systems and alternating time-space complexity Lance Fortnow” and Carsten Lund** Department of Computer Science, Unicersity of Chicago. 1100 E. 58th Street, Chicago, IL 40637, USA Abstract Fortnow, L. and C. Lund, Interactive proof systems and alternating time-space complexity, Theoretical Computer Science 113 (1993) 55-73. We show a rough equivalence between alternating time-space complexity and a public-coin interactive proof system with the verifier having a polynomial-related time-space complexity. Special cases include the following: . All of NC has interactive proofs, with a log-space polynomial-time public-coin verifier vastly improving the best previous lower bound of LOGCFL for this model (Fortnow and Sipser, 1988). All languages in P have interactive proofs with a polynomial-time public-coin verifier using o(log’ n) space. l All exponential-time languages have interactive proof systems with public-coin polynomial-space exponential-time verifiers. To achieve better bounds, we show how to reduce a k-tape alternating Turing machine to a l-tape alternating Turing machine with only a constant factor increase in time and space. 1. Introduction In 1981, Chandra et al. [4] introduced alternating Turing machines, an extension of nondeterministic computation where the Turing machine can make both existential and universal moves. In 1985, Goldwasser et al. [lo] and Babai [l] introduced interactive proof systems, an extension of nondeterministic computation consisting of two players, an infinitely powerful prover and a probabilistic polynomial-time verifier. The prover will try to convince the verifier of the validity of some statement.
    [Show full text]
  • Jonas Kvarnström Automated Planning Group Department of Computer and Information Science Linköping University
    Jonas Kvarnström Automated Planning Group Department of Computer and Information Science Linköping University What is the complexity of plan generation? . How much time and space (memory) do we need? Vague question – let’s try to be more specific… . Assume an infinite set of problem instances ▪ For example, “all classical planning problems” . Analyze all possible algorithms in terms of asymptotic worst case complexity . What is the lowest worst case complexity we can achieve? . What is asymptotic complexity? ▪ An algorithm is in O(f(n)) if there is an algorithm for which there exists a fixed constant c such that for all n, the time to solve an instance of size n is at most c * f(n) . Example: Sorting is in O(n log n), So sorting is also in O( ), ▪ We can find an algorithm in O( ), and so on. for which there is a fixed constant c such that for all n, If we can do it in “at most ”, the time to sort n elements we can do it in “at most ”. is at most c * n log n Some problem instances might be solved faster! If the list happens to be sorted already, we might finish in linear time: O(n) But for the entire set of problems, our guarantee is O(n log n) So what is “a planning problem of size n”? Real World + current problem Abstraction Language L Approximation Planning Problem Problem Statement Equivalence P = (, s0, Sg) P=(O,s0,g) The input to a planner Planner is a problem statement The size of the problem statement depends on the representation! Plan a1, a2, …, an PDDL: How many characters are there in the domain and problem files? Now: The complexity of PLAN-EXISTENCE .
    [Show full text]
  • EXPSPACE-Hardness of Behavioural Equivalences of Succinct One
    EXPSPACE-hardness of behavioural equivalences of succinct one-counter nets Petr Janˇcar1 Petr Osiˇcka1 Zdenˇek Sawa2 1Dept of Comp. Sci., Faculty of Science, Palack´yUniv. Olomouc, Czech Rep. [email protected], [email protected] 2Dept of Comp. Sci., FEI, Techn. Univ. Ostrava, Czech Rep. [email protected] Abstract We note that the remarkable EXPSPACE-hardness result in [G¨oller, Haase, Ouaknine, Worrell, ICALP 2010] ([GHOW10] for short) allows us to answer an open complexity ques- tion for simulation preorder of succinct one counter nets (i.e., one counter automata with no zero tests where counter increments and decrements are integers written in binary). This problem, as well as bisimulation equivalence, turn out to be EXPSPACE-complete. The technique of [GHOW10] was referred to by Hunter [RP 2015] for deriving EXPSPACE-hardness of reachability games on succinct one-counter nets. We first give a direct self-contained EXPSPACE-hardness proof for such reachability games (by adjust- ing a known PSPACE-hardness proof for emptiness of alternating finite automata with one-letter alphabet); then we reduce reachability games to (bi)simulation games by using a standard “defender-choice” technique. 1 Introduction arXiv:1801.01073v1 [cs.LO] 3 Jan 2018 We concentrate on our contribution, without giving a broader overview of the area here. A remarkable result by G¨oller, Haase, Ouaknine, Worrell [2] shows that model checking a fixed CTL formula on succinct one-counter automata (where counter increments and decre- ments are integers written in binary) is EXPSPACE-hard. Their proof is interesting and nontrivial, and uses two involved results from complexity theory.
    [Show full text]
  • Probabilistically Checkable Proofs Over the Reals
    Electronic Notes in Theoretical Computer Science 123 (2005) 165–177 www.elsevier.com/locate/entcs Probabilistically Checkable Proofs Over the Reals Klaus Meer1 ,2 Department of Mathematics and Computer Science Syddansk Universitet, Campusvej 55, 5230 Odense M, Denmark Abstract Probabilistically checkable proofs (PCPs) have turned out to be of great importance in complexity theory. On the one hand side they provide a new characterization of the complexity class NP, on the other hand they show a deep connection to approximation results for combinatorial optimization problems. In this paper we study the notion of PCPs in the real number model of Blum, Shub, and Smale. The existence of transparent long proofs for the real number analogue NPR of NP is discussed. Keywords: PCP, real number model, self-testing over the reals. 1 Introduction One of the most important and influential results in theoretical computer science within the last decade is the PCP theorem proven by Arora et al. in 1992, [1,2]. Here, PCP stands for probabilistically checkable proofs, a notion that was further developed out of interactive proofs around the end of the 1980’s. The PCP theorem characterizes the class NP in terms of languages accepted by certain so-called verifiers, a particular version of probabilistic Turing machines. It allows to stabilize verification procedures for problems in NP in the following sense. Suppose for a problem L ∈ NP and a problem 1 partially supported by the EU Network of Excellence PASCAL Pattern Analysis, Statis- tical Modelling and Computational Learning and by the Danish Natural Science Research Council SNF. 2 Email: [email protected] 1571-0661/$ – see front matter © 2005 Elsevier B.V.
    [Show full text]
  • The Complexity Zoo
    The Complexity Zoo Scott Aaronson www.ScottAaronson.com LATEX Translation by Chris Bourke [email protected] 417 classes and counting 1 Contents 1 About This Document 3 2 Introductory Essay 4 2.1 Recommended Further Reading ......................... 4 2.2 Other Theory Compendia ............................ 5 2.3 Errors? ....................................... 5 3 Pronunciation Guide 6 4 Complexity Classes 10 5 Special Zoo Exhibit: Classes of Quantum States and Probability Distribu- tions 110 6 Acknowledgements 116 7 Bibliography 117 2 1 About This Document What is this? Well its a PDF version of the website www.ComplexityZoo.com typeset in LATEX using the complexity package. Well, what’s that? The original Complexity Zoo is a website created by Scott Aaronson which contains a (more or less) comprehensive list of Complexity Classes studied in the area of theoretical computer science known as Computa- tional Complexity. I took on the (mostly painless, thank god for regular expressions) task of translating the Zoo’s HTML code to LATEX for two reasons. First, as a regular Zoo patron, I thought, “what better way to honor such an endeavor than to spruce up the cages a bit and typeset them all in beautiful LATEX.” Second, I thought it would be a perfect project to develop complexity, a LATEX pack- age I’ve created that defines commands to typeset (almost) all of the complexity classes you’ll find here (along with some handy options that allow you to conveniently change the fonts with a single option parameters). To get the package, visit my own home page at http://www.cse.unl.edu/~cbourke/.
    [Show full text]
  • Complexity Theory
    Complexity Theory Course Notes Sebastiaan A. Terwijn Radboud University Nijmegen Department of Mathematics P.O. Box 9010 6500 GL Nijmegen the Netherlands [email protected] Copyright c 2010 by Sebastiaan A. Terwijn Version: December 2017 ii Contents 1 Introduction 1 1.1 Complexity theory . .1 1.2 Preliminaries . .1 1.3 Turing machines . .2 1.4 Big O and small o .........................3 1.5 Logic . .3 1.6 Number theory . .4 1.7 Exercises . .5 2 Basics 6 2.1 Time and space bounds . .6 2.2 Inclusions between classes . .7 2.3 Hierarchy theorems . .8 2.4 Central complexity classes . 10 2.5 Problems from logic, algebra, and graph theory . 11 2.6 The Immerman-Szelepcs´enyi Theorem . 12 2.7 Exercises . 14 3 Reductions and completeness 16 3.1 Many-one reductions . 16 3.2 NP-complete problems . 18 3.3 More decision problems from logic . 19 3.4 Completeness of Hamilton path and TSP . 22 3.5 Exercises . 24 4 Relativized computation and the polynomial hierarchy 27 4.1 Relativized computation . 27 4.2 The Polynomial Hierarchy . 28 4.3 Relativization . 31 4.4 Exercises . 32 iii 5 Diagonalization 34 5.1 The Halting Problem . 34 5.2 Intermediate sets . 34 5.3 Oracle separations . 36 5.4 Many-one versus Turing reductions . 38 5.5 Sparse sets . 38 5.6 The Gap Theorem . 40 5.7 The Speed-Up Theorem . 41 5.8 Exercises . 43 6 Randomized computation 45 6.1 Probabilistic classes . 45 6.2 More about BPP . 48 6.3 The classes RP and ZPP .
    [Show full text]
  • 5.2 Intractable Problems -- NP Problems
    Algorithms for Data Processing Lecture VIII: Intractable Problems–NP Problems Alessandro Artale Free University of Bozen-Bolzano [email protected] of Computer Science http://www.inf.unibz.it/˜artale 2019/20 – First Semester MSc in Computational Data Science — UNIBZ Some material (text, figures) displayed in these slides is courtesy of: Alberto Montresor, Werner Nutt, Kevin Wayne, Jon Kleinberg, Eva Tardos. A. Artale Algorithms for Data Processing Definition. P = set of decision problems for which there exists a poly-time algorithm. Problems and Algorithms – Decision Problems The Complexity Theory considers so called Decision Problems. • s Decision• Problem. X Input encoded asX a finite“yes” binary string ; • Decision ProblemA : Is conceived asX a set of strings on whichs the answer to the decision problem is ; yes if s ∈ X Algorithm for a decision problemA s receives an input string , and no if s 6∈ X ( ) = A. Artale Algorithms for Data Processing Problems and Algorithms – Decision Problems The Complexity Theory considers so called Decision Problems. • s Decision• Problem. X Input encoded asX a finite“yes” binary string ; • Decision ProblemA : Is conceived asX a set of strings on whichs the answer to the decision problem is ; yes if s ∈ X Algorithm for a decision problemA s receives an input string , and no if s 6∈ X ( ) = Definition. P = set of decision problems for which there exists a poly-time algorithm. A. Artale Algorithms for Data Processing Towards NP — Efficient Verification • • The issue here is the3-SAT contrast between finding a solution Vs. checking a proposed solution.I ConsiderI for example : We do not know a polynomial-time algorithm to find solutions; but Checking a proposed solution can be easily done in polynomial time (just plug 0/1 and check if it is a solution).
    [Show full text]
  • Complexity-Adjustable SC Decoding of Polar Codes for Energy Consumption Reduction
    Complexity-adjustable SC decoding of polar codes for energy consumption reduction Citation for published version (APA): Zheng, H., Chen, B., Abanto-Leon, L. F., Cao, Z., & Koonen, T. (2019). Complexity-adjustable SC decoding of polar codes for energy consumption reduction. IET Communications, 13(14), 2088-2096. https://doi.org/10.1049/iet-com.2018.5643 DOI: 10.1049/iet-com.2018.5643 Document status and date: Published: 27/08/2019 Document Version: Accepted manuscript including changes made at the peer-review stage Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Simple Doubly-Efficient Interactive Proof Systems for Locally
    Electronic Colloquium on Computational Complexity, Revision 3 of Report No. 18 (2017) Simple doubly-efficient interactive proof systems for locally-characterizable sets Oded Goldreich∗ Guy N. Rothblumy September 8, 2017 Abstract A proof system is called doubly-efficient if the prescribed prover strategy can be implemented in polynomial-time and the verifier’s strategy can be implemented in almost-linear-time. We present direct constructions of doubly-efficient interactive proof systems for problems in P that are believed to have relatively high complexity. Specifically, such constructions are presented for t-CLIQUE and t-SUM. In addition, we present a generic construction of such proof systems for a natural class that contains both problems and is in NC (and also in SC). The proof systems presented by us are significantly simpler than the proof systems presented by Goldwasser, Kalai and Rothblum (JACM, 2015), let alone those presented by Reingold, Roth- blum, and Rothblum (STOC, 2016), and can be implemented using a smaller number of rounds. Contents 1 Introduction 1 1.1 The current work . 1 1.2 Relation to prior work . 3 1.3 Organization and conventions . 4 2 Preliminaries: The sum-check protocol 5 3 The case of t-CLIQUE 5 4 The general result 7 4.1 A natural class: locally-characterizable sets . 7 4.2 Proof of Theorem 1 . 8 4.3 Generalization: round versus computation trade-off . 9 4.4 Extension to a wider class . 10 5 The case of t-SUM 13 References 15 Appendix: An MA proof system for locally-chracterizable sets 18 ∗Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel.
    [Show full text]
  • Computational Complexity Theory
    500 COMPUTATIONAL COMPLEXITY THEORY A. M. Turing, Collected Works: Mathematical Logic, R. O. Gandy and C. E. M. Yates (eds.), Amsterdam, The Nethrelands: Elsevier, Amsterdam, New York, Oxford, 2001. S. BARRY COOPER University of Leeds Leeds, United Kingdom COMPUTATIONAL COMPLEXITY THEORY Complexity theory is the part of theoretical computer science that attempts to prove that certain transformations from input to output are impossible to compute using a reasonable amount of resources. Theorem 1 below illus- trates the type of ‘‘impossibility’’ proof that can sometimes be obtained (1); it talks about the problem of determining whether a logic formula in a certain formalism (abbreviated WS1S) is true. Theorem 1. Any circuit of AND,OR, and NOT gates that takes as input a WS1S formula of 610 symbols and outputs a bit that says whether the formula is true must have at least 10125gates. This is a very compelling argument that no such circuit will ever be built; if the gates were each as small as a proton, such a circuit would fill a sphere having a diameter of 40 billion light years! Many people conjecture that somewhat similar intractability statements hold for the problem of factoring 1000-bit integers; many public-key cryptosys- tems are based on just such assumptions. It is important to point out that Theorem 1 is specific to a particular circuit technology; to prove that there is no efficient way to compute a function, it is necessary to be specific about what is performing the computation. Theorem 1 is a compelling proof of intractability precisely because every deterministic computer that can be pur- Yu.
    [Show full text]
  • Lecture 10: Space Complexity III
    Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Lecture 10: Space Complexity III Arijit Bishnu 27.03.2010 Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Outline 1 Space Complexity Classes: NL and L 2 Reductions 3 NL-completeness 4 The Relation between NL and coNL 5 A Relation Among the Complexity Classes Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Outline 1 Space Complexity Classes: NL and L 2 Reductions 3 NL-completeness 4 The Relation between NL and coNL 5 A Relation Among the Complexity Classes Definition for Recapitulation S c NPSPACE = c>0 NSPACE(n ). The class NPSPACE is an analog of the class NP. Definition L = SPACE(log n). Definition NL = NSPACE(log n). Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Space Complexity Classes Definition for Recapitulation S c PSPACE = c>0 SPACE(n ). The class PSPACE is an analog of the class P. Definition L = SPACE(log n). Definition NL = NSPACE(log n). Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Space Complexity Classes Definition for Recapitulation S c PSPACE = c>0 SPACE(n ). The class PSPACE is an analog of the class P. Definition for Recapitulation S c NPSPACE = c>0 NSPACE(n ).
    [Show full text]