Neuromuscular Update I

Total Page:16

File Type:pdf, Size:1020Kb

Neuromuscular Update I Neuromuscular Update I Kerry H. Levin MD Steven J. Shook MD Greg T. Carter, MD, MS Dianna Quan, MD James W. Teener, MD Mohammad K. Salajegheh, MD Anthony A. Amato, MD 2009 Neuromuscular Update Course C AANEM 56th Annual Meeting San Diego, California Copyright © October 2009 American Association of Neuromuscular & Electrodiagnostic Medicine 2621 Superior Drive NW Rochester, MN 55901 Printed by Johnson Printing Company, Inc. ii Neuromuscular Update I Faculty Anthony A. Amato, MD Kerry H. Levin, MD Department of Neurology Chairman, Department of Neurology Brigham and Women’s Hospital Director, Neuromuscular Center Harvard Medical School Cleveland Clinic Boston, Massachusetts Cleveland, Ohio Dr. Amato is the vice-chairman of the department of neurology and the Dr. Levin received his bachelor’s degree and his medical degree from Johns director of the neuromuscular division and clinical neurophysiology labo- Hopkins University in Baltimore, Maryland. He then performed a resi- ratory at Brigham and Women’s Hospital (BWH/MGH) in Boston. He is dency in internal medicine at University Hospitals of Cleveland, followed also professor of neurology at Harvard Medical School. He is the director by a neurology residency at the University of Chicago Hospitals, where he of the Partners Neuromuscular Medicine fellowship program. Dr. Amato served as chief resident. He is currently chairman of the Department of is an author or co-author on over 150 published articles, chapters, and Neurology and director of the Neuromuscular Center at Cleveland Clinic. books. He co-wrote the textbook Neuromuscular Disorders with Dr. James Dr. Levin is also professor of medicine at the Cleveland Clinic College Russell. He has been involved in clinical research trials involving patients of Medicine of Case Western Reserve University. His current research with amyotrophic lateral sclerosis, peripheral neuropathies, neuromuscular interests include electromyography, radiculopathy, myasthenia gravis, and junction disorders, and myopathies. polyneuropathy. Gregory T. Carter, MD, MS Dianna Quan, MD Professor of Rehabilitation Medicine Associate Professor University of Washington School of Medicine Department of Neurology Seattle, Washington University of Colorado Denver School of Medicine Dr. Carter is professor of rehabilitation medicine at the University of Aurora, Colorado Washington, where he helped found and now co-directs the Muscular Dr. Quan received her undergraduate degree from the University of Dystrophy Association/Amyotrophic Lateral Sclerosis Center. His clinical Chicago and her medical degree from Columbia University College of research focuses on improving rehabilitative and palliative management of Physicians and Surgeons. She completed her neurology residency and patients with neuromuscular disease (NMD), emphasizing function and fellowship training in neuromuscular disorders and electrodiagnosis at the quality of life. His pre-clinical research involves characterizing the electro- Hospital of the University of Pennsylvania. She is currently an associate physiology of mutant and transgenic murine models of NMD. He has professor of neurology at the University of Colorado Denver School of over 100 peer-reviewed publications in these areas. Medicine located in Aurora, Colorado, where she is program director of the neuromuscular medicine fellowship and director of the EMG labora- tory. She has been an active member of the AAN and AANEM and serves as a medical editor for the online e-Medicine Textbook of Neurology and a frequent ad hoc reviewer for Muscle & Nerve, among other journals. Her interests include peripheral neuropathy, ALS, and postherpetic neuralgia. No one involved in the planning of this CME activity had any relevant financial relationships to disclose. Authors/faculty have nothing to disclose. Course Chair: Gil I. Wolfe, MD The ideas and opinions expressed in this publication are solely those of the specific authors and do not necessarily represent those of the AANEM. iii Mohammad K. Salajegheh, MD James W. Teener, MD Department of Neurology Director Brigham and Women’s Hospital Neuromuscular Program Harvard Medical School Department of Neurology Boston, Massachusetts University of Michigan Health System Dr. Salajegheh received his medical degree from Tehran University of Ann Arbor, Michigan Medical Sciences in 1995 and completed his training in neurology at Dr. Teener is director of the neuromuscular program, co-director of the the University of Massachusetts Medical School in 2003. He finished EMG laboratory, and associate professor at the University of Michigan. four years of fellowship training in neuromuscular disease, two years He completed his residency in neurology and a neuromuscular fellowship at the National Institutes of Health and another two years at Brigham at the University of Pennsylvania. His research interests include neuro- and Women's hospital, and is board certified by the American Board of muscular disorders associated with critical illness and intensive care treat- Medical Specialties in both Neurology and Neuromuscular Medicine. He ment of severe neuromuscular disease. His clinical interests include the full is currently a member of the faculty at Harvard Medical School and a spectrum of neuromuscular disease. He collaborates widely and provides staff member in the Department of Neurology at Brigham and Women's electrodiagnostic expertise to a wide variety of research projects. Hospital. He is actively involved in clinical research on muscle channelo- pathies as well as both clinical and laboratory based research focused on studying the mechanisms of inflammatory myopathies. Steven J. Shook MD Staff Neuromuscular Center Cleveland Clinic Cleveland, Ohio Dr. Shook graduated summa cum laude from Ohio State University College of Medicine and Public Health in 2002. He completed an intern- ship in internal medicine at MetroHealth Medical Center in Cleveland, Ohio, followed by a neurology residency at the Cleveland Clinic, where he served as chief resident. After completing a fellowship in neuromuscular medicine he joined the Neuromuscular Center at Cleveland Clinic as staff in 2007. His specialty interests include electromyography, ultrasound of peripheral nerve and muscle, magnetic resonance neurography, peripheral nerve injury, entrapment neuropathies, and peripheral nerve tumors. iv Please be aware that some of the medical devices or pharmaceuticals discussed in this handout may not be cleared by the FDA or cleared by the FDA for the specific use described by the authors and are “off-label” (i.e., a use not described on the product’s label). “Off-label” devices or pharmaceuticals may be used if, in the judgement of the treating physician, such use is medically indi- cated to treat a patient’s condition. Information regarding the FDA clearance status of a particular device or pharmaceutical may be obtained by reading the product’s package labeling, by contacting a sales representative or legal counsel of the manufacturer of the device or pharmaceutical, or by contacting the FDA at 1-800-638-2041. v Neuromuscular Update I Contents Faculty ii Objectives v Course Committee vi Mononeuropathy: Postoperative Foot Drop 1 Kerry H. Levin MD; Steven J. Shook MD; Greg T. Carter, MD, MS Systemic Disease and Neuromuscular Disorders 7 Dianna Quan, MD; James W. Teener, MD Myotonic Disorders: Patient With Muscle Stiffness and Episodic Weakness 17 Mohammad K. Salajegheh, MD; Anthony A. Amato, MD O BJECTIVES — The overall objective of this two-part neuromuscular update course is to present participants with clinical cases in neuromuscular diseases. After attending both sessions, participants will learn how to diagnose, evaluate, and in some instances treat neuromuscular diseases. This course is an excellent review of neuromuscular medicine. Update I covers focal mononeuropathy, systemic disease and neuromuscular disorders, and exercise-induced cramps. P REREQUISITE —This course is designed as an educational opportunity for physicians. A CCREDIT A TI O N ST A TEMENT —The AANEM is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education (CME) for physicians. CME CREDIT —The AANEM designates this activity for a maximum of 3.25 AMA PRA Category 1 Credit(s).TM If purchased, the AANEM designates this activity for 2 AMA PRA Category 1 Credit(s).TM This educational event is approved as an Accredited Group Learning Activity under Section 1 of the Framework of Continuing Professional Development (CPD) options for the Maintenance of Certification Program of the Royal College of Physicians and Surgeons of Canada. Each physician should claim only those hours of credit he or she actually spent in the educational activity. CME for this course is available 10/09 - 10/12. vi Neuromuscular Update I AANEM Course 2008-2009 AANEM COURSE COMMITTEE Anthony E. Chiodo, MD, Chair Ann Arbor, Michigan Shawn J. Bird, MD Mazen M. Dimachkie, MD Benjamin S. Warfel, II, MD Philadelphia, Pennsylvania Kansas City, Kansas Lancaster, Pennsylvania Gary L. Branch, DO John E. Hartmann, MD Dewitt, Michigan Augusta, Georgia John E. Chapin, MD David Bryan Shuster, MD Walla Walla, Washington Dayton, Ohio 2008-2009 AANEM PRESIDENT Michael T. Andary, MD, MS East Lansing, Michigan 1 Mononeuropathy: Postoperative Foot Drop Kerry H. Levin MD Greg T. Carter, MD, MS Chairman, Department of Neurology Professor of Rehabilitation Medicine Director, Neuromuscular Center University of Washington School of Medicine Cleveland Clinic
Recommended publications
  • Myopathy Associated with Pigmentary Degene- Ration
    MYOPATHY ASSOCIATED WITH PIGMENTARY DEGENE­ RATION OF THE RETINA AND HIGH PROTEIN CONTENT OF CEREBROSPINAL FLUID JOSÉ ANTONIO LEVY*; MlLBERTO SCAFF*; ANA MARIA C. TSANACLIS**; VANDERLEI GARCIA RODRIGUES**; EDGARD SILVA LUSVARGHI** Harenko and Lapallainen4 (1962) reported a case of chronic progressive ophtalmoplegia with pigmentary degeneration of the retina, also referring 5 similar reports. Assis1 (1967) published the case of a 16-year-old female patient with progressive ophthalmoplegia, which began with palpebral ptosis and pigmentary degeneration of the retina, spreading to the macular regions; biopsy of the left superior rectus muscle showed a dystrophic process, i.e., a myopathy. Olson6 reported 7 cases of progressive ophthalmoplegia (patients' ages varied between 11 and 47 years, the period of time from the onset of the disease varying between 3 and 12 years) in which the biopsy of clinically normal limb muscles showed alterations confirming the existence of a myo­ pathy. A biopsy revealing myopathy and the external ophtalmoplegia were common in all these patients. Three of them displayed pigmentary retinosis; three had a slight motor deficit in the limb girdle muscles; four had electro- encephalographic abnormalities; in 5 of the cases which underwent a cerebro­ spinal fluid examination, a high protein content was encountered; in four cases the muscle biopsy showed alterations which suggested a lesion of the peripheral motor nerve; none of the cases suggested progressive muscular dystrophy with serious motor deficit in the limb girdle muscles. Kearn, quoted by Engel2, reported the case of a myopathic patient with external ophtalmo­ plegia associated with cardiomyopathy and pigmentary degeneration of the retina.
    [Show full text]
  • Spectrum of CLCN1 Mutations in Patients with Myotonia Congenita in Northern Scandinavia
    European Journal of Human Genetics (2001) 9, 903 ± 909 ã 2001 Nature Publishing Group All rights reserved 1018-4813/01 $15.00 www.nature.com/ejhg ARTICLE Spectrum of CLCN1 mutations in patients with myotonia congenita in Northern Scandinavia Chen Sun*,1, Lisbeth Tranebjñrg*,1, Torberg Torbergsen2,GoÈsta Holmgren3 and Marijke Van Ghelue1,4 1Department of Medical Genetics, University Hospital of Tromsù, Tromsù, Norway; 2Department of Neurology, University Hospital of Tromsù, Tromsù, Norway; 3Department of Clinical Genetics, University Hospital of UmeaÊ, UmeaÊ,Sweden;4Department of Biochemistry, Section Molecular Biology, University of Tromsù, Tromsù, Norway Myotonia congenita is a non-dystrophic muscle disorder affecting the excitability of the skeletal muscle membrane. It can be inherited either as an autosomal dominant (Thomsen's myotonia) or an autosomal recessive (Becker's myotonia) trait. Both types are characterised by myotonia (muscle stiffness) and muscular hypertrophy, and are caused by mutations in the muscle chloride channel gene, CLCN1. At least 50 different CLCN1 mutations have been described worldwide, but in many studies only about half of the patients showed mutations in CLCN1. Limitations in the mutation detection methods and genetic heterogeneity might be explanations. In the current study, we sequenced the entire CLCN1 gene in 15 Northern Norwegian and three Northern Swedish MC families. Our data show a high prevalence of myotonia congenita in Northern Norway similar to Northern Finland, but with a much higher degree of mutation heterogeneity. In total, eight different mutations and three polymorphisms (T87T, D718D, and P727L) were detected. Three mutations (F287S, A331T, and 2284+5C4T) were novel while the others (IVS1+3A4T, 979G4A, F413C, A531V, and R894X) have been reported previously.
    [Show full text]
  • Targeted Genes and Methodology Details for Neuromuscular Genetic Panels
    Targeted Genes and Methodology Details for Neuromuscular Genetic Panels Reference transcripts based on build GRCh37 (hg19) interrogated by Neuromuscular Genetic Panels Next-generation sequencing (NGS) and/or Sanger sequencing is performed Motor Neuron Disease Panel to test for the presence of a mutation in these genes. Gene GenBank Accession Number Regions of homology, high GC-rich content, and repetitive sequences may ALS2 NM_020919 not provide accurate sequence. Therefore, all reported alterations detected ANG NM_001145 by NGS are confirmed by an independent reference method based on laboratory developed criteria. However, this does not rule out the possibility CHMP2B NM_014043 of a false-negative result in these regions. ERBB4 NM_005235 Sanger sequencing is used to confirm alterations detected by NGS when FIG4 NM_014845 appropriate.(Unpublished Mayo method) FUS NM_004960 HNRNPA1 NM_031157 OPTN NM_021980 PFN1 NM_005022 SETX NM_015046 SIGMAR1 NM_005866 SOD1 NM_000454 SQSTM1 NM_003900 TARDBP NM_007375 UBQLN2 NM_013444 VAPB NM_004738 VCP NM_007126 ©2018 Mayo Foundation for Medical Education and Research Page 1 of 14 MC4091-83rev1018 Muscular Dystrophy Panel Muscular Dystrophy Panel Gene GenBank Accession Number Gene GenBank Accession Number ACTA1 NM_001100 LMNA NM_170707 ANO5 NM_213599 LPIN1 NM_145693 B3GALNT2 NM_152490 MATR3 NM_199189 B4GAT1 NM_006876 MYH2 NM_017534 BAG3 NM_004281 MYH7 NM_000257 BIN1 NM_139343 MYOT NM_006790 BVES NM_007073 NEB NM_004543 CAPN3 NM_000070 PLEC NM_000445 CAV3 NM_033337 POMGNT1 NM_017739 CAVIN1 NM_012232 POMGNT2
    [Show full text]
  • Acute Limb Ischemia Secondary to Myositis- Induced Compartment Syndrome in a Patient with Human Immunodeficiency Virus Infection
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Acute limb ischemia secondary to myositis- induced compartment syndrome in a patient with human immunodeficiency virus infection Russell Lam, MD, Peter H. Lin, MD, Suresh Alankar, MD, Qizhi Yao, MD, PhD, Ruth L. Bush, MD, Changyi Chen, MD, PhD, and Alan B. Lumsden, MD, Houston, Tex Myositis, while uncommon, develops more frequently in patients with human immunodeficiency virus infection. We report a case of acute lower leg ischemia caused by myositis in such a patient. Urgent four-compartment fasciotomy of the lower leg was performed, which decompressed the compartmental hypertension and reversed the arterial ischemia. This case underscores the importance of recognizing compartment syndrome as a cause of acute limb ischemia. (J Vasc Surg 2003;37:1103-5.) Compartment syndrome results from elevated pressure compartment was firm and tender. Additional pertinent laboratory within an enclosed fascial space, which can occur after studies revealed creatine phosphokinase level of 53,350 U/L; fracture, soft tissue injury, or reperfusion after arterial isch- serum creatinine concentration had increased to 3.5 mg/dL, and emia.1 Other less common causes of compartment syn- WBC count had increased to 18,000 cells/mm3. Venous duplex drome include prolonged limb compression, burns, and scans showed no evidence of deep venous thrombosis in the right extreme exertion.1 Soft tissue infection in the form of lower leg. Pressure was measured in all four compartments of the myositis is a rare cause of compartment syndrome. We right calf and ranged from 55 to 65 mm Hg.
    [Show full text]
  • A Schematic Approach to Hypotonia in Infancy
    Leyenaar.qxd 8/26/2005 4:03 PM Page 397 NEUROLOGY SUBSPECIALTY ARTICLE A schematic approach to hypotonia in infancy JoAnna Leyenaar MD MPH, Peter Camfield MD FRCPC, Carol Camfield MD FRCPC J Leyenaar, P Camfield, C Camfield. A schematic approach Une démarche schématique envers l’hypotonie to hypotonia in infancy. Paediatr Child Health 2005; pendant la première enfance 10(7):397-400. L’hypotonie peut être le signe révélateur de nombreuses maladies Hypotonia may be the presenting sign for many systemic diseases and systémiques ou du système nerveux. Le présent article traite d’une diseases of the nervous system. The present paper discusses a rational, démarche diagnostique rationnelle, simple et précise envers l’hypotonie simple and accurate diagnostic approach to hypotonia in infancy, pendant la première enfance, illustrée par le cas d’une fillette de cinq mois illustrated by the case of a five-month-old infant girl recently referred récemment aiguillée vers le IWK Health Centre de Halifax, en Nouvelle- to the IWK Health Centre in Halifax, Nova Scotia. Key points in the Écosse. Les principaux points de l’anamnèse et de l’examen physique sont history and physical examination are outlined to allow a tailored exposés afin de permettre une exploration personnalisée de la patiente et investigation both for the patient and for other hypotonic infants. A des autres nourrissons hypotoniques. Un exposé sur une importante discussion of an important neuromuscular disease, diagnosed in the maladie neuromusculaire, diagnostiquée chez la patiente, conclut l’article. present patient, concludes the paper. Key Words: Hypotonia; Infant; Spinal muscular atrophy nfants with hypotonia pose challenges for clinicians respiratory syncytial virus-positive bronchiolitis.
    [Show full text]
  • Spinocerebellar Ataxia Genetic Testing
    Lab Management Guidelines V1.0.2020 Spinocerebellar Ataxia Genetic Testing MOL.TS.311.A v1.0.2020 Introduction Spinocerebellar ataxia (SCA) genetic testing is addressed by this guideline. Procedures addressed The inclusion of any procedure code in this table does not imply that the code is under management or requires prior authorization. Refer to the specific Health Plan's procedure code list for management requirements. Procedures addressed by this Procedure codes guideline ATXN1 gene analysis, evaluation to detect 81178 abnormal (eg,expanded) allele ATXN2 gene analysis, evaluation to detect 81179 abnormal (eg,expanded) allele ATXN3 gene analysis, evaluation to detect 81180 abnormal (eg,expanded) allele ATXN7 gene analysis, evaluation to detect 81181 abnormal (eg,expanded) allele ATXN8 gene analysis, evaluation to detect 81182 abnormal (eg, expanded) alleles ATXN10 gene analysis, evaluation to 81183 detect abnormal (eg, expanded) alleles CACNA1A gene analysis; evaluation to 81184 detect abnormal (eg, expanded) alleles CACNA1A gene analysis; full gene 81185 sequence CACNA1A gene analysis; known familial 81186 variant PPP2R2B gene analysis, evaluation to 81343 detect abnormal (eg, expanded) alleles TBP gene analysis, evaluation to detect 81344 abnormal (eg, expanded) alleles Unlisted molecular pathology procedure 81479 © 2020 eviCore healthcare. All Rights Reserved. 1 of 15 400 Buckwalter Place Boulevard, Bluffton, SC 29910 (800) 918-8924 www.eviCore.com Lab Management Guidelines V1.0.2020 What is spinocerebellar ataxia Definition Spinocerebrallar ataxias (SCA) are a group of autosomal dominant ataxias that have a range of phenotypes. There are various subtypes of SCA, which are denoted by numbers (e.g. SCA1, SCA3, etc.) Incidence and Prevalence The prevalence of autosomal dominant cerebellar ataxias, as a whole, is 1-5:100,000.1 SCA3 is the most common autosomal dominant form of ataxia.
    [Show full text]
  • Defining Functional Interactions During Biogenesis of Epithelial Junctions
    ARTICLE Received 11 Dec 2015 | Accepted 13 Oct 2016 | Published 6 Dec 2016 | Updated 5 Jan 2017 DOI: 10.1038/ncomms13542 OPEN Defining functional interactions during biogenesis of epithelial junctions J.C. Erasmus1,*, S. Bruche1,*,w, L. Pizarro1,2,*, N. Maimari1,3,*, T. Poggioli1,w, C. Tomlinson4,J.Lees5, I. Zalivina1,w, A. Wheeler1,w, A. Alberts6, A. Russo2 & V.M.M. Braga1 In spite of extensive recent progress, a comprehensive understanding of how actin cytoskeleton remodelling supports stable junctions remains to be established. Here we design a platform that integrates actin functions with optimized phenotypic clustering and identify new cytoskeletal proteins, their functional hierarchy and pathways that modulate E-cadherin adhesion. Depletion of EEF1A, an actin bundling protein, increases E-cadherin levels at junctions without a corresponding reinforcement of cell–cell contacts. This unexpected result reflects a more dynamic and mobile junctional actin in EEF1A-depleted cells. A partner for EEF1A in cadherin contact maintenance is the formin DIAPH2, which interacts with EEF1A. In contrast, depletion of either the endocytic regulator TRIP10 or the Rho GTPase activator VAV2 reduces E-cadherin levels at junctions. TRIP10 binds to and requires VAV2 function for its junctional localization. Overall, we present new conceptual insights on junction stabilization, which integrate known and novel pathways with impact for epithelial morphogenesis, homeostasis and diseases. 1 National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK. 2 Computing Department, Imperial College London, London SW7 2AZ, UK. 3 Bioengineering Department, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK. 4 Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
    [Show full text]
  • Ataxic Gait in Essential Tremor: a Disease-Associated Feature?
    Freely available online Reviews Ataxic Gait in Essential Tremor: A Disease-Associated Feature? Ashwini K. Rao1* & Elan D. Louis2 1Department of Rehabilitation & Regenerative Medicine (Program in Physical Therapy), G.H. Sergievsky Center, Huntington's Disease Center of Excellence, Center of Excellence in Alzheimer's Disease, Columbia University, New York, NY, USA, 2Department of Neurology and Epidemiology (Chronic Diseases); Chief, Division of Movement Disorders, Co-Director- Center for Neuroepidemiology and Clinical Neurology Research, New Haven, CT, USA Abstract Background: While accumulating evidence suggests that balance and gait impairments are commonly seen in patients with essential tremor (ET), questions remain regarding their prevalence, their relationship with normal aging, whether they are similar to the impairments seen in spinocerebellar ataxias, their functional consequences, and whether some ET patients carry greater susceptibility. Methods: We conducted a literature search (until December 2018) on this topic. Results: We identified 23 articles on gait or balance impairments in ET. The prevalence of balance impairment (missteps on tandem walk test) was seven times higher in ET patients than controls. Gait impairments in ET included reduced speed, increased asymmetry, and impaired dynamic balance. While balance and gait problems worsened with age, ET patients were more impaired than controls, independent of age. The pattern of impairments seen in ET was qualitatively similar to that seen in spinocerebellar ataxias. Balance and gait impairments resulted in greater number of near falls in ET patients. Factors associated with balance and gait impairments in ET included age, presence of tremor in midline structures, and cognitive dysfunction. Discussion: Accumulating evidence suggests that balance and gait impairments are common in ET patients and occur to a greater extent in controls.
    [Show full text]
  • Malignant Hyperthermia
    :: Malignant hyperthermia Synonyms: malignant hyperpyrexia, hyperthermia of anesthesia Syndromes with higher risk of MH: ` King-Denborough syndrome ` central core disease (CCD, central core myopathy) ` multiminicore disease (with or without RYR1 mutation) ` nemaline rod myopathy (with or without RYR1 mutation) ` hypokalemic periodic paralysis Definition: Malignant hyperthermia (MH) is a rare disorder of skeletal muscles related to a high release of calcium from the sarcoplasmic reticulum which leads to muscle rigidity in many cases and hypermetabolism. Abrupt onset is triggered either by anesthesic agents such as halogenated volatile anesthetics and depolarizing muscle relaxant such as succinylcholine (MH of anesthesia), or, occasionally, by stresses such as vigorous exercise or heat. In most cases, mutations of RYR1 and CACNA1S genes have been reported. MH is characterized by tachycardia, arrhythmia, muscle rigidity, hyperthermia, skin mottling, rhabdomyolysis (cola- colored urine) metabolic acidosis, electrolyte disturbances especially hyperkalemia and coagulopathy. Dantrolene is currently the only known treatment for a MH crisis. Further information: See the Orphanet abstract Menu Pre-hospital emergency care Recommendations for hospital recommendations emergency departments Synonyms Emergency issues Aetiology Emergency recommendations Special risks in emergency situations Management approach Frequently used long term treatments Drug interactions Complications Anesthesia Specific medical care prior to hospitalisation Preventive measures
    [Show full text]
  • Experiences of Rare Diseases: an Insight from Patients and Families
    Experiences of Rare Diseases: An Insight from Patients and Families Unit 4D, Leroy House 436 Essex Road London N1 3QP tel: 02077043141 fax: 02073591447 [email protected] www.raredisease.org.uk By Lauren Limb, Stephen Nutt and Alev Sen - December 2010 Web and press design www.raredisease.org.uk WordsAndPeople.com About Rare Disease UK Rare Disease UK (RDUK) is the national alliance for people with rare diseases and all who support them. Our membership is open to all and includes patient organisations, clinicians, researchers, academics, industry and individuals with an interest in rare diseases. RDUK was established by Genetic RDUK is campaigning for a Alliance UK, the national charity strategy for integrated service of over 130 patient organisations delivery for rare diseases. This supporting all those affected by would coordinate: genetic conditions, in conjunction with other key stakeholders | Research in November 2008 following the European Commission’s | Prevention and diagnosis Communication on Rare Diseases: | Treatment and care Europe’s Challenges. | Information Subsequently RDUK successfully | Commissioning and planning campaigned for the adoption of the Council of the European into one cohesive strategy for all Union’s Recommendation on patients affected by rare disease in an action in the field of rare the UK. As well as securing better diseases. The Recommendation outcomes for patients, a strategy was adopted unanimously by each would enable the most effective Member State of the EU (including use of NHS resources. the
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Amino Acid Disorders 105
    AMINO ACID DISORDERS 105 Massaro, A. S. (1995). Trypanosomiasis. In Guide to Clinical tions in biological fluids relatively easy. These Neurology (J. P. Mohrand and J. C. Gautier, Eds.), pp. 663– analyzers separate amino acids either by ion-ex- 667. Churchill Livingstone, New York. Nussenzweig, V., Sonntag, R., Biancalana, A., et al. (1953). Ac¸a˜o change chromatography or by high-pressure liquid de corantes tri-fenil-metaˆnicos sobre o Trypanosoma cruzi in chromatography. The results are plotted as a graph vitro: Emprego da violeta de genciana na profilaxia da (Fig. 1). The concentration of each amino acid can transmissa˜o da mole´stia de chagas por transfusa˜o de sangue. then be calculated from the size of the corresponding O Hospital (Rio de Janeiro) 44, 731–744. peak on the graph. Pagano, M. A., Segura, M. J., DiLorenzo, G. A., et al. (1999). Cerebral tumor-like American trypanosomiasis in Most amino acid disorders can be diagnosed by acquired immunodeficiency syndrome. Ann. Neurol. 45, measuring the concentrations of amino acids in 403–406. blood plasma; however, some disorders of amino Rassi, A., Trancesi, J., and Tranchesi, B. (1982). Doenc¸ade acid transport are more easily recognized through the Chagas. In Doenc¸as Infecciosas e Parasita´rias (R. Veroesi, Ed.), analysis of urine amino acids. Therefore, screening 7th ed., pp. 674–712. Guanabara Koogan, Sa˜o Paulo, Brazil. Spina-Franc¸a, A., and Mattosinho-Franc¸a, L. C. (1988). for amino acid disorders is best done using both South American trypanosomiasis (Chagas’ disease). In blood and urine specimens. Occasionally, analysis of Handbook of Clinical Neurology (P.
    [Show full text]