RSC Advances

Total Page:16

File Type:pdf, Size:1020Kb

RSC Advances RSC Advances PAPER View Article Online View Journal | View Issue Study on the efficient PV/TE characteristics of the self-assembled thin films based on bismuth Cite this: RSC Adv.,2017,7,6735 telluride/cadmium telluride Vivekanandan Raman,a Dinah Punnoose,a Pari Baraneedharan,b Sunkara Srinivasa Rao,a Chandu V. V. M. Gopi,a Venkatesh S,c S Brahadeeswarand and Hee-Je Kim*a Solar radiation has a spectral distribution ranging from short wavelengths (200–800 nm, visible part) to long wavelengths (800–3000 nm, heat part). Cadmium telluride and bismuth telluride are well known photovoltaic (PV) and thermoelectric (TE) materials, respectively. CdTe converts light energy into electricity and Bi2Te3 converts heat into electricity. To effectively use the entire solar spectrum for energy conversion, a new type of solar cell based on a Bi2Te3/CdTe composite in a core/shell structure was designed and prepared using a wet chemical method. X-ray diffraction and high-resolution Creative Commons Attribution 3.0 Unported Licence. transmission electron microscopy confirmed the formation of Bi2Te3/CdTe in a core/shell structure with Received 11th November 2016 high crystallinity. Bi Te nanoparticles function as built-in nanoscale electron generators to convert heat Accepted 29th December 2016 2 3 into electricity and CdTe functions as a photovoltaic cell. The efficiency of the thin film solar cell device DOI: 10.1039/c6ra26638j was found to be 2.5% at room temperature and 4.8% when exposed to sunlight. The combined PV and www.rsc.org/advances TE modules resulted in an overall power conversion efficiency of 4.8%. 1. Introduction Seebeck coefficient and can generate electricity, even at room temperature.2 Considerable efforts have been made to combine This article is licensed under a Solar energy is the cleanest and the most abundant renewable both PV and TE technologies to maximally utilize the entire energy source available. CdTe, CuIn(Ga)Se2, and c-Si are solar spectrum. These hybrid technologies that combine the advanced materials that are used as absorber materials in solar modules of PV and TE cannot solve the problems of solar energy cells.1 Although these materials have high efficiency, the lack of synergy utilization at the material level because the functions of Open Access Article. Published on 20 January 2017. Downloaded 10/3/2021 5:00:10 AM. abundance, high toxicity levels, and high production costs are PV and TE modules are independent of each other. On the other problems that have prompted researchers to search for new hand, it will be benecial if both the PV and TE functions can be materials and/or newer and easier synthesis routes. Therefore, achieved in a single material. If this single material can be continuous efforts are being made to nd new, cost-effective prepared in a nanostructure, it will be more efficient. Nano- photovoltaic materials with good conversion efficiency. Solar particles of CdTe have good photoluminescence properties and radiation has a spectral distribution from the short wavelength have been used in the production of solar cells. CdTe nano- range, 200–800 nm (light part), to the long wavelength range, particles are prepared via aqueous and non-aqueous synthesis 800–3000 nm (heat part). Better control of light scattering and routes. Compared to non-aqueous synthesis, aqueous synthesis electronic transport through a semiconductor is crucial for is more reproducible, cheaper, and less toxic. In addition, the 3 improving the solar efficiency. Photovoltaic cells (PV), such as prepared samples are more water-soluble and bio-compatible. CdTe, can only convert the short wavelengths of solar energy To prepare nanorods, a seed-mediated growth technique was into electricity and the remaining long wavelength solar radia- performed, in which the precursor was added dropwise and the 4,5 tion is waste heat. Thermoelectric materials (TE), such as capping agent assisted in the growth of nanorods. This study Bi2Te3, convert the waste heat into electricity. Bi2Te3 has a high reports the integration of photovoltaic CdTe and thermoelectric Bi2Te3 materials into a single photoelectrode in the form of a core/shell nanostructure. Interestingly, this material showed aDepartment of Electrical and Computer Engineering, 2, Busandaehak-ro 63 beon-gil, a conversion efficiency of 4.8% when exposed to sunlight. Geumjeong-gu, Busan 46241, Korea. E-mail: [email protected] Core/shell nanorods have been produced by a layer-by-layer b Alternative Energy and Nanotechnology Laboratory, Indian Institute of Technology self-assembly method. This is an effective technique for the Madras, Chennai, 600036, India construction of well-dened nanostructures. Hengguo Wang cDepartment of Physics, Indian Institute of Science, Bangalore, India dDepartment of Physics, Anna University BIT Campus, Tiruchirappalli, Tamilnadu, et al. reported that the LBL technique is facile and relatively India controllable and they con rmed the incorporation of Fe3O4 and This journal is © The Royal Society of Chemistry 2017 RSC Adv.,2017,7,6735–6742 | 6735 View Article Online RSC Advances Paper quantum dots (QDs) into a single structure. The shell produced should be thick enough to not to be fully consumed by CdTe.20 6–9 by this method is meant to be a functional hybrid nanoshell. Bi2Te3/CdTe core/shell nanorods were prepared by a wet The alternating adsorption of oppositely charged materials chemical method. Bismuth(III) nitrate pentahydrate (0.04 mol) gives rise to a layer-by-layer (LBL) self-assembly deposition was placed in 10 mL of double-distilled water (DDW). Tellurium method, through which hydrogen-bonding interactions and (0.06 mol) in 10 mL of DDW was mixed with bismuth nitrate electrostatic forces hold the nanostructures assembly solution and stirred. Subsequently, 0.5 mol of KOH was added 10–12 together. The aim of developing Bi2Te3/CdTe core shell to the abovementioned solution aer 5 min. The CdS-coated nanorods is to harvest electricity from both thermal energy and FTO substrate was then immersed in the prepared solution. light energy produced by the sun. Jie Yang et al. proposed that About 0.04 mol of the reducing agent, NaBH4, was added self-assembled Bi2Te3/CdTe nanosheets showed an increase in dropwise to reduce the bismuth nitrate and tellurium to 21 the thermoelectric performance of Bi2Te3 due to the addition of bismuth telluride nanoparticles. The reducing agent is À CdTe, thus reaching a Seebeck coefficient of À182.2 mVK 1 at oxidized because it loses electrons in the redox reaction. The 300 K, which is slightly higher than that of the bulk Bi2Te3 rst step involves the reduction of Bi(NO3)3$5H2O and tellu- À1 sample, À180.0 mVK . This clearly shows that CdTe will also rium. When H2O is added to Bi(NO3)3$5H2O, salt separates into 3+ À enhance the thermoelectric performance of Bi2Te3. Solar cells Bi and 6NO ions, whereas in the case of Te powder, Te 2À based on nanoparticles have higher solar efficiency because of changes into Te . When NaBH4 is added, these ions form their large surface area.13 Therefore, the increase in the surface clusters. In the second stage, the clusters coalesce to produce area of planar nanorod carpets has been proposed to enhance small particles with radius of 20–50 nm. This is followed by solar light harvesting.14–16 a metastable state, where the particles maintain the constant size for around 5–10 min. Aer 10–20 min, the last coalescence phase takes place to generate nal Bi2Te3 nanoparticles about 2. Experimental section the size of 150–250 nm. 2.1 Materials þ Creative Commons Attribution 3.0 Unported Licence. ð Þ $ ! 3 þ À Bi NO3 3 5H2O Bi 6NO H O All chemicals, such as bismuth(III) nitrate pentahydrate 2 $ (Bi(NO3)3 5H2O), tellurium powder (Te), potassium hydroxide (KOH), polyvinyl alcohol (PVA), cadmium sulphate (CdSO4), and Te ! Te2À sodium borohydride (NaBH4), were purchased from Aldrich and NaBH4 used without further purication. 2.2 Synthesis of Bi Te /CdTe core shell thin lm 2À 3+ 2 3 3Te + 2Bi / Bi2Te3 nanostructures This article is licensed under a The front conductor inuences the conductivity and plays When NaBH is added followed by stirring, nanorods of a large role in the performance of a solar cell. An increase in the 4 Bi Te are formed via a self-assembly mechanism. Herein, in the carrier mobility in the conductive FTO transparent conducting 2 3 Open Access Article. Published on 20 January 2017. Downloaded 10/3/2021 5:00:10 AM. self-assembly mechanism, at the critical concentration, the oxide layer provides lower absorptivity and lower resistivity.17 A molecules start to interact with each other resulting in the FTO is properly cleaned to avoid weak adhesion, whereas nucleation of crystals. Using hydrogen bonding and electrostatic a coating of CdS is deposited on the surface of the FTO. Acid or ionic forces, Bi Te clusters with itself to form nanorods. exposure of the FTO will compromise the uniform deposition of 2 3 When PVA is added, it bonds to Bi Te . PVA plays a critical role in CdS and affect the performance of the solar cell.18 CdS has high 2 3 bonding Bi Te and CdTe. PVA attracts the CdTe nanoclusters band width (2.4 eV) and acts as a windows layer for the cells, 2 3 due to hydrogen bonding and forms core/shell nanorods, as which plays a vital role in observing sunlight. In a clean FTO shown in Fig. 1. A 0.1 g sample of polyvinyl alcohol (PVA) was glass substrate, a three layer coating was deposited. The FTO added to the Bi Te solution under stirring to form bonds with substrate was masked and a 50–100 nm CdS layer was coated by 2 3 the Bi Te nanoparticles.
Recommended publications
  • Bismuth Antimony Telluride
    ci al S ence Mahajan et al., J Material Sci Eng 2018, 7:4 ri s te & a E M n DOI: 10.4172/2169-0022.1000479 f g o i n l e a e n r r i n u g o Journal of Material Sciences & Engineering J ISSN: 2169-0022 Research Article Article OpenOpen Access Access Study and Characterization of Thermoelectric Material (TE) Bismuth Antimony Telluride Aniruddha Mahajan1*, Manik Deosarkar1 and Rajendra Panmand2 1Chemical Engineering Department, Vishwakarma Institute of Technology, Pune, India 2Centre for Materials Electronics and Technology (C-MET), Dr. Homi Bhabha Road, Pune, India Abstract Thermoelectric materials are used to convert the heat to electricity with no moving parts, in the present work an attempt has been made to prepare it for power generation function. Bismuth antimony telluride nanopowders were prepared by using mechanochemical method. Three different materials; Bismuth Telluride, (Bi0.75Sb0.25)2Te 3 and (Bi0.5Sb0.5)2Te 3 were synthesized. XRD and TEM analysis was carried out to confirm the results. The particle size of the material was determined by using FESEM analysis. The two alloys of Bismuth Telluride such prepared were converted in the pellet form using vacuum hydraulic pressure and their Seebeck coefficients were determined to test the material suitability for its use as a thermoelectric device. Their power factor measurement and Hall effect measurements were carried out at room temperature. Keywords: Bismuth telluride; Mechanochemical method; energy in one form into another. Use of TE solid materials Applications Nanoparticals; Seebeck coefficients in heat pump and refrigeration is well known [14] and it is now expanded such as cooled seats in luxury automobiles [15].
    [Show full text]
  • Preparation of Bismuth Telluride Specimens for TEM
    Preparation of Bismuth Telluride Specimens for TEM Mark Homer1, Douglas L. Medlin2 1,2. Sandia National Laboratories, Energy Nanomaterials Dept., Livermore CA, USA Bismuth telluride (Bi2Te3) and its alloys are an important class of thermoelectric material. How well a thermoelectric material works is dependent on a variety of factors such as electrical and thermal conductivity and the Seeback coefficient. Because the electrical and thermal conductivity can be affected by defects in the material, there is much interest in the basic understanding the microstructures of these materials [1]. There are challenges in preparation of TEM specimens from telluride-based materials due to their sensitivity to ion-milling artifacts. For instance, nanoscale defect arrangements have been shown to form in lead telluride (PbTe) specimens prepared under aggressive ion milling conditions if cooling and power density is not suitably controlled [2]. In this presentation we discuss methods and conditions for preparing TEM specimens of Bi2Te3 specimens considering both ion-milling and electropolishing techniques. In all cases TEM specimens were mechanically pre-thinned using conventional mechanical dimpling and polishing techniques prior to final thinning to electron transparency. The ion-milled specimens were prepared with Ar+ ion sputtering using a Fischione Model 1010 ion mill with LN cooling. The electropolished specimens were prepared using a Fischione Model 120 electropolisher and an electrolyte consisting of 53% water, 38% glycerol, 5% sodium hydroxide, and 4% tartaric acid. The electrolyte was set in an ice bath and cooled to 2° C, and electropolished at 25V and 35mA. Figures 1 and 2 show dark-field TEM micrographs comparing ion milled and electropolished Bi2Te3 specimens.
    [Show full text]
  • Tunneling Behavior of Bismuth Telluride Nanoplates in Electrical
    Tunneling behavior of bismuth telluride nanoplates in electrical transport Mustafa Eginligil a, Weiqing Zhang b, Alan Kalitsov a, Xianmao Lu b,*, and Hyunsoo Yang a,* aDepartment of Electrical and Computer Engineering, National University of Singapore, 117576 Singapore bDepartment of Chemical and Biomolecular Engineering, National University of Singapore, 117576 Singapore Abstract. We study the electrical transport properties of ensembles of bismuth telluride (Bi2Te3) nanoplates grown by solution based chemical synthesis. Devices consisting of Bi2Te3 nanoplates are fabricated by surface treatment after dropping the solution on the structured gold plates and the temperature dependence of resistance shows a nonmetallic behavior. Symmetric tunneling behavior in I-V was observed in both our experimental results and theoretical calculation of surface conductance based on a simple Hamiltonian, which excludes carrier-carrier interactions. Here, we present two devices: one showing symmetric, the other showing a two-step tunneling behavior. The latter can be understood in terms of disorder. * E-mail address: [email protected] (X. Lu), [email protected] (H. Yang) 1 1. Introduction Bismuth telluride (Bi2Te3), a semiconductor with an indirect bulk energy band gap of 0.165 eV [1], is a unique multifunctional material. It is an attractive thermoelectric material with the highest figure of merit (ZT = 0.68) at room temperature in its bulk [2]. It was recently shown that in thin films of Bi2Te3 ZT can be enhanced about ten times due to line dislocations in topologically protected perfectly conductive one dimensional state [3-5]. This physical property is under investigation, yet it is a well-known fact that Bi2Te3, like other members of its family (i.e.
    [Show full text]
  • Thermoelectric Materials in Hybrid Cars
    IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-ISSN: 2278-1684,p-ISSN: 2320-334X, Volume 11, Issue 5 Ver. VI (Sep-Oct. 2014), PP 73-76 www.iosrjournals.org Thermoelectric materials in hybrid cars S.Karthik Sharan, D.Giftson Felix Department of Mechanical Engineering, Panimalar Engineering College, Chennai-123 Abstract: Due to the ever growing demand for alternative energy fuel sources, hybrid cars are gaining importance in this current century. In order to achieve greater efficiency in hybrid cars, automobile companies are investing heavily in research and development. Need for conservation of energy is necessary for achieving greater efficiency in hybrid vehicles. In this context, thermoelectric materials play a very important role. The main objective of this paper is to analyze an improved method of recharging the batteries in hybrid vehicles using a ceramic coated cast iron bar with an inner lining of fiber glass material inside to which a bismuth telluride bar is placed, is fitted to the cylinder head of the gasoline engine. The electricity generated is given to the battery which makes it charge at a faster rate. Keywords: Bismuth telluride, fiber glass. I. Introduction: The hunt for environmentally friendly vehicles has been on for quite a while now. Alternative sources of fuel (such as biodiesel and hydrogen) reduce tailpipe emissions from internal combustion engines. Electric vehicles are not much good either in the real world, although there are no emissions from them, they have a limited drivable range and the batteries take way too long to recharge. To overcome the drawbacks of an electric vehicle, the hybrid vehicle was created.
    [Show full text]
  • Nanoscale Characterization of Bismuth Telluride Epitaxic Layers By
    Nanoscale characterization of bismuth telluride epitaxic layers by advanced X-ray analysis S´ergio L. Morelh˜ao∗ Instituto de F´ısica, Universidade de S˜ao Paulo, S˜ao Paulo, SP, Brazil Celso I. Fornari, Paulo H. O. Rappl, and Eduardo Abramof Instituto Nacional de Pesquisas Espaciais, LAS, S˜ao Jos´e dos Campos, SP, Brazil (Dated: June 27, 2018) Topological insulator surface properties are strongly correlated to structural properties, requiring high-resolution techniques capable of probing both surface and bulk structures at once. In this work, high flux of synchrotron source, recursive equations for fast X-ray dynamical diffraction simulation, and genetic algorithm for data fitting are combined to reveal the detailed structure of bismuth telluride epitaxic films with thickness ranging from 8 to 168 nm. It includes stacking sequences, thickness and composition of layers in model structures, interface coherence, surface termination and morphology. These results are in agreement with the surface morphology determined by atomic force microscopy. Moreover, by using X-ray data from zero noise area detector to construct three- dimensional reciprocal space maps, insights into the nanostructure of domains and stacking faults in Bi2Te3 films are given. I. INTRODUCTION A. General problems in nanostructure characterization Nanoscale manufacturing for the modern semiconduc- tor and optical industries makes broad usage of thin crys- talline films and multilayers. Quality control and de- Bismuth chalcogenide compounds have recently at- velopment of new electronic and optical devices demand tracted great attention due to their properties as a three- suitable methods for characterization of these structures. dimensional topological insulator. This new class of Simulations of X-ray scattering and diffraction are well- materials is insulating in the bulk and exhibits gapless established procedure for structural analysis at nanome- metallic surface states with linear energy-momentum dis- ter and subnanometer length scales of layered materials, persion shaped like a Dirac cone.
    [Show full text]
  • Enhancement of Thermoelectric Properties of Layered
    Rev. Adv. Mater. Sci. 2020; 59:371–398 Review Article Manal M. Alsalama*, Hicham Hamoudi, Ahmed Abdala, Zafar K. Ghouri, and Khaled M. Youssef Enhancement of Thermoelectric Properties of Layered Chalcogenide Materials https://doi.org/10.1515/rams-2020-0023 Received Dec 24, 2019; accepted Apr 27, 2020 1 Introduction Abstract: Thermoelectric materials have long been proven The demand for clean and sustainable energy sources is a to be effective in converting heat energy into electricity growing global concern as the cost of energy is rapidly in- and vice versa. Since semiconductors have been used in creasing; fossil fuel sources have been shown to affect the the thermoelectric field, much work has been done to im- environment. Considering that a large amount of our uti- prove their efficiency. The interrelation between their ther- lized energy is in the form of heat and that a large amount moelectric physical parameters (Seebeck coefficient, elec- of other forms of utilized energy is wasted as heat, the trical conductivity, and thermal conductivity) required spe- search for a suitable technology to recover this wasted cial tailoring in order to get the maximum improvement heat and limit its harmful effects is essential. Among sev- in their performance. Various approaches have been re- eral technologies used to meet these demands, thermoelec- ported in the research for developing thermoelectric per- tric energy is considered to be of the most interest due to formance, including doping and alloying, nanostructur- its unique capabilities. Thermoelectric generators can con- ing, and nanocompositing. Among different types of ther- vert wasted heat into electrical energy.
    [Show full text]
  • Bacterial Recovery and Recycling of Tellurium from Tellurium- Containing Compounds by Pseudoalteromonas Sp
    Bacterial recovery and recycling of tellurium from tellurium- containing compounds by Pseudoalteromonas sp. EPR3 The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Bonificio, W.D., and D.R. Clarke. 2014. “ Bacterial Recovery and Recycling of Tellurium from Tellurium-Containing Compounds by Pseudoalteromonas Sp. EPR3 .” Journal of Applied Microbiology 117 (5) (September 26): 1293–1304. doi:10.1111/jam.12629. Published Version doi:10.1111/jam.12629 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:13572100 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP 1 For submission to Journal of Applied Microbiology 2 3 Bacterial recovery and recycling of tellurium from tellurium-containing 4 compounds by Pseudoalteromonas sp. EPR3 5 William D. Bonificio #, David R. Clarke 6 7 School of Engineering and Applied Sciences, Harvard University, 29 Oxford St., 8 Cambridge, MA 02138, United States 9 10 Running Title: Bacterial recovery of tellurium 11 12 # Corresponding Author to whom inquiries should be addressed. 13 Mailing address: McKay 405, 9 Oxford St. Cambridge, MA 02138. 14 Email address: [email protected] 15 16 Keywords: Pseudoalteromonas; tellurium; tellurite; recycling; tellurium-containing 17 compounds. 1 18 ABSTRACT 19 Aims: Tellurium based devices, such as photovoltaic (PV) modules and 20 thermoelectric generators, are expected to play an increasing role in renewable energy 21 technologies.
    [Show full text]
  • And Bismuth Telluride (Bi2te3)
    Chalcogenide Letters Vol. 18, No. 8, August 2021, p. 467 - 472 Comparative analysis of thermoelectric behavior of molybdenum silicide (MoSi2) and bismuth telluride (Bi2Te3) S. Singha, R. G. Bavaneb, Y. C. Sharmac,* aDepartment of Electronics & Communication Engineering, Vivekananda Global University, Jaipur-303012 (Rajasthan) India bDepartment of Physics, Dr. Annasaheb G. D. Bendale Mahila Mahavidyalaya, Jilha Peth, Jilha Road, Jalgaon – 425001 (Maharashtra) India cInnovation, Research and Development, DR CBS Cyber Security Services LLP, Jaipur-302006 (Rajasthan) India A comparative analysis of the thermoelectric behavior of Molybdenum Silicide and Bismuth Telluride using the COMSOL-Multiphysics platform is presented. Parameters like temperature distribution, potential distribution, figure of merit all the way through the length of the model and isothermal contours for these materials are reported. The outcomes of the modeling and simulation have revealed the potential use of Bismuth Telluride in thermoelectric applications at low temperature applications whereas Molybdenum Silicide is utilized as thermoelectric materials at high temperatures applications. (Received June 13, 2021; Accepted August 12, 2021) Keywords: Thermoelectric effect, Peltier effect, Seebeck effect, Figure of merit, COMSOL simulation 1. Introduction The quest for energy resources which reduces our reliance on fossil fuels is ever growing. This quest has led to vital regimes of exploration in direct conversion of thermal-electrical energy conversion via thermoelectricity. Thermoelectric materials are competent in openly and reversibly converting heat into electrical power. Such materials pose significant impact on power generation and cooling. Several materials are being explored by researchers for improved efficiency in power generation and novel Peltier cooling applications [1,2,3]. Several materials are being checked for his or her thermal properties together in bulk and nanoscale system.
    [Show full text]
  • Grain Refinement and Texture Development of Cast Bi90sb10 Alloy
    GRAIN REFINEMENT AND TEXTURE DEVELOPMENT OF CAST BI90SB10 ALLOY VIA SEVERE PLASTIC DEFORMATION A Dissertation by JAE-TAEK IM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2007 Major Subject: Mechanical Engineering GRAIN REFINEMENT AND TEXTURE DEVELOPMENT OF CAST BI90SB10 ALLOY VIA SEVERE PLASTIC DEFORMATION A Dissertation by JAE-TAEK IM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, K. Ted Hartwig Committee Members, Richard Griffin Ibrahim Karaman Donald G. Naugle Head of Department, Dennis L. O’Neal May 2007 Major Subject: Mechanical Engineering iii ABSTRACT Grain Refinement and Texture Development of Cast Bi90Sb10 Alloy via Severe Plastic Deformation. (May 2007) Jae-taek Im, B.S., Yeung-nam University, Republic of Korea; M.S., Texas A&M University Chair of Advisory Committee: Dr. K. Ted Hartwig The purpose of this work was to study learn about grain refinement mechanisms and texture development in cast n-type Bi90Sb10 alloy caused by severe plastic deformation. The practical objective is to produce a fine grained and textured microstructure in Bi90Sb10 alloy with enhanced thermoelectric performance and mechanical strength. In the study, twelve millimeter diameter cast bars of Bi90Sb10 alloy were encapsulated in square cross section aluminum 6061 alloy containers. The composite bars were equal channel angular (ECAE) extruded through a 90 degree angle die at high homologous temperature. Various extrusion conditions were studied including punch speed (0.1, 0.3 and 0.6 in/min), extrusion temperature (220, 235 and 250oC), number of extrusion passes (1, 2 and 4), route (A, BC and C), and exit channel area reduction ratio (half and quarter area of inlet channel).
    [Show full text]
  • Lead and Bismuth Chalcogenide Systems Hurr.Lnc Lru, Luxn L. Y. CH
    American Mineralogist, Volume 79, pages 1159-l 166, 1994 Lead and bismuth chalcogenide systems Hurr.lNc Lru, Luxn L. Y. CH,c.Nc Department of Geology, University of Maryland, College Park, Maryland2O742,U-5.4. Ansrnlcr Phaserelations in the systemsof lead and bismuth chalcogenideswere examined in the temperature range of 500-900 "C. In the system PbS-PbSe-BirSr-BirSer,a complete series of solid solutions exists between PbnBioS,,(heyrovskyite) and PbnBioSe,r,whereas along the join from Pb.BiuS,,(lillanite) to PbrBiuSe,,there are two terminal solid solutions. The join PbBirSo-PbBirSeois characterizedby an extensivesolid solution basedon weibullite. Six extensive ranges of solid solution exist in the system PbSe-PbTe-BirSer-BirTer,and their compositionsfall along the joins in Pb(Se,Te):Bir(Se,Te),ratios of l:0, 2.7:1, 2:I, l:1, l:2, and0: I . New phasesand solid solutions in the systemsof lead and bismuth sulfide and telluride and selenide and telluride are all structurally related, and their structures are based on stacked layers of PbTe (two layers) and BirTe, (five layers). The total number of layers (N) in the unit cell of a phase, mPbTe'nBirTer, is expressedby the equation N : Z(2m * 5n), where Z is the number of formula units in the unit cell and can only be derived from experimental data. For the four phasesalong the galena-tetradymitejoin in the PbS- PbTe-BirSr-BirTe, system, PbrBirSrTer, PbrBioSrTeo,PbBirSrTer, -and PbBinS'Teohave N, Z, a, and c-respectively:9, l, q.2l x, and ft.j1 A;32,2,4.23 A, and 60.00A;21,3, 4.8 A.
    [Show full text]
  • Calculating Crystal Properties of Bismuth Telluride Using Wien 2K
    Calculating Crystal Properties of Bismuth Telluride Using Wien 2k By Louise Henderson Advisor: Janet Tate PH 403: Senior Thesis 28 pages 08/21/2014 Abstract Wien2k was used to calculate the band structure and the density of states of bismuth telluride. It was confirmed from previous computational research, that spin-orbit coupling needs to be included in the calculations to give more accurate results. Including spin-orbit coupling resulted in the band structure size to decrease from 0.33 eV to 0.11 eV. Including spin- orbit coupling also caused the band gap to change from being a direct band gap to an indirect band gap. These results will be used as a foundation for more in depth calculations, which will include calculating the band structure and the density of states of bismuth telluride with the addition of dopants, calculating the electrical and thermal conductivity, and calculating the Seebeck coefficient. 1.0 Background 1.1 Bismuth Telluride Bismuth telluride is a narrow band gap semiconductor with good thermoelectric properties that will be discussed later in this paper. It has a hexagonal lattice type in space group 푅3̅푚. All hexagonal crystals have the lattice parameters a=b≠c, α=β=90°, and γ=120°. The space group refers to the symmetry operations that when performed on the unit cell form the larger crystal structure. The “R” stands for rhombohedral. The rhombohedral unit cell is shown in Figure 1, three rhombohedral unit cells form the hexagonal unit cell. The “3̅” in the space group refers to rotation-inversion. The unit cell is rotated three times before returning to its original position then the rotation is followed by inversion.
    [Show full text]
  • Thermocatalytic Hydrogen Peroxide Generation and Environmental Disinfection by Bi2te3 Nanoplates
    ARTICLE https://doi.org/10.1038/s41467-020-20445-0 OPEN Thermocatalytic hydrogen peroxide generation and environmental disinfection by Bi2Te3 nanoplates Yu-Jiung Lin1,9, Imran Khan 2,9, Subhajit Saha 1, Chih-Cheng Wu1,3,4,5, Snigdha Roy Barman1, ✉ Fu-Cheng Kao1,6 & Zong-Hong Lin 1,7,8 The highly reactive nature of reactive oxygen species (ROS) is the basis for widespread use in environmental and health-related fields. Conventionally, there are only two kinds of catalysts 1234567890():,; used for ROS generation: photocatalysts and piezocatalysts. However, their usage has been limited due to various environmental and physical factors. To address this problem, herein, we report thermoelectric materials, such as Bi2Te3,Sb2Te3, and PbTe, as thermocatalysts which can produce hydrogen peroxide (H2O2) under a small surrounding temperature dif- ference. Being the most prevalent environmental factors in daily life, temperature and related thermal effects have tremendous potential for practical applications. To increase the prac- ticality in everyday life, bismuth telluride nanoplates (Bi2Te3 NPs), serving as an efficient thermocatalyst, are coated on a carbon fiber fabric (Bi2Te3@CFF) to develop a thermo- catalytic filter with antibacterial function. Temperature difference induced H2O2 generation by thermocatalysts results in the oxidative damage of bacteria, which makes thermocatalysts highly promising for disinfection applications. Antibacterial activity as high as 95% is achieved only by the treatment of low-temperature difference cycles. The current work highlights the horizon-shifting impacts of thermoelectric materials for real-time purification and antibacterial applications. 1 Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan. 2 Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan.
    [Show full text]