Processes in Biological Vision

Total Page:16

File Type:pdf, Size:1020Kb

Processes in Biological Vision PROCESSES IN BIOLOGICAL VISION: including, ELECTROCHEMISTRY OF THE NEURON This material is excerpted from the full β-version of the text. The final printed version will be more concise due to further editing and economical constraints. A Table of Contents and an index are located at the end of this paper. James T. Fulton Vision Concepts [email protected] April 30, 2017 Copyright 2001 James T. Fulton Photochemistry 5- 1 5 The Photochemistry of Animal Vision 1 “The concept in psychophysics that the visual spectral sensitivities are unknowable and irrelevant is unthinkable.” (This Author) “Solid state events involving conduction are evident in animate aggregations and may well be an essential characteristic of life, which may be an electromagnetic phenomenon.” Gutmann, Keyzer & Lyons (1983)2 5.1 Introduction Saari said in 1994; “Nature has exploited the relatively simple retinoid structure to full advantage. The molecule mediates a bewilderingly complex set of biologic functions with only a single functional group and a set of conjugated double bonds.”3 This chapter will show that when Nature added a second functional group, resulting in two distinctly different sets of conjugated double bonds, She expanded this exploitation considerably. The vision community within the field of biology has sought to determine the detailed nature of the chromophores of animal, and particularly human, vision for a very long time. Even after the industrial and technological revolutions, these chromophores are not known, except in conceptual form, in the vision literature. This is unfortunate since the necessary scientific knowledge has been available since the 1930-50's in other non biological disciplines. In the absence of the transfer of this knowledge into the vision community, the community has suffered from a lack of knowledge about exactly what they are seeking and the conditions required in the laboratory to isolate it. On the other hand, the specific conditions under which the chromophores of vision can be isolated and identified are extremely demanding compared to conventional chemistry. Many conventional chemical tests lack the specificity required to isolate the chromophores completely. This Chapter will provide the background and detailed conditions required to isolate the chromophores of vision, and the exact formula and state of matter of the chromophores of vision. Example: The four chromophores of animal vision are resonant conjugate retinoids that only exhibit their unique spectral performance when in the liquid crystalline state. They must not be attacked by strong detergents or either oxidizing or reducing agents. Their spectra can only be measured in the transient mode unless they are in quantum contact with another material that can continually de-excite the excitons created by the incident photons. CHAPTER SYNOPSIS [xxx some duplication with above insert ] This Chapter will present the actual chromophores of vision, labeled the Rhodonines and derivable from a number of feedstocks, including the retinol family, consist of relatively small molecules with a molecular weight of either 285 (R5 & R9) or 299 (R7 & R11). They are retinoids of the resonant conjugate type. They are also carboxylic-ion systems and exhibit a negative charge in their fundamental form. The molecules are relatively easily generated in the laboratory in pure form. However, they exhibit a number of unique properties that have made their isolation difficult. They only exhibit the properties of a visual chromophore when in the liquid crystalline state. Their absorption characteristic is a transient one unless a means of de-exciting the molecules of the liquid crystal is present. Finally, they are extremely sensitive to destruction by oxidants and alkali metal ions. The Rhodonine chromophores consist of a family of twelve molecules; four related to Retinol (Vitamin A1 and found in saline-based animals), four related to 3,4 dehydroretinol (Vitamin A2 and associated with the freshwater-based animals) and four related to 3-hydroxyretinol (Vitamin A3 and found primarily in the two-winged flies, the Diptera Order of Arthropoda). The functional absorption spectra of these three sets, when in the liquid crystalline state, are virtually identical. This is due to the primary quantum-mechanical mechanism involved and the identical form of their chromophoric structure. The members of each set are spaced at 95 ± 2 nm. Each Rhodonine molecule exhibits a large number of functional groups. It requires careful laboratory technique to differentiate them from simpler structures which may not have all of their characteristics. They satisfy all of the 1 Released: April 30, 2017 2Gutmann, F. Keyzer, H. & Lyons, L. (1981) Organic semiconductors: Part B Malabar, FL: Robert E. Krieger Publishing Co. Pg. 319 3Saari, J. in Sporn, M. Roberts, A. & Goodman, D. (1984) The retinoids. NY: Academic Press pg. 351 2 Processes in Biological Vision historical tests for a retinene but are not retinenes. Their carboxylic-ion structure exhibits the characteristics of both an alcohol and an aldehyde simultaneously. This fact has caused confusion in the literature for years. When utilized in the vision process, the Rhodonine chromophores are formed into a liquid crystalline state on the surface of a substrate, known generically as the protein opsin. It appears that the chromophores are held to the opsin substrate by very weak bonds of the hydrogen bond type. This linkage does not disturb the unique electronic configuration of the chromophoric material. The unique spectral absorption of the Rhodonines contains two visual band components, an isotropic absorption associated with the conjugated dipole molecular structure of the molecule, and a anisotropic absorption associated with an additional resonant slow-wave structure intimately associated with the triplet electrons of the oxygen atoms of the molecule. The unusual relaxation properties of these molecules are also associated with these triplet state electrons. The Rhodonines do not fluoresce or phosphoresce significantly while in a dilute liquid solution. The chromophores are aggregated into a liquid crystalline structure wherein they are able to conduct the excited electrons resulting from photoexcitation at a given location to a second location where they are de-excited in the process (developed in Chapter 11) of generating a signal within the dendrites of the photoreceptor cells. The chromophores of vision are produced in the RPE cells of the retina and not in the photoreceptor cells as conventionally assumed. This complex procedure is developed in Chapter 7. This Chapter begins with a comprehensive review of the quantum-mechanical properties of organic molecules and how this affects their photon excitation. A series of detailed definitions and concepts are presented that are not normally found in biological treatises. These concepts are vital to an understanding of the mechanisms involved in the photochemistry of vision. 5.1.1 The conventional wisdom of the vision community The vision community has had great difficulty in describing the chromophores of vision. The nomenclature has varied from being based on the color of light absorbed, the color of light not absorbed (their appearance by reflection or transmission), the chemical chromogen they include, whether they are sensitive to a given short, medium or long wavelength region, the numerical value of the absorption peak, the animal or cell from which they were obtained, or some combination of the above4. The problem has been compounded by the different perspectives adopted by the biological, electrophysiological and psychophysical communities. Since the time of Wald’s demonstration that rhodopsin, the conceptual chromophore of vision relied upon retinol as a chromogen and Hubbard’s contemporary proposal that photodetection involved an isomerism of the chromophore, the conventional wisdom has adopted that position. To support these proposals, Collins proposed that a Shiff-base was the mechanism connecting the protein opsin to the retinoid retinol in forming rhodopsin. This structure is defined as N- retinylidene-opsin. Since this proposal was found to have serious problems on energy grounds, an additional conceptual proposal was made by Bownds suggesting protonation of the Schiff-Base, to form N-retinyl-opsin. Hubbard proceeded to promulgate a complex series of chemical reactions leading to the transition of the initial 11-cis-retinol ligand to all- trans-retinol. However, the community has not been able to demonstrate the accuracy of those proposals or to confirm any of these reactions under biological conditions. An extremely large volume of literature has used their unconfirmed proposals as their foundation. As reviewed more fully in Section 5.5.2.1, no independent laboratory confirmation of the Wald, Hubbard, Collins, or Bownds proposals have appeared from outside of their institution in over fifty years. Goldsmith concurred in this position5. 5.1.1.1 Putative isomerism in the chromophore The experimental work based on the assumption that rhodopsin consists of a conjugated protein consisting of opsin and retinol joined via a Schiff base has been studied for over 60 years. The work has failed to discover how the chromophores of vision achieve their high spectral absorption, broad spectral line widths and their specific central 4Goldsmith, T. (1994) Ultraviolet receptors and color vision: Evolutionary implications and a dissonance of paradigms. Vision Res. vol. 34, no. 11, pp
Recommended publications
  • Vitamin a Deficiency and Night Blindness by John E
    VITAMIN A DEFICIENCY AND NIGHT BLINDNESS BY JOHN E. DOWLING AND GEORGE WALD* BIOLOGICAL LABORATORIES OF HARVARD UNIVERSITY, CAMBRIDGE Communicated May 16, 1958 One of the oldest diseases known to man is nutritional night blindness. Its descriptions go back to the ancient Egyptian medical papyri and are already ac- companied by the correct prescription for its cure, the eating of liver. Toward the end of World War I the factor in liver which cures night blindness was identified with the then newly discovered vitamin A.1 Vitamin A is the precursor in the retina of the visual pigments of the rods and cones.2 It seems reasonable to suppose that on a diet deficient in this factor the retina eventually synthesizes subnormal amounts of visual pigment, with the corresponding decline of visual sensitivity that constitutes night blindness. Some of the first studies of experimental human night blindness seemed to reveal such a simple and direct relationship.' In two subjects deprived of vitamin A, the visual thresholds of both rods and cones began at once to rise, until a mild night blindness had been established.4 On oral administration of vitamin A or carotene, the thresholds of both rod and cone vision returned to normal within 2-3 hours. It looked for a time, therefore, as though this might be an exemplary instance of the origin and cure of a biochemical disease, all elements of which were well under- stood. Further studies, however, exposed two major discrepancies: (1) Though in some subjects placed on a vitamin A-deficient diet the visual threshold began at once to rise, in a larger number it remained unchanged for periods ranging from several months5 to, in one instance, 2 years.6 (2) Among the subjects who developed night blindness, some were completely cured within a few hours after receiving vitamin A, whereas others, though showing some immediate improvement, took months of vitamin A supplementation to return to normal.
    [Show full text]
  • Shedding New Light on the Generation of the Visual Chromophore PERSPECTIVE Krzysztof Palczewskia,B,C,1 and Philip D
    PERSPECTIVE Shedding new light on the generation of the visual chromophore PERSPECTIVE Krzysztof Palczewskia,b,c,1 and Philip D. Kiserb,d Edited by Jeremy Nathans, Johns Hopkins University School of Medicine, Baltimore, MD, and approved July 9, 2020 (received for review May 16, 2020) The visual phototransduction cascade begins with a cis–trans photoisomerization of a retinylidene chro- mophore associated with the visual pigments of rod and cone photoreceptors. Visual opsins release their all-trans-retinal chromophore following photoactivation, which necessitates the existence of pathways that produce 11-cis-retinal for continued formation of visual pigments and sustained vision. Proteins in the retinal pigment epithelium (RPE), a cell layer adjacent to the photoreceptor outer segments, form the well- established “dark” regeneration pathway known as the classical visual cycle. This pathway is sufficient to maintain continuous rod function and support cone photoreceptors as well although its throughput has to be augmented by additional mechanism(s) to maintain pigment levels in the face of high rates of photon capture. Recent studies indicate that the classical visual cycle works together with light-dependent pro- cesses in both the RPE and neural retina to ensure adequate 11-cis-retinal production under natural illu- minances that can span ten orders of magnitude. Further elucidation of the interplay between these complementary systems is fundamental to understanding how cone-mediated vision is sustained in vivo. Here, we describe recent
    [Show full text]
  • Introduction; Environment & Review of Eyes in Different Species
    The Biological Vision System: Introduction; Environment & Review of Eyes in Different Species James T. Fulton https://neuronresearch.net/vision/ Abstract: Keywords: Biological, Human, Vision, phylogeny, vitamin A, Electrolytic Theory of the Neuron, liquid crystal, Activa, anatomy, histology, cytology PROCESSES IN BIOLOGICAL VISION: including, ELECTROCHEMISTRY OF THE NEURON Introduction 1- 1 1 Introduction, Phylogeny & Generic Forms 1 “Vision is the process of discovering from images what is present in the world, and where it is” (Marr, 1985) ***When encountering a citation to a Section number in the following material, the first numeric is a chapter number. All cited chapters can be found at https://neuronresearch.net/vision/document.htm *** 1.1 Introduction While the material in this work is designed for the graduate student undertaking independent study of the vision sensory modality of the biological system, with a certain amount of mathematical sophistication on the part of the reader, the major emphasis is on specific models down to specific circuits used within the neuron. The Chapters are written to stand-alone as much as possible following the block diagram in Section 1.5. However, this requires frequent cross-references to other Chapters as the analyses proceed. The results can be followed by anyone with a college degree in Science. However, to replicate the (photon) Excitation/De-excitation Equation, a background in differential equations and integration-by-parts is required. Some background in semiconductor physics is necessary to understand how the active element within a neuron operates and the unique character of liquid-crystalline water (the backbone of the neural system). The level of sophistication in the animal vision system is quite remarkable.
    [Show full text]
  • The Conformation of the Β-Ionone Ring Region of the Chromophore of Rhodopsin, in the Dark and Meta-I Photostates
    The conformation of the β-ionone ring region of the chromophore of rhodopsin, in the dark and meta-I photostates Jonathan M. Sharples Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy Corpus Christi College, Oxford Hilary, 2003 Abstract The conformation of the β-ionone ring region of the chromophore of rhodopsin, in the dark and meta-I photostates Jonathan M. Sharples D.Phil Thesis Corpus Christi College Hilary 2003 Rhodopsin is the light-sensitive GPCR that triggers the signal transduction cascade that results in a visual response. It serves as a paradigm for the superfamily of transmembrane G- protein coupled receptors (GPCR), which are responsible for many cell signal transduction pathways and are a major family of drug targets. Upon excitation with light, photo- isomerization of the 11-Z-retinylidene chromophore to 11-E-retinylidene activates rhodopsin, through a series of transient photointermediates. Defining the detailed structure of retinal within its binding site in rhodopsin is essential for a functional understanding of rhodopsin activation and an understanding of the general mechanism of GPCR activation. Here, solid state NMR has been applied to deduce the conformation of the β-ionone ring of 13 13 the chromophore of rhodopsin, in non-perturbing [8,18- C2] 11-Z retinal and [8,16/17- C2] 11-Z retinal, regenerated into rhodopsin in rod outer segments (ROS). The rotational resonance NMR technique was used to measure the internuclear distance between a 13C labelled nucleus on the polyene chain (C8) and three 13C labelled methyl groups (C16, C17 and C18) on the β-ionone ring of the chromophore.
    [Show full text]
  • THE ROLE of ROM-1 in MAPNTAINING PHOTORECEPTOR STRUCTURE AM) VUBILITY, and a MATHEMATICAL MODEL EXPLOIUNG the Icinetics of NEURONAL DEGENERATION
    THE ROLE OF ROM-1 IN MAPNTAINING PHOTORECEPTOR STRUCTURE AM) VUBILITY, AND A MATHEMATICAL MODEL EXPLOIUNG THE ICINETiCS OF NEURONAL DEGENERATION Geoffrey Alïan Clarke A thesis submittd in cdormity with the requirements foi the degree of Worof Philosophy, Graduate Department of Mobdar and Medical Genetics, in the University of Toronto O Copyri@ by Geofffey AUan Clarke 2ûûû The author has gnmted a non- L'auteur a accordé une licence non exclusive licence ailowing the exclusive pennettaat à la National Library of Canada to Bibliothèque nationale du Canada de reprduce, 10- distnïute or sel reproduire, prêter, distribuer ou copies of this thesis in microfonn, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantiaî extracts firom it Ni la thèse ni des extraits substantiels may be printed or otherwise de ceiîe-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Cana The Rok Of Rom-1 In MainWning Photoreceptor Structure and ViabUity, and a Matbernatical Mode1 Explorlng the ainetics of Neuronal Degeneration Geoffrey Ailan Clarke Department of Molecular and Medical Genetics University of Toronto Doctor of Philosophy,2000 Abstract Rom-1 and peripherinhds are homoIogous membrane proteins localized to the disk rims of photoreceptor outer segments (OSs), where they are postulated to be critical for disk -1- morphogenesis, OS renewal, and the maintenance of OS structure.
    [Show full text]
  • Functional Traits in Lichen Ecology: a Review of Challenge and Opportunity
    microorganisms Review Functional Traits in Lichen Ecology: A Review of Challenge and Opportunity Christopher J. Ellis 1,*, Johan Asplund 2 , Renato Benesperi 3 , Cristina Branquinho 4 , Luca Di Nuzzo 3 , Pilar Hurtado 5,6 , Isabel Martínez 5, Paula Matos 7, Juri Nascimbene 8, Pedro Pinho 4 , María Prieto 5, Bernardo Rocha 4 , Clara Rodríguez-Arribas 5, Holger Thüs 9 and Paolo Giordani 10 1 Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK 2 Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 5003 NO-1432 Ås, Norway; [email protected] 3 Dipartimento di Biologia, Università di Firenze, Via la Pira, 450121 Florence, Italy; renato.benesperi@unifi.it (R.B.); luca.dinuzzo@unifi.it (L.D.N.) 4 Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016 Lisboa, Portugal; [email protected] (C.B.); [email protected] (P.P.); [email protected] (B.R.) 5 Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, 28933 Móstoles, Spain; [email protected] (P.H.); [email protected] (I.M.); marí[email protected] (M.P.); [email protected] (C.R.-A.) 6 Departamento de Biología (Botánica), Universidad Autónoma de Madrid, c/Darwin, 2, 28049 Madrid, Spain 7 MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; [email protected]
    [Show full text]
  • Shedding New Light on the Generation of the Visual Chromophore PERSPECTIVE Krzysztof Palczewskia,B,C,1 and Philip D
    PERSPECTIVE Shedding new light on the generation of the visual chromophore PERSPECTIVE Krzysztof Palczewskia,b,c,1 and Philip D. Kiserb,d Edited by Jeremy Nathans, Johns Hopkins University School of Medicine, Baltimore, MD, and approved July 9, 2020 (received for review May 16, 2020) The visual phototransduction cascade begins with a cis–trans photoisomerization of a retinylidene chro- mophore associated with the visual pigments of rod and cone photoreceptors. Visual opsins release their all-trans-retinal chromophore following photoactivation, which necessitates the existence of pathways that produce 11-cis-retinal for continued formation of visual pigments and sustained vision. Proteins in the retinal pigment epithelium (RPE), a cell layer adjacent to the photoreceptor outer segments, form the well- established “dark” regeneration pathway known as the classical visual cycle. This pathway is sufficient to maintain continuous rod function and support cone photoreceptors as well although its throughput has to be augmented by additional mechanism(s) to maintain pigment levels in the face of high rates of photon capture. Recent studies indicate that the classical visual cycle works together with light-dependent pro- cesses in both the RPE and neural retina to ensure adequate 11-cis-retinal production under natural illu- minances that can span ten orders of magnitude. Further elucidation of the interplay between these complementary systems is fundamental to understanding how cone-mediated vision is sustained in vivo. Here, we describe recent
    [Show full text]
  • I. Crystallization of Crbpii Mutants As a Probe for Understanding Wavelength Regulation Ii. Reengineering and Crystallization Of
    I. CRYSTALLIZATION OF CRBPII MUTANTS AS A PROBE FOR UNDERSTANDING WAVELENGTH REGULATION II. REENGINEERING AND CRYSTALLIZATION OF CELLULAR RETINOL BINDING PROTEIN II (CRBPII) AS A FLUORESCENT TAG III. SYNTHESIS OF GAMMA-CARBOXY GLUTAMIC ACID AND APPLICATIONS TOWARDS THE SYNTHESIS OF CONANTOKINS By Camille Theonie Watson A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Chemistry - Doctor of Philosophy 2016 ABSTRACT I. CRYSTALLIZATION OF CRBPII MUTANTS AS A PROBE FOR UNDERSTANDING WAVELENGTH REGULATION II. REENGINEERING AND CRYSTALLIZATION OF CELLULAR RETINOL BINDING PROTEIN II (CRBPII) AS A FLUORESCENT TAG III. SYNTHESIS OF GAMMA-CARBOXY GLUTAMIC ACID AND APPLICATIONS TOWARDS THE SYNTHESIS OF CONANTOKINS By Camille Theonie Watson I. The mechanism by which humans are able to see colors has been an intriguing area of study over the past several decades. This interest comes from the fact that the different opsins bind to a single chromophore, retinal, as a protonated Schiff base and a wavelength range of 420 nm to 560 nm is observed. Different postulations have been put forward and mutagenic studies have been done on rhodopsin in an attempt to explain this phenomenon. Without crystallographic evidence, the results of these experiments proved to be inconclusive. Rhodopsin being a trans- membrane protein is very difficult to crystallize and give poor expression yields. As a result our lab has engineered a small cytosolic protein, Cellular Retinol Binding Protein II (CRBPII), as a rhodopsin mimic. Our studies, with the aid of high resolution crystal structures, have shown that chromophore conformation and complete burial of the chromophore in the binding pocket is essential for wavelength regulation.
    [Show full text]
  • Proteomics and Metabolomics Studies on the Biotic Stress Responses of Rice: an Update
    Vo et al. Rice (2021) 14:30 https://doi.org/10.1186/s12284-021-00461-4 REVIEW Open Access Proteomics and Metabolomics Studies on the Biotic Stress Responses of Rice: an Update Kieu Thi Xuan Vo1†, Md Mizanor Rahman1†, Md Mustafizur Rahman1, Kieu Thi Thuy Trinh1, Sun Tae Kim2 and Jong-Seong Jeon1* Abstract Biotic stresses represent a serious threat to rice production to meet global food demand and thus pose a major challenge for scientists, who need to understand the intricate defense mechanisms. Proteomics and metabolomics studies have found global changes in proteins and metabolites during defense responses of rice exposed to biotic stressors, and also reported the production of specific secondary metabolites (SMs) in some cultivars that may vary depending on the type of biotic stress and the time at which the stress is imposed. The most common changes were seen in photosynthesis which is modified differently by rice plants to conserve energy, disrupt food supply for biotic stress agent, and initiate defense mechanisms or by biotic stressors to facilitate invasion and acquire nutrients, depending on their feeding style. Studies also provide evidence for the correlation between reactive oxygen species (ROS) and photorespiration and photosynthesis which can broaden our understanding on the balance of ROS production and scavenging in rice-pathogen interaction. Variation in the generation of phytohormones is also a key response exploited by rice and pathogens for their own benefit. Proteomics and metabolomics studies in resistant and susceptible rice cultivars upon pathogen attack have helped to identify the proteins and metabolites related to specific defense mechanisms, where choosing of an appropriate method to identify characterized or novel proteins and metabolites is essential, considering the outcomes of host-pathogen interactions.
    [Show full text]
  • The First Steps in Vision in the Classroom
    Revista Brasileira de Ensino de F¶³sica, v. 32, n. 2, 2303 (2010) www.sb¯sica.org.br The ¯rst steps in vision in the classroom (Etapas iniciais para a vis~aona sala de aula) A.C.F. Santos1 Instituto de F¶³sica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil Recebido em 15/9/2009; Aceito em 31/2/2010; Publicado em 17/1/2011 We examine, using the particle-in-the-box model, the transient absorption measurements of the cis-trans isomerization by the visual pigment rhodopsin present in the retina [R.W. Schoenlein et al., Science 254, 412 (1991)], which contains the retinene group, a conjugated system, which is formed by single and double carbon- carbon atoms, and works as a light antenna in the process of photon absorption. The present approach is directly applicable to the classroom in undergraduate chemistry and physics major courses. Keywords: vision, quantum mechanics, undergraduate. Analisamos, utilizando o modelo de po»code potencial in¯nito, o processo de absor»c~aode um f¶otonque leva `aisomeriza»c~aocis-trans do pigmento visual rodopsina, presente na retina [R.W. Schoenlein e cols., Science 254, 412 (1991)], que consiste de um composto formado por liga»c~oessimples e duplas entre ¶atomosde carbono, e funciona como uma antena no processo de absor»c~aode um f¶oton.A presente proposta ¶ediretamente aplic¶avel nos cursos de gradua»c~aoem f¶³sicae qu¶³mica,nas disciplinas de f¶³sicamoderna e f¶³sico-qu¶³mica,respectivamente. Palavras-chave: vis~ao,mec^anicaqu^antica, gradua»c~ao.
    [Show full text]
  • Downloaded from Uniprotkb (
    Jing et al. Microbiome (2020) 8:38 https://doi.org/10.1186/s40168-020-00823-y RESEARCH Open Access Most dominant roles of insect gut bacteria: digestion, detoxification, or essential nutrient provision? Tian-Zhong Jing1*, Feng-Hui Qi2 and Zhi-Ying Wang1 Abstract Background: The insect gut microbiota has been shown to contribute to the host’s digestion, detoxification, development, pathogen resistance, and physiology. However, there is poor information about the ranking of these roles. Most of these results were obtained with cultivable bacteria, whereas the bacterial physiology may be different between free-living and midgut-colonizing bacteria. In this study, we provided both proteomic and genomic evidence on the ranking of the roles of gut bacteria by investigating the anal droplets from a weevil, Cryptorhynchus lapathi. Results: The gut lumen and the anal droplets showed qualitatively and quantitatively different subsets of bacterial communities. The results of 16S rRNA sequencing showed that the gut lumen is dominated by Proteobacteria and Bacteroidetes, whereas the anal droplets are dominated by Proteobacteria. From the anal droplets, enzymes involved in 31 basic roles that belong to 7 super roles were identified by Q-TOF MS. The cooperation between the weevil and its gut bacteria was determined by reconstructing community pathway maps, which are defined in this study. A score was used to rank the gut bacterial roles. The results from the proteomic data indicate that the most dominant role of gut bacteria is amino acid biosynthesis, followed by protein digestion, energy metabolism, vitamin biosynthesis, lipid digestion, plant secondary metabolite (PSM) degradation, and carbohydrate digestion, while the order from the genomic data is amino acid biosynthesis, vitamin biosynthesis, lipid digestion, energy metabolism, protein digestion, PSM degradation, and carbohydrate digestion.
    [Show full text]
  • Chapter 1 Photosynthesis
    Revised Edition: 2016 ISBN 978-1-283-50684-7 © All rights reserved. Published by: The English Press 48 West 48 Street, Suite 1116, New York, NY 10036, United States Email: [email protected] Table of Contents Chapter 1 - Photosynthesis Chapter 2 - Photomorphogenesis Chapter 3 - Visual System Chapter 4 - Circadian Rhythm Chapter 5 - Bioluminescence Chapter 6 - Ultraviolet Chapter 7 - Light Therapy Chapter 8 - Light Effects on Circadian Rhythm and Scotobiology WT ________________________WORLD TECHNOLOGIES________________________ Chapter 1 Photosynthesis WT Composite image showing the global distribution of photosynthesis, including both ocea- nic phytoplankton and vegetation Overall equation for the type of photosynthesis that occurs in plants Photosynthesis is a process that converts carbon dioxide into organic compounds, es- pecially sugars, using the energy from sunlight. Photosynthesis occurs in plants, algae, ________________________WORLD TECHNOLOGIES________________________ and many species of bacteria, but not in archaea. Photosynthetic organisms are called photoautotrophs, since they can create their own food. In plants, algae, and cyanoba- cteria, photosynthesis uses carbon dioxide and water, releasing oxygen as a waste product. Photosynthesis is vital for all aerobic life on Earth. As well as maintaining the normal level of oxygen in the atmosphere, nearly all life either depends on it directly as a source of energy, or indirectly as the ultimate source of the energy in their food (the exceptions are chemoautotrophs that live in rocks or around deep sea hydrothermal vents). The rate of energy capture by photosynthesis is immense, approximately 100 terawatts, which is about six times larger than the power consumption of human civilization. As well as energy, photosynthesis is also the source of the carbon in all the organic compounds within organisms' bodies.
    [Show full text]