What Colour Is That Bird? the Causes and Recognition of Common Colour Aberrations in Birds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Natural Skin‑Whitening Compounds for the Treatment of Melanogenesis (Review)
EXPERIMENTAL AND THERAPEUTIC MEDICINE 20: 173-185, 2020 Natural skin‑whitening compounds for the treatment of melanogenesis (Review) WENHUI QIAN1,2, WENYA LIU1, DONG ZHU2, YANLI CAO1, ANFU TANG1, GUANGMING GONG1 and HUA SU1 1Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine; 2School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210002, P.R. China Received June 14, 2019; Accepted March 17, 2020 DOI: 10.3892/etm.2020.8687 Abstract. Melanogenesis is the process for the production of skin-whitening agents, boosted by markets in Asian countries, melanin, which is the primary cause of human skin pigmenta- especially those in China, India and Japan, is increasing tion. Skin-whitening agents are commercially available for annually (1). Skin color is influenced by a number of intrinsic those who wish to have a lighter skin complexions. To date, factors, including skin types and genetic background, and although numerous natural compounds have been proposed extrinsic factors, including the degree of sunlight exposure to alleviate hyperpigmentation, insufficient attention has and environmental pollution (2-4). Skin color is determined by been focused on potential natural skin-whitening agents and the quantity of melanosomes and their extent of dispersion in their mechanism of action from the perspective of compound the skin (5). Under physiological conditions, pigmentation can classification. In the present article, the synthetic process of protect the skin against harmful UV injury. However, exces- melanogenesis and associated core signaling pathways are sive generation of melanin can result in extensive aesthetic summarized. An overview of the list of natural skin-lightening problems, including melasma, pigmentation of ephelides and agents, along with their compound classifications, is also post‑inflammatory hyperpigmentation (1,6). -
(12) Patent Application Publication (10) Pub. No.: US 2015/0086513 A1 Savkovic Et Al
US 20150.086513A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0086513 A1 Savkovic et al. (43) Pub. Date: Mar. 26, 2015 (54) METHOD FOR DERIVING MELANOCYTES (30) Foreign Application Priority Data FROM THE HAIR FOLLCLE OUTER ROOT SHEATH AND PREPARATION FOR A. 36. 3. E. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E.6 GRAFTNG l9. U. 414 ) . Publication Classification (71) Applicant: UNIVERSITAT LEIPZIG, Leipzig (DE) (51) Int. Cl. A6L27/38 (2006.01) (72) Inventors: Vuk Savkovic, Leipzig (DE); Christina CI2N5/071 (2006.01) Dieckmann, Leipzig (DE); (52) U.S. Cl. Jan-Christoph Simon, Leipzig (DE); CPC ......... A61L 27/3834 (2013.01); A61L 27/3895 Michaela Schulz-Siegmund, Leipzig (2013.01); C12N5/0626 (2013.01); C12N (DE); Michael Hacker, Leipzig (DE) 2506/03 (2013.01) USPC .......................................... 424/93.7:435/366 (57) ABSTRACT (73) Assignee: NIVERSITAT LEIPZIG, Leipzig The present invention relates to the field of biology and medi (DE) cine, and more specifically, to the field of stem-cell biology, involving producing or generating melanocytes from stem (21) Appl. No.: 14/354,545 cells and precursors derived from human hair root. Addition (22) PCT Filed: Oct. 29, 2012 ally, the present invention relates to the materials and method e a? 19 for producing autografts, homografts or allografts compris (86). PCT No.: PCT/EP2012/07 1418 ing melanocytes in general, as well as the materials and meth ods for producing autografts, homografts and allografts com S371 (c)(1), prising melanocytes for the treatment of diseases related to (2) Date: Apr. 25, 2014 depigmentation of the skin and for the treatment of Scars. -
Dermatologic Manifestations of Hermansky-Pudlak Syndrome in Patients with and Without a 16–Base Pair Duplication in the HPS1 Gene
STUDY Dermatologic Manifestations of Hermansky-Pudlak Syndrome in Patients With and Without a 16–Base Pair Duplication in the HPS1 Gene Jorge Toro, MD; Maria Turner, MD; William A. Gahl, MD, PhD Background: Hermansky-Pudlak syndrome (HPS) con- without the duplication were non–Puerto Rican except sists of oculocutaneous albinism, a platelet storage pool de- 4 from central Puerto Rico. ficiency, and lysosomal accumulation of ceroid lipofuscin. Patients with HPS from northwest Puerto Rico are homozy- Results: Both patients homozygous for the 16-bp du- gous for a 16–base pair (bp) duplication in exon 15 of HPS1, plication and patients without the duplication dis- a gene on chromosome 10q23 known to cause the disorder. played skin color ranging from white to light brown. Pa- tients with the duplication, as well as those lacking the Objective: To determine the dermatologic findings of duplication, had hair color ranging from white to brown patients with HPS. and eye color ranging from blue to brown. New findings in both groups of patients with HPS were melanocytic Design: Survey of inpatients with HPS by physical ex- nevi with dysplastic features, acanthosis nigricans–like amination. lesions in the axilla and neck, and trichomegaly. Eighty percent of patients with the duplication exhibited fea- Setting: National Institutes of Health Clinical Center, tures of solar damage, including multiple freckles, stel- Bethesda, Md (a tertiary referral hospital). late lentigines, actinic keratoses, and, occasionally, basal cell or squamous cell carcinomas. Only 8% of patients Patients: Sixty-five patients aged 3 to 54 years were di- lacking the 16-bp duplication displayed these findings. -
Aberrant Colourations in Wild Snakes: Case Study in Neotropical Taxa and a Review of Terminology
SALAMANDRA 57(1): 124–138 Claudio Borteiro et al. SALAMANDRA 15 February 2021 ISSN 0036–3375 German Journal of Herpetology Aberrant colourations in wild snakes: case study in Neotropical taxa and a review of terminology Claudio Borteiro1, Arthur Diesel Abegg2,3, Fabrício Hirouki Oda4, Darío Cardozo5, Francisco Kolenc1, Ignacio Etchandy6, Irasema Bisaiz6, Carlos Prigioni1 & Diego Baldo5 1) Sección Herpetología, Museo Nacional de Historia Natural, Miguelete 1825, Montevideo 11800, Uruguay 2) Instituto Butantan, Laboratório Especial de Coleções Zoológicas, Avenida Vital Brasil, 1500, Butantã, CEP 05503-900 São Paulo, SP, Brazil 3) Universidade de São Paulo, Instituto de Biociências, Departamento de Zoologia, Programa de Pós-Graduação em Zoologia, Travessa 14, Rua do Matão, 321, Cidade Universitária, 05508-090, São Paulo, SP, Brazil 4) Universidade Regional do Cariri, Departamento de Química Biológica, Programa de Pós-graduação em Bioprospecção Molecular, Rua Coronel Antônio Luiz 1161, Pimenta, Crato, Ceará 63105-000, CE, Brazil 5) Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Felix de Azara 1552, CP 3300, Posadas, Misiones, Argentina 6) Alternatus Uruguay, Ruta 37, km 1.4, Piriápolis, Uruguay Corresponding author: Claudio Borteiro, e-mail: [email protected] Manuscript received: 2 April 2020 Accepted: 18 August 2020 by Arne Schulze Abstract. The criteria used by previous authors to define colour aberrancies of snakes, particularly albinism, are varied and terms have widely been used ambiguously. The aim of this work was to review genetically based aberrant colour morphs of wild Neotropical snakes and associated terminology. We compiled a total of 115 cases of conspicuous defective expressions of pigmentations in snakes, including melanin (black/brown colour), xanthins (yellow), and erythrins (red), which in- volved 47 species of Aniliidae, Boidae, Colubridae, Elapidae, Leptotyphlopidae, Typhlopidae, and Viperidae. -
November 2020
The Central Okanagan Naturalists' Club November 2020 www.okanagannature.org Central Okanagan Naturalists’ Club Monthly Meetings, second Tuesday of the month, Unfortunately, this is not a normal year. In-person regular second-Tuesday meetings remain suspended. CONC Members are now meeting via Zoom. Know Nature and Join us on 10 November 2020: at 7:00 pm. via Zoom for the following presentation: Keep it Worth Knowing Ice age mammals from the Yukon permafrost: Speaker: Grant Zazula Fossil mammals from the last ice age have been recovered from permafrost in the Yukon since the Klondike Gold Rush of 1898. Scientists continue to study these fossils and employ cutting edge techniques such as radiocarbon dating, stable isotope analyses and ancient genetics to learn how these animals lived and evolved in Canada's north during the ice age. Fossils from the Yukon provide unprecedented details on the life and loss of many iconic species, Index such as woolly mammoths and giant beavers, and help us understand how Club Information. 2 current ecosystems may respond to climate change. Birding report. 3 Zoom. 3 Juvenile Long-billed Dowitcher 4 “Leucistic” Mallard Drake. 4 Future Meetings. 5 Pam’s Blog. 6 Rattlesnake Project. 6 2020-2021 Photo Contest. 7 Photo (courtesy of Grant Zazula) Grant Zazula completed his PhD in Biological Sciences at Simon Fraser University in 2006. Since then he has overseen the Yukon Government Palaeontology Program where he manages fossil collections, conducts research and communicates scientific results to the wider public through the Yukon Beringia Interpretive Centre. www.beringia.com 1 Central Okanagan Naturalists’ Club. -
Doctor of Philosophy (Md) School of Pharmacy
Development, safety and efficacy evaluation of actinic damage retarding nano-pharmaceutical treatments in oculocutaneous albinism. J. M Chifamba (R931614G) B. App Chem (Hons), M Phil (Upgraded to D.Phil.), Dip QA, Dip SPC, Dip Pkg Thesis submitted in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY (MD) Main Supervisor: Prof C. C Maponga 1 Associate Supervisor: Dr A Dube (Nano-technologist) 2 Associate Supervisor: Dr D. I Mutangadura (Specialist dermatologist) 3, 4 1School of Pharmacy, CHS, University of Zimbabwe, Zimbabwe 2School of Pharmacy, University of the Western Cape, South Africa 3Fellow of the American academy of dermatology 4Fellow of the International academy of dermatology SCHOOL OF PHARMACY COLLEGE OF HEALTH SCIENCES © Harare, September 2015 i This work is dedicated to the everlasting memory of my dearly departed father, his scholarship, mentorship and principles shall always be my beacon. Esau Jeniel Mapundu Chifamba (15/03/1934-08/06/2015) ii ACKNOWLEDGEMENTS “Art is I, science is we”, Claude Bernard 1813-1878 Any work of this size and scope inevitably draws on the expertise and direction from others. I therefore wish to proffer my utmost gratitude to the following individuals and institutions for their infallible inputs and support. My profound appreciation goes to Prof C C Maponga and Dr A. Dube for crafting, steering and nurturing my interests and research pursuits in nano-pharmaceuticals. Indeed, I have found this discipline to be most intellectually fulfilling. I wish to further acknowledge the mentorship, validation and insight into dermato-pharmacokinetics from the specialist dermatologist Dr D I Mutangadura. Many thanks go to Prof M Gundidza for the contacts, guidance and refereeing in research methodologies, scientific writing and analytical work. -
Index to the NLM Classification 2011
National Library of Medicine Classification 2011 Index Disease see Tyrosinemias 1-8 5,12-diHETE see Leukotriene B4 1,2-Benzopyrones see Coumarins 5,12-HETE see Leukotriene B4 1,2-Dibromoethane see Ethylene Dibromide 5-HT see Serotonin 1,8-Dihydroxy-9-anthrone see Anthralin 5-HT Antagonists see Serotonin Antagonists 1-Oxacephalosporin see Moxalactam 5-Hydroxytryptamine see Serotonin 1-Propanol 5-Hydroxytryptamine Antagonists see Serotonin Organic chemistry QD 305.A4 Antagonists Pharmacology QV 82 6-Mercaptopurine QV 269 1-Sar-8-Ala Angiotensin II see Saralasin 7S RNA see RNA, Small Nuclear 1-Sarcosine-8-Alanine Angiotensin II see Saralasin 8-Hydroxyquinoline see Oxyquinoline 13-cis-Retinoic Acid see Isotretinoin 8-Methoxypsoralen see Methoxsalen 15th Century History see History, 15th Century 8-Quinolinol see Oxyquinoline 16th Century History see History, 16th Century 17 beta-Estradiol see Estradiol 17-Ketosteroids WK 755 A 17-Oxosteroids see 17-Ketosteroids A Fibers see Nerve Fibers, Myelinated 17th Century History see History, 17th Century Aardvarks see Xenarthra 18th Century History see History, 18th Century Abate see Temefos 19th Century History see History, 19th Century Abattoirs WA 707 2',3'-Cyclic-Nucleotide Phosphodiesterases QU 136 Abbreviations 2,4-D see 2,4-Dichlorophenoxyacetic Acid Chemistry QD 7 2,4-Dichlorophenoxyacetic Acid General P 365-365.5 Organic chemistry QD 341.A2 Library symbols (U.S.) Z 881 2',5'-Oligoadenylate Polymerase see Medical W 13 2',5'-Oligoadenylate Synthetase By specialties (Form number 13 in any NLM -
Colorado Birds | Summer 2021 | Vol
PROFESSOR’S CORNER Learning to Discern Color Aberration in Birds By Christy Carello Professor of Biology at The Metropolitan State University of Denver Melanin, the pigment that results in the black coloration of the flight feathers in this American White Pelican, also results in stronger feathers. Photo by Peter Burke. 148 Colorado Birds | Summer 2021 | Vol. 55 No.3 Colorado Birds | Summer 2021 | Vol. 55 No.3 149 THE PROFESSOR’S CORNER IS A NEW COLORADO BIRDS FEATURE THAT WILL EXPLORE A WIDE RANGE OF ORNITHOLOGICAL TOPICS FROM HISTORY AND CLASSIFICATION TO PHYSIOLOGY, REPRODUCTION, MIGRATION BEHAVIOR AND BEYOND. AS THE TITLE SUGGESTS, ARTICLES WILL BE AUTHORED BY ORNI- THOLOGISTS, BIOLOGISTS AND OTHER ACADEMICS. Did I just see an albino bird? Probably not. Whenever humans, melanin results in our skin and hair color. we see an all white or partially white bird, “albino” In birds, tiny melanin granules are deposited in is often the first word that comes to mind. In feathers from the feather follicles, resulting in a fact, albinism is an extreme and somewhat rare range of colors from dark black to reddish-brown condition caused by a genetic mutation that or even a pale yellow appearance. Have you ever completely restricts melanin throughout a bird’s wondered why so many mostly white birds, such body. Many birders have learned to substitute the as the American White Pelican, Ring-billed Gull and word “leucistic” for “albino,” which is certainly a Swallow-tailed Kite, have black wing feathers? This step in the right direction, however, there are many is due to melanin. -
Amino Acid Disorders
471 Review Article on Inborn Errors of Metabolism Page 1 of 10 Amino acid disorders Ermal Aliu1, Shibani Kanungo2, Georgianne L. Arnold1 1Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; 2Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA Contributions: (I) Conception and design: S Kanungo, GL Arnold; (II) Administrative support: S Kanungo; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: E Aliu, GL Arnold; (V) Data analysis and interpretation: None; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Georgianne L. Arnold, MD. UPMC Children’s Hospital of Pittsburgh, 4401 Penn Avenue, Suite 1200, Pittsburgh, PA 15224, USA. Email: [email protected]. Abstract: Amino acids serve as key building blocks and as an energy source for cell repair, survival, regeneration and growth. Each amino acid has an amino group, a carboxylic acid, and a unique carbon structure. Human utilize 21 different amino acids; most of these can be synthesized endogenously, but 9 are “essential” in that they must be ingested in the diet. In addition to their role as building blocks of protein, amino acids are key energy source (ketogenic, glucogenic or both), are building blocks of Kreb’s (aka TCA) cycle intermediates and other metabolites, and recycled as needed. A metabolic defect in the metabolism of tyrosine (homogentisic acid oxidase deficiency) historically defined Archibald Garrod as key architect in linking biochemistry, genetics and medicine and creation of the term ‘Inborn Error of Metabolism’ (IEM). The key concept of a single gene defect leading to a single enzyme dysfunction, leading to “intoxication” with a precursor in the metabolic pathway was vital to linking genetics and metabolic disorders and developing screening and treatment approaches as described in other chapters in this issue. -
Introduction Generally White Patches of Fur (But No Red Eyes)
Adrià López Baucells, Maria Mas, Xavier Puig-Montserrat, Carles Flaquer Barbastella 6 (1) Open Access ISSN: 1576-9720 SECEMU www.secemu.org Hypopigmentation in vespertilionid bats: the first record of a leucistic soprano pipistrelle Pipistrellus pygmaeus Adrià López Baucells1*, Maria Mas1, Xavier Puig-Montserrat1,2 & Carles Flaquer1 1 Granollers Museum of Natural Sciences, Bat Research Group, Av. Francesc Macià 51, 08402 Granollers, Catalonia. 2 Galanthus Association. Carretera de Juià, 46 - 17460 Celrà, Catalonia * Corresponding author e-mail: [email protected] DOI: http://dx.doi.org/10.14709/BarbJ.6.1.2013.09 Spanish title: Hipopigmentación en vespertilionidos: primera cita de murciélago de Cabrera (Pipistrellus pygmaeus) leucístico Abstract: Albinism and leucism are commonly confused in the literature. Despite the fact that these congenial disorders affect only a small proportion of bat populations, they seem to be widely spread since reports of affected bats are found from over the world. In this communication we report for the first time a leucistic Pipistrellus pygmaeus (Leach 1825). It was captured in the Ebro Delta Natural Park (Iberian Peninsula) in a biological field station near a wetland with rice paddies, where over 100 bat boxes are deployed to monitor bat populations. The individual had whitish fur over the whole of its body (dorsal and ventral parts); nevertheless its eyes and wing membranes had normal pigmentation. Although an albino P. pygmeaus has been reported from Spain, this represents the first report of leucism in this species. Keywords: albinism, Catalunya, chromatic aberration, leucism, pigmentation. Introduction generally white patches of fur (but no red eyes). It is important to note that not all leucistic specimens are Albinism and leucism should not be confused caused by genetic mutations (Acevedo et al. -
Observation of Albinistic and Leucistic Black Mangabeys (Lophocebus Aterrimus) Within the Lomako-Yokokala Faunal Reserve, Democratic Republic of Congo
African Primates 7 (1): 50-54 (2010) Observation of Albinistic and Leucistic Black Mangabeys (Lophocebus aterrimus) within the Lomako-Yokokala Faunal Reserve, Democratic Republic of Congo Timothy M. Eppley, Jena R. Hickey & Nathan P. Nibbelink Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA Abstract: Despite the fact that the black mangabey, Lophocebus aterrimus, is a large-bodied primate widespread throughout the southern portion of the Congo basin, remarkably little is known in regards to the occurrence rate of pelage color aberrations and their impact on survival rates. While conducting primate surveys within the newly protected Lomako-Yokokala Faunal Reserve in the central Equateur Province of the Democratic Republic of Congo, we opportunistically observed one albinistic and two leucistic L. aterrimus among black colored conspecifics and affiliative polyspecifics. No individual was entirely white in color morphology; rather, one was cream colored whereas two others retained some black hair patches on sections of their bodies. Although these phenomena may appear anomalous, they have been shown to occur with some frequency within museum specimens and were documented once in a community in the wild. We discuss the potential negative effects of this color deficiency on the survival of individuals displaying this physically distinctive pelage morphology. Key words: black mangabey, albinism, leucism, Congo, Lomako, Lophocebus Résumé: Malgré le fait que le mangabey noir, Lophocebus aterrimus, est un primat d’une grand taille qui est répandu dans tous la partie sud du bassin du Congo, remarquablement peu est connu quant au taux d’occurrence des aberrations de la couleur du pelage et leurs impact sur les taux de survivance. -
First Record of Albinism for the Doglike Bat, Peropteryx Kappleri Peters, 1867 (Chiroptera, Emballonuridae)
A peer-reviewed open-access journal Subterranean BiologyFirst 30: record 33–40 of (2019) albinism for the doglike bat, Peropteryx kappleri Peters, 1867 33 doi: 10.3897/subtbiol.30.34223 SHORT COMMUNICATION Subterranean Published by http://subtbiol.pensoft.net The International Society Biology for Subterranean Biology First record of albinism for the doglike bat, Peropteryx kappleri Peters, 1867 (Chiroptera, Emballonuridae) Leopoldo Ferreira de Oliveira Bernardi1, Xavier Prous2, Mariane S. Ribeiro2, Juliana Mascarenhas3, Sebastião Maximiano Correa Genelhú4, Matheus Henrique Simões2, Tatiana Bezerra2 1 Bolsista PNPD/CAPES, Universidade Federal de Lavras, Departamento de Entomologia, Programa de Pós- Graduação em Entomologia, Lavras, MG, Brazil 2 Vale, Environmental Licensing and Speleology, Av. Dr. Marco Paulo Simon Jardim, 3580, Nova Lima, MG, Brazil 3 Brandt Meio Ambiente, Alameda do Ingá 89, Vale do Sereno, Nova Lima, MG, Brazil 4 Ativo Ambiental, Rua Alabastro, 278, Sagrada Família, Belo Horizonte, MG, Brazil Corresponding author: Leopoldo Ferreira de Oliveira Bernardi ([email protected]) Academic editor: M.E. Bichuette | Received 1 March 2019 | Accepted 6 May 2019 | Published 29 May 2019 http://zoobank.org/F0380143-CC69-4907-A9A1-014F8E462A0B Citation: Bernardi LFO, Prous X, Ribeiro MS, Mascarenhas J, Genelhú SMC, Simões MH, Bezerra T (2019) First record of albinism for the doglike bat, Peropteryx kappleri Peters, 1867 (Chiroptera, Emballonuridae). Subterranean Biology 30: 33–40. https://doi.org/10.3897/subtbiol.30.34223 Abstract Albinism is a type of deficient in melanin production could be the result of genetic anomalies that are manifest as the absence of coloration of part or the entire body of an organism. This type of chromatic disorder can affect several vertebrate species, but is rarely found in nature.