Cornell Box Lecture S.Wilson

Total Page:16

File Type:pdf, Size:1020Kb

Cornell Box Lecture S.Wilson Lecture Notes for Presentation titled: Cornell Box Lecture S.Wilson This lecture contains videos with audio, hookup A/V components prior to presentation. 1. Open slide. Which image is a photograph and which is a 3D render? Can you tell? 2. Realism is the goal: Hint: The image on the right is the photograph, the image on the left is a 3D recreation. 3. The Cornell University Program of Computer Graphics: The Cornell box is a test aimed at determining the accuracy of rendering software by comparing the rendered scene with an actual photograph of the same scene, and has become a commonly used 3D test model. It was created by Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Bennett Battaile at the Cornell University Program of Computer Graphics for their paper “Modeling the Interaction of Light Between Diffuse Surfaces” published and presented at SIGGRAPH'84. 4. Radiosity / Diffuse Interreflection: A physical model of the box is created and photographed with a CCD camera. The exact settings are then measured from the scene: emission spectrum of the light source, reflectance spectra of all the surfaces, exact position and size of all objects, walls, light source and camera. The same scene is then reproduced in the renderer, and the output file is compared with the photograph. The physical properties of the box are designed to show diffuse interreflection. For example, some light should reflect off the red and green walls and bounce onto the white walls, so parts of the white walls should appear slightly red or green. 5. Reference Image: The Cornell Box is based on a physical model that is photographed and measured for light readings. This information is programmed into the 3D simulations for accurate rendering. Our work final should represent the original as best as we can. 6. Reference Image: Certain details are the hallmark of a good Cornell Box: a. Radiosity: The red wall is reflected on the box next to it, the red “spills” onto the wall at the back. Similar with the green wall. b. Soft shadows, as realistic as possible.. shadows from a single light source. c. Ceiling light, for casting rays. d. Even lighting, not too dark or bright. e. Contoured objects in scene for evaluating reflections/material properties Our own work should contain all of these elements. 7. Test Render Video with Moving Light: This test render shows radiosity, and the moving light source shows true ray casting of shadows and highlights. 8. Comparison - Old vs New: On the left is the original Cornell Box presented in 1984, on the right is an example from 2009. While great advances in computational power have increased (Moores Law) render times have somewhat remained constant (Blinns Law). Because we demand more realism and higher quality, render times increase with our computing speed. 9. The Utah Teapot: This computer rendering of a standard white Melitta teapot as a 3D model has become the standard reference object for testing new applications. It is possibly the most famous data set in the world of computer graphics. The mathematical model was designed in 1975 by Martin Newell at the University of Utah. Newell made the mathematical data that described the teapot’s geometry publicly available. Soon other researchers began to use the same data for their computer graphics experiments, so they did not have to laboriously enter geometric data for some other object. 10. Teapotahedron - A Platonic Solid: Due to advances in technology, the act of rendering the teapot is no longer the challenge it was in 1975. Yet the teapot continues to be used as a reference object. Utah is considered to be the design equivalent to the “Hello, World” code as a way to create an easy 3D scene. The image above left is from1987. This is titled as “The Six Platonic Solids” and the joke emerged that the “Teapotahedron” is the elusive sixth platonic solid. FYI: In three-dimensional space, a Platonic solid is a regular, convex polyhedron. It is constructed by congruent (identical in shape and size) regular (all angles equal and all sides equal) polygonal faces with the same number of faces meeting at each vertex. Only five solids meet those criteria. 11. Video: How a Teapot Revolutionized Computer TRT: 2:41 12. Bonus Trivia: Jim Blinn 13. Final Slide: Today, the Cornell box is often used to demonstrate and evaluate renderers and can be capability pieces for animators to showcase their skills. In this lesson we will create and render our box with Raytracing. What will you place in your scene to demonstrate your quality rendering skills? Notice the teapots in this scene? In a future project we will use an advanced rendering system to demonstrate Radiosity! .
Recommended publications
  • Neural Scene Graph Rendering
    Neural Scene Graph Rendering JONATHAN GRANSKOG, NVIDIA TILL N. SCHNABEL, NVIDIA FABRICE ROUSSELLE, NVIDIA JAN NOVÁK, NVIDIA We present a neural scene graph—a modular and controllable representa- · translation Tg,1 (root node) tion of scenes with elements that are learned from data. We focus on the forward rendering problem, where the scene graph is provided by the user and references learned elements. The elements correspond to geometry and material definitions of scene objects and constitute the leaves of thegraph; we store them as high-dimensional vectors. The position and appearance of encoded scene objects can be adjusted in an artist-friendly manner via familiar trans- transformations 3 × 3 formations, e.g. translation, bending, or color hue shift, which are stored in 1 dgg x dgg 2 Tg,21: matrixmatrix Tg,2 4 the inner nodes of the graph. In order to apply a (non-linear) transforma- Tm,1 translation diuse hue tion to a learned vector, we adopt the concept of linearizing a problem by color lifting it into higher dimensions: we first encode the transformation into a shift T1 3g × 3g T1 3m × 3m T2 T3 T3 T4 high-dimensional matrix and then apply it by standard matrix-vector mul- g,3 : matrix m,2 : matrix g,3 g,2 m,1 g,2 tiplication. The transformations are encoded using neural networks. We deformation rotation scaling render the scene graph using a streaming neural renderer, which can handle graphs with a varying number of objects, and thereby facilitates scalability. Our results demonstrate a precise control over the learned object repre- g1 : m1: g2 m2 m3 g4 m4 sentations in a number of animated 2D and 3D scenes.
    [Show full text]
  • Lecture 2 3D Modeling
    Lecture 2 3D Modeling Dr. Shuang LIANG School of Software Engineering Tongji University Fall 2012 3D Modeling, Advanced Computer Graphics Shuang LIANG, SSE, Fall 2012 Lecturer Dr. Shuang LIANG • Assisstant professor, SSE, Tongji – Education » B.Sc in Computer Science, Zhejiang University, 1999-2003 » PhD in Computer Science, Nanjing Univerisity, 2003-2008 » Visit in Utrecht University, 2007, 2008 – Research Fellowship » The Chinese University of Hong Kong, 2009 » The Hong Kong Polytechnic University, 2010-2011 » The City University of Hong Kong, 2012 • Contact – Office: Room 442, JiShi Building, JiaDing Campus, TongJi (Temporary) – Email: [email protected] 3D Modeling, Advanced Computer Graphics Shuang LIANG, SSE, Fall 2012 Outline • What is a 3D model? • Usage of 3D models • Classic models in computer graphics • 3D model representations • Raw data • Solids • Surfaces 3D Modeling, Advanced Computer Graphics Shuang LIANG, SSE, Fall 2012 Outline • What is a 3D model? • Usage of 3D models • Classic models in computer graphics • 3D model representations • Raw data • Solids • Surfaces 3D Modeling, Advanced Computer Graphics Shuang LIANG, SSE, Fall 2012 What is a 3D model? 3D object using a collection of points in 3D space, connected by various geometric entities such as triangles, lines, curved surfaces, etc. It is a collection of data (points and other information) 3D Modeling, Advanced Computer Graphics Shuang LIANG, SSE, Fall 2012 What is a 3D modeling? The process of developing a mathematical representation of any three-dimensional
    [Show full text]
  • Matching 3D Models with Shape Distributions
    Matching 3D Models with Shape Distributions Robert Osada, Thomas Funkhouser, Bernard Chazelle, and David Dobkin Princeton University Abstract Cad models is a simple example), the vast majority of 3D objects available via the World Wide Web will not have them, and there Measuring the similarity between 3D shapes is a fundamental prob- are few standards regarding their use. In general, 3D models will lem, with applications in computer vision, molecular biology, com- be acquired with scanning devices, or output from geometric ma- puter graphics, and a variety of other fields. A challenging aspect nipulation tools (file format conversion programs), and thus they of this problem is to find a suitable shape signature that can be con- will have only geometric and appearance information, usually com- structed and compared quickly, while still discriminating between pletely void of structure or semantic information. Automatic shape- similar and dissimilar shapes. based matching algorithms will be useful for recognition, retrieval, In this paper, we propose and analyze a method for computing clustering, and classification of 3D models in such databases. shape signatures for arbitrary (possibly degenerate) 3D polygonal Databases of 3D models have several new and interesting charac- models. The key idea is to represent the signature of an object as a teristics that significantly affect shape-based matching algorithms. shape distribution sampled from a shape function measuring global Unlike images and range scans, 3D models do not depend on the geometric properties of an object. The primary motivation for this configuration of cameras, light sources, or surrounding objects approach is to reduce the shape matching problem to the compar- (e.g., mirrors).
    [Show full text]
  • Plenoptic Imaging and Vision Using Angle Sensitive Pixels
    PLENOPTIC IMAGING AND VISION USING ANGLE SENSITIVE PIXELS A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Suren Jayasuriya January 2017 c 2017 Suren Jayasuriya ALL RIGHTS RESERVED This document is in the public domain. PLENOPTIC IMAGING AND VISION USING ANGLE SENSITIVE PIXELS Suren Jayasuriya, Ph.D. Cornell University 2017 Computational cameras with sensor hardware co-designed with computer vision and graph- ics algorithms are an exciting recent trend in visual computing. In particular, most of these new cameras capture the plenoptic function of light, a multidimensional function of ra- diance for light rays in a scene. Such plenoptic information can be used for a variety of tasks including depth estimation, novel view synthesis, and inferring physical properties of a scene that the light interacts with. In this thesis, we present multimodal plenoptic imaging, the simultaenous capture of multiple plenoptic dimensions, using Angle Sensitive Pixels (ASP), custom CMOS image sensors with embedded per-pixel diffraction gratings. We extend ASP models for plenoptic image capture, and showcase several computer vision and computational imaging applica- tions. First, we show how high resolution 4D light fields can be recovered from ASP images, using both a dictionary-based machine learning method as well as deep learning. We then extend ASP imaging to include the effects of polarization, and use this new information to image stress-induced birefringence and remove specular highlights from light field depth mapping. We explore the potential for ASPs performing time-of-flight imaging, and in- troduce the depth field, a combined representation of time-of-flight depth with plenoptic spatio-angular coordinates, which is used for applications in robust depth estimation.
    [Show full text]
  • CUDA-Based Global Illumination Aaron Jensen San Jose State
    Running head: CUDA-BASED GLOBAL ILLUMINATION 1 CUDA-Based Global Illumination Aaron Jensen San Jose State University 13 May, 2014 CS 180H: Independent Research for Department Honors Author Note Aaron Jensen, Undergraduate, Department of Computer Science, San Jose State University. Research was conducted under the guidance of Dr. Pollett, Department of Computer Science, San Jose State University. CUDA-BASED GLOBAL ILLUMINATION 2 Abstract This paper summarizes a semester of individual research on NVIDIA CUDA programming and global illumination. What started out as an attempt to update a CPU-based radiosity engine from a previous graphics class evolved into an exploration of other lighting techniques and models (collectively known as global illumination) and other graphics-based languages (OpenCL and GLSL). After several attempts and roadblocks, the final software project is a CUDA-based port of David Bucciarelli's SmallPt GPU, which itself is an OpenCL-based port of Kevin Beason's smallpt. The paper concludes with potential additions and alterations to the project. CUDA-BASED GLOBAL ILLUMINATION 3 CUDA-Based Global Illumination Accurately representing lighting in computer graphics has been a topic that spans many fields and applications: mock-ups for architecture, environments in video games and computer generated images in movies to name a few (Dutré). One of the biggest issues with performing lighting calculations is that they typically take an enormous amount of time and resources to calculate accurately (Teoh). There have been many advances in lighting algorithms to reduce the time spent in calculations. One common approach is to approximate a solution rather than perform an exhaustive calculation of a true solution.
    [Show full text]
  • Standard Elevation Models for Evaluating Terrain Representation
    Standard elevation models for evaluating terrain representation a, b c d e Patrick Kennelly *, Tom Patterson , Alexander Tait , Bernhard Jenny , Daniel Huffman , Sarah Bell f, Brooke Marston g a Long Island University, [email protected] b US National Parks Service (Ret.), [email protected] c National Geographic Society, [email protected] d Monash University, [email protected] e somethingaboutmaps, [email protected] f Esri, [email protected] g Brooke Marston, [email protected] * Corresponding author Keywords: Terrain representation, digital elevation model, relief shading, standard data models Standard Elevation Models We propose the use of standard elevation models to evaluate and compare the quality of various relief shading and other terrain rendering techniques. These datasets will cover various landforms, be available at no cost to the user, and be free of common data imperfections such as missing data values, resampling artifacts, and seams. Datasets will be available at multiple map scales over the same geographic area for multi-scale analysis. Utilizing a standard data model for testing and comparing methods is a common practice among many disciplines. Furthermore, the use of digital models to test rendering techniques based on qualitative visual production has been well established for decades. Following the generation of the first digital image in 1957, image processing and analysis required standard test images upon which methods could be tested and compared. During the 1960s and 1970s, many well-known standard test images emerged from this need for a comparative technique model. Today, institutions like the University of Southern California’s Signal and Image Processing Institute maintain digital image databases for the primary purpose of supporting image processing and analysis research, including geographic imaging processes.
    [Show full text]
  • Vol. 3 Issue 4 July 1998
    Vol.Vol. 33 IssueIssue 44 July 1998 Adult Animation Late Nite With and Comics Space Ghost Anime Porn NYC: Underground Girl Comix Yellow Submarine Turns 30 Frank & Ollie on Pinocchio Reviews: Mulan, Bob & Margaret, Annecy, E3 TABLE OF CONTENTS JULY 1998 VOL.3 NO.4 4 Editor’s Notebook Is it all that upsetting? 5 Letters: [email protected] Dig This! SIGGRAPH is coming with a host of eye-opening films. Here’s a sneak peak. 6 ADULT ANIMATION Late Nite With Space Ghost 10 Who is behind this spandex-clad leader of late night? Heather Kenyon investigates with help from Car- toon Network’s Michael Lazzo, Senior Vice President, Programming and Production. The Beatles’Yellow Submarine Turns 30: John Coates and Norman Kauffman Look Back 15 On the 30th anniversary of The Beatles’ Yellow Submarine, Karl Cohen speaks with the two key TVC pro- duction figures behind the film. The Creators of The Beatles’Yellow Submarine.Where Are They Now? 21 Yellow Submarine was the start of a new era of animation. Robert R. Hieronimus, Ph.D. tells us where some of the creative staff went after they left Pepperland. The Mainstream Business of Adult Animation 25 Sean Maclennan Murch explains why animated shows targeted toward adults are becoming a more popular approach for some networks. The Anime “Porn” Market 1998 The misunderstood world of anime “porn” in the U.S. market is explored by anime expert Fred Patten. Animation Land:Adults Unwelcome 28 Cedric Littardi relates his experiences as he prepares to stand trial in France for his involvement with Ani- meLand, a magazine focused on animation for adults.
    [Show full text]
  • Gaboury 10/01/13
    Jacob Gaboury 10/01/13 Object Standards, Standard Objects In December 1949 Martin Heidegger gave a series of four lectures in the city of Bremen, then an isolated part of the American occupation zone following the Second World War. The event marked Heidegger’s first speaking engagement following his removal from his Freiburg professorship by the denazification authorities in 1946, and his first public lecture since his foray into university administration and politics in the early 1930s. Titled Insight Into That Which Is [Einblick in das, was ist],1 the lectures mark the debut of a new direction in Heidegger’s thought and introduce a number of major themes that would be explored in his later work.2 Heidegger opened the Bremen lectures with a work simply titled “The Thing” which begins with a meditation on the collapsing of distance, enabled by modern technology. “Physical distance is dissolved by aircraft. The radio makes information instantly available that once went unknown. The formerly slow and mysterious growth of plants is laid bare through stop-action photography.”3 Yet Heidegger argues that despite all conquest of distances the nearness of things remains absent. What about nearness? How can we come to know its nature? Nearness, it seems, cannot be encountered directly. We succeed in reaching it rather by attending to what is near. Near to us are what we usually call things. But what is a thing?4 This question motivates the lecture, and indeed much of Heidegger’s later thought. In 1 Heidegger, Martin. trans. Andrew J. Mitchell. Bremen and Freiburg Lectures: Insight Into That Which Is and Basic Principals of Thinking.
    [Show full text]
  • A Practical Analytic Model for the Radiosity of Translucent Scenes
    A Practical Analytic Model for the Radiosity of Translucent Scenes Yu Sheng∗1, Yulong Shi2, Lili Wang2, and Srinivasa G. Narasimhan1 1The Robotics Institute, Carnegie Mellon University 2State Key Laboratory of Virtual Reality Technology and Systems, Beihang University a) b) c) Figure 1: Inter-reflection and subsurface scattering are closely intertwined for scenes with translucent objects. The main contribution of this work is an analytic model of combining diffuse inter-reflection and subsurface scattering (see Figure2). One bounce of specularities are added in a separate pass. a) Two translucent horses (63k polygons) illuminated by a point light source. The three zoomed-in regions show that our method can capture both global illumination effects. b) The missing light transport component if only subsurface scattering is simulated. c) The same mesh rendered with a different lighting and viewing position. Our model supports interactive rendering of moving camera, scene relighting, and changing translucencies. Abstract 1 Introduction Light propagation in scenes with translucent objects is hard to Accurate rendering of translucent materials such as leaves, flowers, model efficiently for interactive applications. The inter-reflections marble, wax, and skin can greatly enhance realism. The interac- between objects and their environments and the subsurface scatter- tions of light within translucent objects and in between the objects ing through the materials intertwine to produce visual effects like and their environments produce pleasing visual effects like color color bleeding, light glows and soft shading. Monte-Carlo based bleeding (Figure1), light glows and soft shading. The two main approaches have demonstrated impressive results but are computa- mechanisms of light transport — (a) scattering beneath the surface tionally expensive, and faster approaches model either only inter- of the materials and (b) inter-reflection between surface locations reflections or only subsurface scattering.
    [Show full text]
  • Photometric Registration of Indoor Real Scenes Using an RGB-D Camera with Application to Mixed Reality Salma Jiddi
    Photometric registration of indoor real scenes using an RGB-D camera with application to mixed reality Salma Jiddi To cite this version: Salma Jiddi. Photometric registration of indoor real scenes using an RGB-D camera with application to mixed reality. Computer Vision and Pattern Recognition [cs.CV]. Université Rennes 1, 2019. English. NNT : 2019REN1S015. tel-02167109 HAL Id: tel-02167109 https://tel.archives-ouvertes.fr/tel-02167109 Submitted on 27 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE DE DOCTORAT DE L'UNIVERSITE DE RENNES 1 COMUE UNIVERSITE BRETAGNE LOIRE ECOLE DOCTORALE N° 601 Mathématiques et Sciences et Technologies de l'Information et de la Communication Spécialité : Informatique Par Salma JIDDI Photometric Registration of Indoor Real Scenes using an RGB-D Camera with Application to Mixed Reality Thèse présentée et soutenue à Rennes, le 11/01/2019 Unité de recherche : IRISA – UMR6074 Thèse N° : Rapporteurs avant soutenance : Vincent Lepetit Professeur à l’Université de Bordeaux Alain Trémeau Professeur à l’Université Jean Monnet Composition du Jury : Rapporteurs : Vincent Lepetit Professeur à l’Université de Bordeaux Alain Trémeau Professeur à l’Université Jean Monnet Examinateurs : Kadi Bouatouch Professeur à l’Université de Rennes 1 Michèle Gouiffès Maître de Conférences à l’Université Paris Sud Co-encadrant : Philippe Robert Docteur Ingénieur à Technicolor Dir.
    [Show full text]
  • 3D Computer Graphics Compiled By: H
    animation Charge-coupled device Charts on SO(3) chemistry chirality chromatic aberration chrominance Cinema 4D cinematography CinePaint Circle circumference ClanLib Class of the Titans clean room design Clifford algebra Clip Mapping Clipping (computer graphics) Clipping_(computer_graphics) Cocoa (API) CODE V collinear collision detection color color buffer comic book Comm. ACM Command & Conquer: Tiberian series Commutative operation Compact disc Comparison of Direct3D and OpenGL compiler Compiz complement (set theory) complex analysis complex number complex polygon Component Object Model composite pattern compositing Compression artifacts computationReverse computational Catmull-Clark fluid dynamics computational geometry subdivision Computational_geometry computed surface axial tomography Cel-shaded Computed tomography computer animation Computer Aided Design computerCg andprogramming video games Computer animation computer cluster computer display computer file computer game computer games computer generated image computer graphics Computer hardware Computer History Museum Computer keyboard Computer mouse computer program Computer programming computer science computer software computer storage Computer-aided design Computer-aided design#Capabilities computer-aided manufacturing computer-generated imagery concave cone (solid)language Cone tracing Conjugacy_class#Conjugacy_as_group_action Clipmap COLLADA consortium constraints Comparison Constructive solid geometry of continuous Direct3D function contrast ratioand conversion OpenGL between
    [Show full text]
  • Dossier [email protected] 0. Introduction (Standards) 1
    Dossier [email protected] 0. Introduction (Standards) 1. Recognition 2. Classification 3. Bias & Noise 4. Unknown Known (New Teapots) 0. Introduction (Standards) I’ve been thinking about the problems of standards and categories in computer image recognition, how their abstractions result in hegemonic form that averages and normalizes, and how drawing and modeling might be used to critique and resist these tendencies. The Utah Teapot rendered four ways by Martin Newell To first talk about standards, I’m going to return to some work I did earlier in the semester on the Utah Teapot. The Utah Teapot was created by Martin Newell, a computer graphics researcher in the Graphics Lab at the University of Utah Computer Science Department, in 1975. Newell needed an object for testing 3D scenes, and his wife suggested their Melitta teapot. It was useful to computer graphics researchers primarily because it met certain geometric criteria. “It was round, contained saddle points, had a genus greater than zero because of the hole in the handle, could project a shadow on itself, and could be displayed accurately without a surface texture” (per Wikipedia). But it also was useful because it met some contextual or cultural criteria: it was a familiar, everyday object. The Utah Teapot thus became a standard in the computer graphics world. Original drawing of the Utah Teapot by Martin Newell Outline of the Utah Teapot rotating about the y-axis, Alex Bodkin Outline of the Utah Teapot rotating about the y-axis, Alex Bodkin Outline of the Utah Teapot rotating about
    [Show full text]