Chemcomm Acceptedchemical Communications Manuscript

Total Page:16

File Type:pdf, Size:1020Kb

Chemcomm Acceptedchemical Communications Manuscript View Article Online View Journal ChemComm AcceptedChemical Communications Manuscript This article can be cited before page numbers have been issued, to do this please use: M. zaworotko, D. O'Nolan, D. Madden, A. Kumar, K. J. Chen, T. Pham, K. Forrest, E. Patyk-Kazmierczak, Q. Y. Yang, C. Murray, C. Tang and B. Space, Chem. Commun., 2018, DOI: 10.1039/C8CC01627E. Volume 52 Number 1 4 January 2016 Pages 1–216 This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been ChemComm accepted for publication. Chemical Communications Accepted Manuscripts are published online shortly after www.rsc.org/chemcomm acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the author guidelines. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s ISSN 1359-7345 standard Terms & Conditions and the ethical guidelines, outlined in our author and reviewer resource centre, still apply. In no COMMUNICATION Marilyn M. Olmstead, Alan L. Balch, Josep M. Poblet, Luis Echegoyen et al. Reactivity diff erences of Sc3N@C2n (2n = 68 and 80). Synthesis of the fi rst methanofullerene derivatives of Sc N@D -C 3 5h 80 event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. rsc.li/chemcomm Page 1 of 5 Please do not adjust margins ChemComm View Article Online DOI: 10.1039/C8CC01627E Journal Name COMMUNICATION . Impact of Partial Interpenetration in a Hybrid Ultramicroporous Material on C2H2/C2H4 Separation Performance Received 00th January 20xx, [a] [a] [a] [a] [b] Accepted 00th January 20xx Daniel O’Nolan, David G. Madden, Amrit Kumar, Kai‐Jie Chen, Tony Pham, Katherine A. Forrest, [b] Ewa Patyk‐Kazmierczak, [a] Qing‐Yuan Yang, [a] Claire A. Murray, [c] Chiu C. Tang, [c] Brian DOI: 10.1039/x0xx00000x Space, [b] and Michael J. Zaworotko[a]* www.rsc.org/ Phases of a 2‐fold pcu Hybrid Ultramicroporous Material (HUM), pcu, structures in which fluorine atoms create a binding site SIFSIX‐14‐Cu‐i, exhibiting 99%, 93%, 89%, and 70% partial for CO2 molecules. The resulting induced‐dipole interactions interpenetration have been obtained. 1:99 C2H2/C2H4 gas enable benchmark performance for CO2 capture from CO2/CH4 separation studies reveal that as the proportion of and CO2/N2 gas mixtures, separations that are important to interpenetrated component decreases, so does the separation natural gas processing and greenhouse gas sequestration, performance. respectively. Similarly, the 2‐fold interpenetrated HUMs SIFSIX‐2‐Cu‐i15a and SIFSIX‐14‐Cu‐i (also termed UTSA‐ The design of porous coordination networks through crystal 200),10a,15b which also exhibit pcu topology, afford benchmark 1 2 engineering and reticular chemistry principles has yielded a performance for separation of C2H2 from C2H4 gas streams, rich tapestry of porous metal‐organic materials, MOMs3 (e.g. separation relevant to polyethylene production. The porous coordination polymers,4 PCPs, and metal‐organic separation performances in these cases are the result of offset frameworks,5 MOFs) and hybrid ultramicroporous materials, inorganic pillars that create preferential H‐bonding sites for 6 HUMs. These classes of porous materials have provided C2H2 that are unfavorable for C2H4 adsorption. understanding about phenomena such as topology,7 Whereas interpenetration is key to creating the tight binding interpenetration,8 post‐synthetic modification,9 and guest‐ sites that enable the benchmark selectivity of SIFSIX‐2‐Cu‐i induced phase transformations in porous coordination and SIFSIX‐14‐Cu‐i, it also reduces surface area and working networks.10 In effect, crystal engineering has evolved from its capacity. Given that gas separations are dependent upon both original focus upon design of new crystalline materials into the selectivity for one molecule over another and the working design of a new generation of task‐specific materials for use in capacity of a material, physisorbents suited for industrial use catalysis,11 gas storage,12 and gas separation.13 would need to optimally balance for selectivity and working In the context of gas separations, major strides have recently capacity. Recent reports that partial interpenetration can been made with respect to the physisorptive purification of occur in MOMs20 suggest that such an optimal balance several industrially important feedstocks as new selectivity between selectivity and working capacity might occur in a 14 benchmarks have been set for gas mixtures such as CO2/N2, 15 16 17 C2H2/C2H4, C2H2/CO2, Xe/Kr, and direct air capture of 18 19 CO2 and water. With respect to HUMs, the combination of ultramicropores (pore diameter < 0.7 nm) lined with inorganic walls has enabled a relatively straightforward approach to control over pore size and chemistry that can afford molecular ChemComm Accepted Manuscript traps for targeted gas molecules. Indeed, TIFSIX‐3‐Ni,18a NbOFFIVE‐1‐Ni,18b and SIFSIX‐3‐Zn14a exhibit primitive cubic, a. Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Ireland b. Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE205, Tampa, Florida 33620, United States c. Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK † Footnotes relating to the title and/or authors should appear here. Fig. 1. 77 K N2 adsorption isotherms for phases 1, 2, 3 and 4. As the proportion of the Electronic Supplementary Information (ESI) available: [details of any microporous non‐interpenetrated component increases vs. the ultramicroporous 2‐ supplementary information available should be included here]. See fold interpenetrated component, so does the N2 uptake DOI: 10.1039/x0xx00000x This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1‐3 | 1 Please do not adjust margins Please do not adjust margins ChemComm Page 2 of 5 View Article Online DOI: 10.1039/C8CC01627E COMMUNICATION Journal Name porous material that is a solid solution21 of interpenetrated at 77 K of 643.4 cm3/g for SIFSIX‐14‐Cu (calculated) and no and non‐interpenetrated components. This is because, in uptake for SIFSIX‐14‐Cu‐i (experimental).15b The proportions of principle, such a phase could offer the best of both worlds with interpenetrated and non‐interpenetrated phases within each respect to high selectivity (interpenetration leading to sample were estimated from quantitative phase analysis using ultramicropores) and working capacity (non‐interpenetration synchrotron PXRD data. The quantitative phase analysis and 20b leading to micropores and more uptake). Herein, we test N2 adsorption data were collectively used to estimate the this hypothesis via a study of partial interpenetration and the phase fraction for 1‐4 (See Supporting Information). 1 is separation properties of the recently reported 2‐fold estimated to be the purest phase of SIFSIX‐14‐Cu‐i (ca. 99% 2‐ interpenetrated HUM, SIFSIX‐14‐Cu‐i,10a,15b the current fold interpenetrated content), whereas 2 – 4 are estimated to benchmark for trace removal of C2H2 from C2H4. consist of 93%, 89%, and 70% 2‐fold interpenetration, . Partial interpenetration in SIFSIX‐14‐Cu‐i was achieved by respectively (See Figure 2 and Supporting Information). variation of synthetic conditions and methods. We have In order to confirm that the partially interpenetrated phases previously found that temperature and concentration can be are indeed solid solutions as opposed to being physical used to assert control over interpenetration.22 Herein, four mixtures of interpenetrated and non‐interpenetrated phases, phases were synthesized solvothermally in methanol at 120 °C; thermogravimetric analysis (TGA) and differential scanning reaction duration and reaction vessel type were varied. Phase calorimetry (DSC) experiments were conducted (See 1 was isolated after reaction in a Parr® Teflon Bomb for 1 hour. Supporting Information). TGA experiments indicated that each Phases 2, 3 and 4 were prepared using variations of the sample had a similar onset melting point (Tm) within the range originally described method;10a reactions were conducted in of ca. 205 °C – 220 °C. DSC experiments all showed similar Schott® glass bottles and heated for 1 hour, 1 day, and 1 week, endotherms between ca. 160 °C and ca. 270 °C, wherein the respectively. The resulting solid products were repeatedly melt and decomposition of each sample resulted in the same exchanged with fresh dry methanol until the solvent was clear. peak shapes at approximately the same temperatures. Phases 1‐4 were at no point exposed to air, being submerged Following previous work on the separation of interpenetrated in methanol before being either dried in‐situ or air‐sealed and non‐interpenetrated structures,23 samples were added to during characterization experiments. an immiscible density gradient of n‐hexane (ρcalc = 0.655 3 3 Laboratory powder X‐ray diffraction (PXRD) experiments g/cm ) and DMSO (ρcalc = 1.1 g/cm ). The different densities of 3 indicated that longer reaction times afforded additional SIFSIX‐14‐Cu
Recommended publications
  • Shyne Publications for Calendar Year 2019
    SHyNE Publications for Calendar Year 2019 Internal User Papers (367) 1. Akpinar, I.; Drout, R. J.; Islamoglu, T.; Kato, S.; Lyu, J.; Farha, O. K., Exploiting π–π interactions to design an efficient sorbent for atrazine removal from water. ACS applied materials & interfaces 2019, 11 (6), 6097-6103. 2. Al Malki, M. M.; Qiu, Q.; Zhu, T.; Snyder, G. J.; Dunand, D. C., Creep behavior and postcreep thermoelectric performance of the n-type half-Heusler alloy Hf0.3Zr0.7NiSn0.98Sb0.02. Materials Today Physics 2019, 9. 3. Aldrich, T. J.; Matta, M.; Zhu, W. G.; Swick, S. M.; Stern, C. L.; Schatz, G. C.; Facchetti, A.; Melkonyan, F. S.; Marks, T. J., Fluorination Effects on Indacenodithienothiophene Acceptor Packing and Electronic Structure, End-Group Redistribution, and Solar Cell Photovoltaic Response. Journal of the American Chemical Society 2019, 141 (7), 3274-3287. 4. Aldrich, T. J.; Zhu, W. G.; Mulcherjee, S.; Richter, L. J.; Gann, E.; DeLongchamp, D. M.; Facchetti, A.; Melkonyan, F. S.; Marks, T. J., Stable Postfullerene Solar Cells via Direct C-H Arylation Polymerization. Morphology-Performance Relationships. Chemistry of Materials 2019, 31 (11), 4313-4321. 5. Allen, S. D.; Liu, Y. G.; Kim, T.; Bobbala, S.; Yi, S. J.; Zhang, X. H.; Choi, J.; Scott, E. A., Celastrol-loaded PEG- b-PPS nanocarriers as an anti-inflammatory treatment for atherosclerosis. Biomaterials Science 2019, 7 (2), 657-668. 6. Alzate-Sánchez, D. M.; Ling, Y.; Li, C.; Frank, B. P.; Bleher, R.; Fairbrother, D. H.; Helbling, D. E.; Dichtel, W. R., β-Cyclodextrin Polymers on Microcrystalline Cellulose as a Granular Media for Organic Micropollutant Removal from Water.
    [Show full text]
  • Carbon Dioxide Adsorption by Metal Organic Frameworks (Synthesis, Testing and Modeling)
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 8-8-2013 12:00 AM Carbon Dioxide Adsorption by Metal Organic Frameworks (Synthesis, Testing and Modeling) Rana Sabouni The University of Western Ontario Supervisor Prof. Sohrab Rohani The University of Western Ontario Graduate Program in Chemical and Biochemical Engineering A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Rana Sabouni 2013 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Other Chemical Engineering Commons Recommended Citation Sabouni, Rana, "Carbon Dioxide Adsorption by Metal Organic Frameworks (Synthesis, Testing and Modeling)" (2013). Electronic Thesis and Dissertation Repository. 1472. https://ir.lib.uwo.ca/etd/1472 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. i CARBON DIOXIDE ADSORPTION BY METAL ORGANIC FRAMEWORKS (SYNTHESIS, TESTING AND MODELING) (Thesis format: Integrated Article) by Rana Sabouni Graduate Program in Chemical and Biochemical Engineering A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada Rana Sabouni 2013 ABSTRACT It is essential to capture carbon dioxide from flue gas because it is considered one of the main causes of global warming. Several materials and various methods have been reported for the CO2 capturing including adsorption onto zeolites, porous membranes, and absorption in amine solutions.
    [Show full text]
  • Chemcomm Chemical Communications Accepted Manuscript
    View Article Online View Journal ChemComm Chemical Communications Accepted Manuscript This article can be cited before page numbers have been issued, to do this please use: J. Short, T. J. Blundell, S. Krivickas, S. Yang, J. D. Wallis, H. Akutsu, Y. Nakazawa and L. Martin, Chem. Commun., 2020, DOI: 10.1039/D0CC04094K. Volume 54 Number 1 This is an Accepted Manuscript, which has been through the 4 January 2018 Pages 1-112 Royal Society of Chemistry peer review process and has been ChemComm accepted for publication. Chemical Communications Accepted Manuscripts are published online shortly after acceptance, rsc.li/chemcomm before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard ISSN 1359-7345 Terms & Conditions and the Ethical guidelines still apply. In no event COMMUNICATION S. J. Connon, M. O. Senge et al. shall the Royal Society of Chemistry be held responsible for any errors Conformational control of nonplanar free base porphyrins: towards bifunctional catalysts of tunable basicity or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. rsc.li/chemcomm Page 1 of 5 Please doChemComm not adjust margins View Article Online DOI: 10.1039/D0CC04094K COMMUNICATION Chiral Molecular Conductor With An Insulator-Metal Transition Close To Room Temperature§ a a a a a b b Received 00th January 20xx, Jonathan Short, Toby J.
    [Show full text]
  • Page 1 of 4 Chemcomm
    ChemComm Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/chemcomm Page 1 of 4 ChemComm Chemical Communications RSC Publishing COMMUNICATION Multi-responsive ionic liquid emulsions stabilized by microgels. Cite this: DOI: 10.1039/x0xx00000x Hélène Monteillet,a Marcel Workamp, a Xiaohua Li, b Boelo Schuur, b J. Mieke a a a Kleijn, Frans A.M. Leermakers, and Joris Sprakel* Received 00th January 2012, Accepted 00th January 2012 DOI: 10.1039/x0xx00000x www.rsc.org/ We present a complete toolbox to use responsive ionic liquid provide excellent stability to a wide variety of IL-water emulsions. (IL) emulsions for extraction purposes. IL emulsions The spontaneously formed and densely packed layer of microgels at the IL-water interface does not impart their use in extractions as the stabilized by responsive microgels are shown to allow rapid Manuscript interface remains permeable to small biomolecules.
    [Show full text]
  • CURRICULUM VITAE Yulia Pushkar
    CURRICULUM VITAE Yulia Pushkar Department of Physics and Astronomy, Purdue University 525 Northwestern Avenue West Lafayette, IN 47907 Phone: 765-4963279 Email: [email protected] Academic preparation Postdoc: 2004-2008, University of California, Berkeley & Lawrence Berkeley National Lab. Postdoc: 2003-2004, Institut für Experimentalphysik, Freie Universität Berlin, Germany. Ph.D. 2003 (summa cum laude), Biophysics, Freie Universität Berlin, Germany. M.S. 1999 (with honor), Physical Chemistry, Moscow State University, Russia. Appointments Associate Professor of Physics Purdue University, 2014 - present Visiting Professor, Swiss Federal Institute of Technology (ETH, Zurich) 05-11, 2015 Assistant Professor of Physics Purdue University, 2008 - 2014 Awards: Showalter Faculty Scholar 2019 Purdue College of Science Team Award 2019 (for work on T32 Molecular Biophysics Training Grant) Outstanding Advisor Award, Purdue University 2017 The Purdue College of Science Research Award 2016 Kavli Fellow (promising young scientist under age of 40) 2015 Outstanding Advisor Award, Purdue University 2015 National Science Foundation CAREER Award 2014 Seed for Success Award, Purdue University 2010 Young Investigator Award, Gordon Research Conference on Photosynthesis 2006 Postdoctoral Richard Malkin Award for research in the field of photosynthesis 2005 The German Academic Exchange Service (DAAD) grant for graduate study 2000 Halder-Topsoe Graduate Student Research Grant 1999 Chevron Corporation Award for Research in Ecologically Friendly Catalysis 1998 Open Society Institute and Soros Foundation Undergraduate Research Grants 1994-1999 Experience Over twenty years of experimental experience in EPR spectroscopy as applied in catalysis; protein studies; studies of the electron transfer process in proteins, protein-cofactor interactions. Experience in spin labels, isotope labels and paramagnetic probe molecules techniques.
    [Show full text]
  • Crystengcomm
    CrystEngComm View Article Online HIGHLIGHT View Journal | View Issue Metal–organic frameworks based luminescent materials for nitroaromatics sensing Cite this: CrystEngComm,2016,18, 193 Liangliang Zhang,† Zixi Kang,† Xuelian Xin and Daofeng Sun* Metal–organic frameworks (MOFs), composed of organic ligands and metal nodes, are well known for their high and permanent porosity, crystalline nature and versatile potential applications, which promoted them to be one of the most rapidly developing research focuses in chemical and materials science. During the Received 28th September 2015, various applications of MOFs, the photoluminescence properties of MOFs have received growing attention, Accepted 30th October 2015 especially for nitroaromatics (NACs) sensing, due to the consideration of homeland security, environmental cleaning and military issues. In this highlight, we summarize the progress in recent research in NACs sens- DOI: 10.1039/c5ce01917f ing based on LMOFs cataloged by sensing techniques in the past three years, and then we describe the www.rsc.org/crystengcomm sensing applications for nano-MOF type materials and MOF film, together with MOF film applications. Introduction 2,4-dinitrotoluene (2,4-DNT) and picric acid (PA), have become serious pollution sources of groundwater, soils, and With the increasing use of explosive materials in terrorism other security applications due to their explosivity and high all over the world, how to reliably and efficiently detect traces toxicity (Fig. 1). Detection of this class of explosives is
    [Show full text]
  • How to Get Your Work Published
    How to get your work published Joanne Thomson Deputy Editor ChemComm, Chemical Science, Chem Soc Rev Who am I? Manage journals, so they contain best new science Joanne Thomson, Deputy Editor Chemical Science, Chemical Communications, Chemical Society EnsureReviews journals have rigorous, fair, efficient procedures Meet scientists to keep aware of field and attract top research Explain about how to get published in high impact journals RSC Publishing - locations London & Philadelphia• Cambridge,Cambridge Tokyo & Raleigh UK Beijing & Shanghai Bangalore What is RSC Publishing? Chemistry publishers Society publishers Established 1841 35 international chemistry journals Established 1876 >40 international chemistry journals Commercial publishers Established 1880 >60 international chemistry journals Established 1921 >34 international chemistry journals Chemistry publishers 40000 35000 30000 25000 ACS 20000 RSC Articles WILEY 15000 ELSEVIER 10000 OTHER 5000 0 Global output of research articles 25000 China USA Japan Germany 20000 India France UK 15000 Russia Spain Korea Italy 10000 Canada Poland Iran Articles Published Articles Taiwan 5000 Brazil Australia Switzerland Netherlands 0 Turkey 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 Publishing Landscape Share of Journal Articles Published Scientific Disciplines 26% Elsevier Others Others Wiley- Blackwell APS IOP Springer IEEE Taylor & Francis AIP ACS • 2,000 publishers publish around 1.5 million peer reviewed articles per year in 25,400 journals • Journal Citation Database
    [Show full text]
  • Chemical Society Reviews Review Article
    Please do not adjust margins Chemical Society Reviews Review Article Application of Computational Methods to the Design and Characterisation of Porous Molecular Materials a b c d Jack D. Evans,* Kim E. Jelfs, Graeme M. Day and Christian J. Doonan* Composed from discete units, porous molecular materials (PMMs) possess unique properties not observed for conventional, extended, solids, such as solution processibility and permanent porosity in the liquid phase. However, identifying the origin of porosity is not a trivial process, especially for amorphous or liquid phases. Furthermore, the Received 00th January 20xx, assembly of molecular components is typically governed by a subtle balance of weak intermolecular forces that makes Accepted 00th January 20xx structure prediction challenging. Accordingly, in this review we canvass the crucial role of molecular simulations in the characterisation and design of PMMs. We will outline strategies for modelling porosity in crystalline, amorphous and liquid DOI: 10.1039/x0xx00000x phases and also describe the state-of-the-art methods used for high-throughput screening of large datasets to identify www.rsc.org/ materials that exhibit novel performance characteristics. which is a desirable property for the fabrication of composite 1. Introduction materials such as mixed matrix polymer membranes.13,14 In Porous solids continue to be an active field of fundamental and applied research.1,2 Due to their large surface-to-volume ratios a they have found applications in areas such as separation science and catalysis.3,4 The majority of porous materials are extended solids and examples range from amorphous (e.g. porous carbons) to highly crystalline (e.g.
    [Show full text]
  • Crystengcomm Accepted Manuscript
    CrystEngComm Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/crystengcomm Page 1 of 14 PleaseCrystEngComm do not adjust margins Journal Name ARTICLE Propeller-shaped molecules with thiazole Received 00th January 20xx, Accepted 00th January 20xx hub: structural landscape and hydrazone DOI: 10.1039/x0xx00000x www.rsc.org/ cap mediated tunable host behavior in 4- hydrazino-1,3-thiazoles Manuscript Sarah Titus and Kumaran G. Sreejalekshmi* Propeller-shaped molecules with 2,4,5-trisubstituted-1,3-thiazole as hub and tunable blades ( B1-B3) were synthesized as trivariant scaffolds. B1-B3 were Accepted modulated by varying hydrazone capping in B1, isothiocyanate in B2 and α- haloketone in B3 and the structural landscapes examined.
    [Show full text]
  • Miljanić Group News Archive
    U N I V E R S I T Y of H O U S T O N Miljanić Research Group ▪ Department of Chemistry ▪ 136 Fleming Building ▪ Houston, TX 77204-5003 www.miljanicgroup.com ▪ [email protected] ▪ 832.842.8827 (office) ▪ 832.842.8826 (lab) November 30, 2015 Miljanić Group News Archive 11.06.15 Ha Le defends her PhD thesis. Congratulations, Doctor! 11.02.15 Mohamed Hashim advances to PhD candidacy 09.25.15 Qing's paper on cyclotetrabenzoin is accepted in Chem. Eur. J. 08.06.15 Qing Ji defends his PhD thesis! Congratulations, Doctor! 08.04.15 Xiao Liang defends his MS thesis! Congratulations! 08.03.15 Rio Carlo Lirag defends his PhD thesis and is off to UH Clear Lake! 08.03.15 Teng-Hao's paper on mesoporous MOFFs accepted in Angew. Chem. Int. Ed. 08.01.15 Teng-Hao's paper on adsorption of anesthetics accepted in Chem. Commun. 07.02.15 Ognjen gives two talks in Singapore: one at ICMAT, another at NTU 06.15.15 Ognjen gives a talk at Telluride Science Workshop on Metal-Organic Frameworks 05.31.15 Ognjen returns from his sabbatical stay at NYU Abu Dhabi 05.12.15 Our collaboration with Sessler & Anslyn groups results in a paper in J. Am. Chem. Soc. 05.11.15 Ognjen gives a talk at Qatar University 05.07.15 Qing's paper on the synthesis and crystal structure of cyclotribenzoin accepted in Synlett 04.27.15 Ha and Nadia's paper on benzobisimidazole cruciforms accepted in J. Org. Chem. 04.24.15 Ognjen gives a talk at Uppsala University 04.20.15 Ognjen gives a talk at the Academy of Sciences of the Czech Republic in Prague 04.17.15 Ognjen gives a talk at Freie Universität in Berlin 04.14.15 Ognjen gives a talk at Masdar Institute in Abu Dhabi 04.10.15 Ognjen gives a talk at Université Paris-Sud 11 in Orsay 02.09.15 Ognjen gives a talk at NYU Abu Dhabi 12.01.14 Chia-Wei's paper on adsorption-based self-sorting accepted in Angew.
    [Show full text]
  • Winter for the Membership of the American Crystallographic Association, P.O
    AMERICAN CRYSTALLOGRAPHIC ASSOCIATION NEWSLETTER Number 4 Winter 2004 ACA 2005 Transactions Symposium New Horizons in Structure Based Drug Discovery Table of Contents / President's Column Winter 2004 Table of Contents President's Column Presidentʼs Column ........................................................... 1-2 The fall ACA Council Guest Editoral: .................................................................2-3 meeting took place in early 2004 ACA Election Results ................................................ 4 November. At this time, News from Canada / Position Available .............................. 6 Council made a few deci- sions, based upon input ACA Committee Report / Web Watch ................................ 8 from the membership. First ACA 2004 Chicago .............................................9-29, 38-40 and foremost, many will Workshop Reports ...................................................... 9-12 be pleased to know that a Travel Award Winners / Commercial Exhibitors ...... 14-23 satisfactory venue for the McPherson Fankuchen Address ................................38-40 2006 summer meeting was News of Crystallographers ...........................................30-37 found. The meeting will be Awards: Janssen/Aminoff/Perutz ..............................30-33 held at the Sheraton Waikiki Obituaries: Blow/Alexander/McMurdie .................... 33-37 Hotel in Honolulu, July 22-27, 2005. Council is ACA Summer Schools / 2005 Etter Award ..................42-44 particularly appreciative of Database Update:
    [Show full text]
  • Gomez Rojas, O., Song, G., & Hall
    Gomez Rojas, O., Song, G., & Hall, S. (2017). Fast and scalable synthesis of strontium niobates with controlled stoichiometry. CrystEngComm, 36, 5351-5355. https://doi.org/10.1039/C7CE01298E Peer reviewed version License (if available): Unspecified Link to published version (if available): 10.1039/C7CE01298E Link to publication record in Explore Bristol Research PDF-document This is the author accepted manuscript (AAM). The final published version (version of record) is available online via RSC at http://pubs.rsc.org/en/Content/ArticleLanding/2017/CE/C7CE01298E#!divAbstract. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ View Article Online View Journal CrystEngComm Accepted Manuscript This article can be cited before page numbers have been issued, to do this please use: O. Gomez, G. Song and S. Hall, CrystEngComm, 2017, DOI: 10.1039/C7CE01298E. Volume 18 Number 1 7 January 2016 Pages 1–184 This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. CrystEngComm Accepted Manuscripts are published online shortly after www.rsc.org/crystengcomm acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.
    [Show full text]