Defects of Steroidogenesis A

Total Page:16

File Type:pdf, Size:1020Kb

Defects of Steroidogenesis A CORE Metadata, citation and similar papers at core.ac.uk Provided by RERO DOC Digital Library J. Endocrinol. Invest. 33: 756-766, 2010 DOI: 10.3275/6869 REVIEW ARTICLE Defects of steroidogenesis A. Biason-Lauber1, M. Boscaro2, F. Mantero3, and G. Balercia2 1University Children’s Hospital, Division of Endocrinology and Diabetology, Zurich, Switzerland; 2Endocrinology, Department of Internal Medicine and Applied Biotechnologies, Umberto I Hospital, School of Medicine, Polytechnic University of Marche, Ancona; 3Endocrinology, Department of Medical and Surgical Sciences, University of Padua, Padua, Italy ABSTRACT. In the biosynthesis of steroid hormones the ferentiation in male and support reproduction. They include neutral lipid cholesterol, a normal constituent of lipid bi- androgens, estrogens, and progestins. A block in the path- layers is transformed via a series of hydroxylation, oxida- way of steroid biosynthesis leads to the lack of hormones tion, and reduction steps into a vast array of biologically downstream and accumulation of the upstream compounds active compounds: mineralocorticoids, glucocorticoids, and that can activate other members of the steroid receptor sex hormones. Glucocorticoids regulate many aspects of family. This review deals with the clinical consequences of metabolism and immune function, whereas mineralocorti- these blocks. coids help maintain blood volume and control renal excre- (J. Endocrinol. Invest. 33: 756-766, 2010) tion of electrolytes. Sex hormones are essential for sex dif- ©2010, Editrice Kurtis Steroid hormones are derivatives of cholesterol that are - glucocorticoids; cortisol is the major representative in synthesized by a variety of tissues, most prominently the humans adrenal gland and gonads, although other tissues, such - mineralocorticoids; aldosterone being most prominent as liver, kidney, placenta, brain, and skin are also quite - androgens such as testosterone active. The cholesterol precursor can be synthesized with- - estrogens, including estradiol and estrone in the cell from acetate, or derive from cholesterol ester - progestogens (also known as progestins) such as pro- stores in intracellular lipid droplets or from uptake of gesterone. cholesterol-containing LDL. Lipoproteins taken up from The biosynthetic pathways for major representatives of plasma are most important when steroidogenic cells are these classes of steroid hormones is depicted in Figure 2. chronically stimulated. Steroid hormones bind to specific intracellular receptors The basic cyclopentanoperhydrophenanthrene ring struc- which upon dimerization interact with the DNA in the nu- ture and carbon numbering system of all steroid hor- cleus. As a result, gene activity is modulated and a hor- mones is depicted in Figure 1, using pregnenolone as an mone-specific response occurs. example. Pregnenolone is an example of what is called a Defects in the receptor or the post-receptor machinery “C-21 steroid” because it has 21 carbons. Similarly, a will lead for the most part to abnormalities of action of steroid such as testosterone is referred to as a “C-19 one specific hormone. Abnormalities of steroid hormone steroid”. production, however, can result in more profound and Biosynthesis of steroid hormones requires a battery of complex effects. A block in the pathway of steroid biosyn- oxidative enzymes located in both mitochondria and en- thesis leads to the lack of hormones downstream and ac- doplasmic reticulum. The rate-limiting step in this pro- cumulation of the upstream compounds that can activate cess is the transport of free cholesterol from the cyto- other members of the steroid receptor family. plasm into mitochondria. Within mitochondria, choles- The consequences of such defects can be schematically terol is converted to pregnenolone by an enzyme in the categorized in 3 groups: inner membrane called cytochrome P450 (see the Ap- pendix) side-chain cleavage (P450scc). Pregnenolone it- self is not a hormone but is the immediate precursor for 21 CH3 the synthesis of all of the steroid hormones. Pregnenolone Typically, endocrinologists classify steroid hormones in- 20 C=O to 5 groups of molecules, based primarily on the recep- 12 18 17 tor to which they bind: 11 16 13 CD 1 19 2 9 14 15 10 8 Key-words: Congenital adrenal hyperplasia (CAH), Cytochrome P450, disorders of sex A B differentiation (DSD), steroidogenic enzymes, steroid hormones, steroidogenesis. Correspondence: A. Biason-Lauber, University Children’s Hospital, Division of En- HO 3 5 7 docrinology and Diabetology, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland. 4 6 E-mail: [email protected] Fig. 1 - Basic cyclopentanoperhydrophenanthrene ring structure Accepted October 26, 2009. and carbon numbering system of all steroid hormones, using First published online February 24, 2010. pregnenolone as example. 756 A. Biason-Lauber, M. Boscaro, F. Mantero, et al. A Cholesterol SCC/StAR 17α-Hydroxylase 17,20-Lyase Pregnenolone 17OH-pregnenolone DHEA POR 3β-HSD POR 3β-HSD α Progesterone 17 -Hydroxylase 17OH-Progesterone 17,20-Lyase Androstenedione POR 21-Hydroxylase 21-Hydroxylase Deoxycorticosterone (DOC) 11-Deoxycortisol 17β-HSD 11β-Hydroxylase 11β-Hydroxylase Corticosterone (B) Cortisol Testosterone Aldo synthase β β (Corticosterone Methyl 11 -HSD1 11 -HSD2 Oxidase I) H6PDH 5α-Reductase Aromatase 18OH Corticosterone Cortisone Aldo synthase (Corticosterone Methyl Dihydrotestosterone Estradiol Oxidase II) (DHT) Aldosterone B Cholesterol CYP11A1/StAR CYP17A1 CYP17A1 Pregnenolone 17OH-pregnenolone DHEA HSD3B2 POR HSD3B2 POR HSD3B2 Progesterone CYP17A1 17OH-Progesterone CYP17A1 Androstenedione POR CYP21A2 CYP21A2 Deoxycorticosterone (DOC) 11-Deoxycortisol HSD17B3 CYP11B1 CYP11B1 Corticosterone (B) Cortisol Testosterone CYP11B2 HSD11B1 HSD11B2 Fig. 2 - Steroidogenic pathway. A: Metabo- H6PD SRD5A2 CYP19 lites in black, P450 enzyme activities in 18OH Corticosterone Cortisone grey, other enzyme families in light grey. CYP11B2 Dihydrotestosterone Estradiol B: metabolites in black, genes in grey. (DHT) SCC: P450 side-chain-cleavage; StAR: Aldosterone steroidogenic acute response protein; POR: P450 oxido reductase; HSD: hydrox- ysteroid dehydrogenase; H6PDH: hexose- Mineralocorticoids Glucocorticoids Sex hormones 6-phosphate dehydrogenase; CYP: cy- (Salt - Water Homeostasis) (Stress response) tochrome P450. 1. defects leading to disorders of sex development (DSD) production of all the 3 types of steroids, causing abnor- (1) and salt-water balance; malities in the salt-water homeostasis and in sexual differ- 2. defects leading to abnormalities of salt-water balance; entiation. That is the case in lipoid adrenal hyperplasia, 3. defects leading to disorders of sex development. where no conversion of cholesterol to any steroid takes Defective genes and clinical consequences of their de- place. This rare cause of CAH is characterized by salt-loss fects are briefly summarized in Table 1. and and 46, XY DSD. In XX subjects internal and external Abnormalities of end-organ action of steroid hormones, genitalia are female, and the syndrome cannot clinically exemplified by the hormone insensitivity syndromes can be separated from congenital adrenal hypoplasia (2). The be grouped in a 4th category. molecular bases of such a defect have been clarified as mutations in the Steroidogenic Acute Response Protein (StAR) (3). Recently, Kim et al. screened nine 46,XY infants DEFECTS LEADING TO ABNORMALITIES OF SEX with adrenal failure and disordered sexual differentiation DEVELOPMENT AND SALT-WATER BALANCE for mutations in the CYP11A1 gene encoding cytochrome The first group of steroid biosynthesis defects include the P450scc and identified 2 patients, both compound het- so-called congenital adrenal hyperplasia (CAH), a collec- erozygotes, bringing the total number of patients with tive name given to a group of disorders characterized by CYP11A1 mutations to 6. Among the 6 patients, the phe- inherited inability of the adrenals to secrete cortisol. The notypic spectrum ranged from severe loss-of-function mu- consequent compensatory rise of ACTH production caus- tations associated with prematurity, complete underan- es hyperplastic growth of the adrenal glands. Blocks of drogenization, and severe, early-onset adrenal failure, to the initial steps of the steroidogenic pathway impair the partial deficiencies found in children born at term with cli- 757 Defects of steroidogenesis toromegaly and later-onset adrenal failure. The authors of tion of DHEA is minimal in childhood, rises 100-fold to lev- this work noted that, in contradistinction to congenital els that exceed the production of cortisol in young adult- lipoid adrenal hyperplasia caused by StAR mutations, hood, and then gradually decreases with advancing age adrenal hyperplasia had not been reported in any of the 6 (6). The mechanisms by which human adrenal C19 steroid patients with P450scc deficiency (4). synthesis is turned on (adrenarche) and turned off (adrenopause) remain unclear. Recent clinical observations P450c17 (17a-hydroxylase/17,20-lyase) suggest a link between premature exaggerated adrenar- The enzyme P450c17 plays an important role in steroid che and the polycystic ovary syndrome (7-10). production. It is essential for the synthesis of cortisol as P450c17 is a single enzyme encoded by a single gene well as the production of sex steroids. P450c17 has two that is expressed in both the adrenals and gonads (11- distinct activities: 17α-hydroxylase activity and 17,20- 13). Like other microsomal P450 enzymes, P450c17
Recommended publications
  • Effect of Paternal Age on Aneuploidy Rates in First Trimester Pregnancy Loss
    Journal of Medical Genetics and Genomics Vol. 2(3), pp. 38-43, August 2010 Available online at http://www.academicjournals.org/jmgg ©2010 Academic Journals Full Length Research Paper Effect of paternal age on aneuploidy rates in first trimester pregnancy loss Vitaly A. Kushnir, Richard T. Scott and John L. Frattarelli 1Department of Obstetrics, Gynecology and Women’s Health, New Jersey Medical School, MSB E-506, 185 South Orange Avenue, Newark, NJ, 07101-1709, USA. 2Department of Obstetrics, Gynecology and Reproductive Sciences, Robert Wood Johnson Medical School UMDNJ, Division of Reproductive Endocrinology and Infertility, New Brunswick, NJ. Reproductive Medicine Associates of New Jersey, Morristown NJ, USA. Accepted 16 July, 2010 A retrospective cohort analysis of patients undergoing IVF cycles at an academic IVF center was performed to test the hypothesis that male age may influence aneuploidy rates in first trimester pregnancy losses. All patients had a first trimester pregnancy loss followed by evacuation of the pregnancy and karyotyping of the abortus. Couples undergoing anonymous donor oocyte ART cycles (n = 50) and 23 couples with female age less than 30 years undergoing autologous oocyte ART cycles were included. The oocyte age was less than 30 in both groups; thereby allowing the focus to be on the reproductive potential of the aging male. The main outcome measure was the effect of paternal age on aneuploidy rate. No increase in aneuploidy rate was noted with increasing paternal age (<40 years = 25.0%; 40-50 years = 38.8%; >50 years = 25.0%). Although there was a significant difference in the male partner age between oocyte recipients and young patients using autologous oocytes (33.7 7.6 vs.
    [Show full text]
  • The Endocrinology of Aging 329 (1989); J
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Erasmus University Digital Repository ARTICLES 37. T. Crook et al., Dev. Neuropsychol. 4, 261 (1986). 344 (1988); ibid. 281, 335 (1989); M. J. West, L. butions and advice, and W. G. M. Janssen, A. P. 38. M. S. Albert, Proc. Natl. Acad. Sci. U.S.A. 93, 13547 Slomianka, H. J. G. Gundersen, Anat. Rec. 231, 482 Leonard, and R. S. Woolley for expert technical as- (1996); iiii and M. B. Moss, in Handbook of (1991); M. J. West, Neurobiol. Aging 14, 275 (1993). sistance. Research in our laboratory was supported Biology of Aging, E. L. Schneider, J. W. Rowe, T. E. 56. We thank C. A. Barnes, C. Bouras, A. H. Gazzaley, by NIH grants AG05138 and AG06647, the Human Johnson, N. J. Holbrook, J. H. Morrison, Eds. (Aca- P. Giannakopoulos, C. V. Mobbs, E. A. Nimchinsky, Brain Project MHDA52145, the Charles A. Dana demic Press, San Diego, CA, ed. 4, 1996), pp. 217– P. R. Rapp, and J. C. Vickers for their crucial contri- Foundation, and the Brookdale Foundation. 233; R. Fama et al., Arch. Neurol. 54, 719 (1997); A. Convit et al., Neurobiol. Aging 18, 131 (1997); C. R. Jack Jr. et al., Neurology 49, 786 (1997). 39. J. W. Rowe and R. L. Kahn, Science 237, 143 (1987). 40. S. L. Vincent, A. Peters, J. Tigges, Anat. Rec. 223, The Endocrinology of Aging 329 (1989); J. Tigges, J. G. Herndon, A. Peters, Neurobiol. Aging 11, 201 (1990); J. Bachevalier et al., ibid.
    [Show full text]
  • 1 Accepted Preprint First Posted on 4 July 2018 As Manuscript EJE-18
    Page 1 of 26 Accepted Preprint first posted on 4 July 2018 as Manuscript EJE-18-0256 Title page Title: Approaches to molecular genetic diagnosis in the management of differences/disorders of sex development (DSD): position paper of EU COST Action BM 1303 "DSDnet" Authors: L. Audí 1, S.F. Ahmed 2, N. Krone 3, M. Cools 4, K. McElreavey 5, P.M. Holterhus 6, A. Greenfield 7, A. Bashamboo 5, O. Hiort 8, S.A. Wudy 9, R. McGowan 2,10, on behalf of the EU COST Action 1 Growth and Development Research Unit, Vall d’Hebron Research Institute (VHIR), Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, 08035, Spain 2 Developmental Endocrinology Research Group, University of Glasgow, Glasgow, UK 3 Academic Unit of Child Health, Department of Oncology and Metabolism, University of Sheffield, Sheffield Children's Hospital, Western Bank, Sheffield S10 2TH, United Kingdom 4 Department of Paediatric Endocrinology, Ghent University Hospital, Paediatrics and Internal Medicine Research Unit, Ghent University, 9000 Ghent, Belgium 5 Human Developmental Genetics, Institut Pasteur, Paris, France 6 Division of Pediatric Endocrinology and Diabetes, University Hospital of Schleswig-Holstein and Christian Albrechts University, Kiel, Germany 7 Mammalian Genetics Unit, Medical Research Council, Harwell Institute, Oxfordshire, UK 1 Copyright © 2018 European Society of Endocrinology. Page 2 of 26 8 Division of Paediatric Endocrinology and Diabetes. Department of Paediatric and Adolescent Medicine, University of Lübeck, Lübeck, Germany 9 Steroid Research & Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics, Division of Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig-University, Giessen, Germany 10 Department of Clinical Genetics, Laboratories Building, Queen Elizabeth University Hospital, Glasgow, UK Corresponding author: Laura Audí Vall d’Hebron Research Institute (VHIR)- P.
    [Show full text]
  • Cognition and Steroidogenesis in the Rhesus Macaque
    Cognition and Steroidogenesis in the Rhesus Macaque Krystina G Sorwell A DISSERTATION Presented to the Department of Behavioral Neuroscience and the Oregon Health & Science University School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2013 School of Medicine Oregon Health & Science University CERTIFICATE OF APPROVAL This is to certify that the PhD dissertation of Krystina Gerette Sorwell has been approved Henryk Urbanski Mentor/Advisor Steven Kohama Member Kathleen Grant Member Cynthia Bethea Member Deb Finn Member 1 For Lily 2 TABLE OF CONTENTS Acknowledgments ......................................................................................................................................................... 4 List of Figures and Tables ............................................................................................................................................. 7 List of Abbreviations ................................................................................................................................................... 10 Abstract........................................................................................................................................................................ 13 Introduction ................................................................................................................................................................. 15 Part A: Central steroidogenesis and cognition ............................................................................................................
    [Show full text]
  • Role of Peroxisomes in Granulosa Cells, Follicular Development and Steroidogenesis
    Role of peroxisomes in granulosa cells, follicular development and steroidogenesis in the mouse ovary Inaugural Dissertation submitted to the Faculty of Medicine in partial fulfillment of the requirements for the PhD-Degree of the Faculties of Veterinary Medicine and Medicine of the Justus Liebig University Giessen by Wang, Shan of ChengDu, China Gießen (2017) From the Institute for Anatomy and Cell Biology, Division of Medical Cell Biology Director/Chairperson: Prof. Dr. Eveline Baumgart-Vogt Faculty of Medicine of Justus Liebig University Giessen First Supervisor: Prof. Dr. Eveline Baumgart-Vogt Second Supervisor: Prof. Dr. Christiane Herden Declaration “I declare that I have completed this dissertation single-handedly without the unauthorized help of a second party and only with the assistance acknowledged therein. I have appropriately acknowledged and referenced all text passages that are derived literally from or are based on the content of published or unpublished work of others, and all information that relates to verbal communications. I have abided by the principles of good scientific conduct laid down in the charter of the Justus Liebig University of Giessen in carrying out the investigations described in the dissertation.” Shan, Wang November 27th 2017 Giessen,Germany Table of Contents 1 Introduction ...................................................................................................................... 3 1.1 Peroxisomal morphology, biogenesis, and metabolic function ...................................... 3 1.1.1
    [Show full text]
  • Reproductive DHEA-S
    Reproductive DHEA-S Analyte Information - 1 - DHEA-S Introduction DHEA-S, DHEA sulfate or dehydroepiandrosterone sulfate, it is a metabolite of dehydroepiandrosterone (DHEA) resulting from the addition of a sulfate group. It is the sulfate form of aromatic C19 steroid with 10,13-dimethyl, 3-hydroxy group and 17-ketone. Its chemical name is 3β-hydroxy-5-androsten-17-one sulfate, its summary formula is C19H28O5S and its molecular weight (Mr) is 368.5 Da. The structural formula of DHEA-S is shown in (Fig.1). Fig.1: Structural formula of DHEA-S Other names used for DHEA-S include: Dehydroisoandrosterone sulfate, (3beta)-3- (sulfooxy), androst-5-en-17-one, 3beta-hydroxy-androst-5-en-17-one hydrogen sulfate, Prasterone sulfate and so on. As DHEA-S is very closely connected with DHEA, both hormones are mentioned together in the following text. Biosynthesis DHEA-S is the major C19 steroid and is a precursor in testosterone and estrogen biosynthesis. DHEA-S originates almost exclusively in the zona reticularis of the adrenal cortex (Fig.2). Some may be produced by the testes, none is produced by the ovaries. The adrenal gland is the sole source of this steroid in women, whereas in men the testes secrete 5% of DHEA-S and 10 – 20% of DHEA. The production of DHEA-S and DHEA is regulated by adrenocorticotropin (ACTH). Corticotropin-releasing hormone (CRH) and, to a lesser extent, arginine vasopressin (AVP) stimulate the release of adrenocorticotropin (ACTH) from the anterior pituitary gland (Fig.3). In turn, ACTH stimulates the adrenal cortex to secrete DHEA and DHEA-S, in addition to cortisol.
    [Show full text]
  • Healthy Aging
    HEALTHY AGING Presented by CONTINUING PSYCHOLOGY EDUCATION 8.4 CONTACT HOURS “The ability to prolong life is indeed within our grasp.” Marie-Francoise Schulz-Aellen (1997) Course Objective Learning Objectives The purpose of this course is to provide an Upon completion, the participant will be able to: understanding of the concept of healthy aging. 1. Discuss current biological theories regarding Major topics include current biological theories the causes of aging. of aging, physical factors, prevalent diseases 2. Explain physical factors associated with aging. and health strategies, Baltimore Longitudinal 3. Acknowledge common older adult diseases and Study of Aging, psychological factors, social their recommended preventative measures. factors, long-term care, and the nature of 4. Articulate findings from the Baltimore healthy aging. Longitudinal Study of Aging. 5. Expound upon psychological effects of aging. Accreditation 6. Understand social theories of aging, and the Provider approved by the California Board of value of social support systems. Registered Nursing, Provider # CEP 14008, for 7. Describe prevalent concerns in long-term care. 8.4 Contact Hours. 8. Discuss key characteristics which promote In accordance with the California Code of healthy aging. Regulations, Section 2540.2(b) for licensed vocational nurses and 2592.2(b) for psychiatric technicians, this course is accepted by the Board of Vocational Nursing and Psychiatric Technicians Faculty for 8.4 contact hours of continuing education Neil Eddington, Ph.D. credit. Richard Shuman, MFT Mission Statement Continuing Psychology Education provides the highest quality continuing education designed to fulfill the professional needs and interests of nurses. Resources are offered to improve professional competency, maintain knowledge of the latest advancements, and meet continuing education requirements mandated by the profession.
    [Show full text]
  • Somatopause, Weaknesses of the Therapeutic Approaches and the Cautious Optimism Based on Experimental Ageing Studies with Soy Isoflavones
    EXCLI Journal 2018;17:279-301 – ISSN 1611-2156 Received: November 06, 2017, accepted: March 10, 2018, published: March 21, 2018 Review article: SOMATOPAUSE, WEAKNESSES OF THE THERAPEUTIC APPROACHES AND THE CAUTIOUS OPTIMISM BASED ON EXPERIMENTAL AGEING STUDIES WITH SOY ISOFLAVONES Vladimir Ajdžanović1*, Svetlana Trifunović1, Dragana Miljić2, Branka Šošić-Jurjević1, Branko Filipović1, Marko Miler1, Nataša Ristić1, Milica Manojlović-Stojanoski1, Verica Milošević1 1 Department of Cytology, Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia 2 Clinic for Endocrinology, Diabetes and Diseases of Metabolism, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia * Corresponding author: Vladimir Z. Ajdžanović, PhD, Department of Cytology, Institute for Biological Research “Siniša Stanković”, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia, Tel: +381-11-2078-321; Fax: +381-11-2761-433, E-mail: [email protected] http://dx.doi.org/10.17179/excli2017-956 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/). ABSTRACT The pathological phenomenon of somatopause, noticeable in hypogonadal ageing subjects, is based on the growth hormone (GH) production and secretion decrease along with the fall in GH binding protein and insulin-like growth factor 1 (IGF-1) levels, causing different musculoskeletal, metabolic and mental issues. From the perspective of safety and efficacy, GH treatment is considered to be highly controversial, while some other therapeutic ap- proaches (application of IGF-1, GH secretagogues, gonadal steroids, cholinesterase-inhibitors or various combi- nations) exhibit more or less pronounced weaknesses in this respect.
    [Show full text]
  • Testosterone Deficiency in Men with Heart Failure: Pathophysiology and Its Clinical, Prognostic and Therapeutic Implications
    Kardiologia Polska 2014; 72, 5: 403–409; DOI: 10.5603/KP.a2014.0025 ISSN 0022–9032 ARTYKUŁ SPECJALNY / STATE-OF-THE-ART REVIEW Testosterone deficiency in men with heart failure: pathophysiology and its clinical, prognostic and therapeutic implications Ewa A. Jankowska1, 2, 3, Michał Tkaczyszyn1, Elżbieta Kalicińska2, 4, Waldemar Banasiak2, Piotr Ponikowski2, 4 1Laboratory for Applied Research on Cardiovascular System, Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland 2Cardiology Department, Centre for Heart Diseases, Military Hospital, Wroclaw, Poland 3Institute of Anthropology, Polish Academy of Sciences, Wroclaw, Poland 4Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland HEART FAILURE: According to the data from the European Society of Cardio­ A CARDIOGERIATRIC SYNDROME logy (ESC) HF­Pilot registry [15], annual re­hospitalisation Heart failure (HF) is a disease syndrome cha­ rate and mortality among outpatients with chronic HF has racterised by large incidence and prevalence, been estimated at 31.9% and 7.2%, respectively. Thus, new which has been estimated in the developed therapeutic approaches are needed to reverse these adverse countries at 5–10/1000 persons per year epidemiological trends. In the recent years, this search for and 1–2%, respectively [1], with a clear rise new therapies for HF has focused on pathogenetic concepts of these indices with age [2–4]. In the Bri­ related to non­cardiac disturbances and abnormalities in HF tish Hillingdon study [2], the incidence of [16, 17]. In the current research on the pathophysiology and HF among subjects aged 25–34 years was natural history of HF, attention has been paid to renal dysfunc­ only 0.02/1000 persons per year, rising to tion [18–20], hepatic dysfunction [21, 22], immune activation 11.6/1000 persons per years among subjects [23], autonomic sympathetic/parasympathetic imbalance [24], aged ≥ 85 years.
    [Show full text]
  • Neurosteroid Metabolism in the Human Brain
    European Journal of Endocrinology (2001) 145 669±679 ISSN 0804-4643 REVIEW Neurosteroid metabolism in the human brain Birgit Stoffel-Wagner Department of Clinical Biochemistry, University of Bonn, 53127 Bonn, Germany (Correspondence should be addressed to Birgit Stoffel-Wagner, Institut fuÈr Klinische Biochemie, Universitaet Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany; Email: [email protected]) Abstract This review summarizes the current knowledge of the biosynthesis of neurosteroids in the human brain, the enzymes mediating these reactions, their localization and the putative effects of neurosteroids. Molecular biological and biochemical studies have now ®rmly established the presence of the steroidogenic enzymes cytochrome P450 cholesterol side-chain cleavage (P450SCC), aromatase, 5a-reductase, 3a-hydroxysteroid dehydrogenase and 17b-hydroxysteroid dehydrogenase in human brain. The functions attributed to speci®c neurosteroids include modulation of g-aminobutyric acid A (GABAA), N-methyl-d-aspartate (NMDA), nicotinic, muscarinic, serotonin (5-HT3), kainate, glycine and sigma receptors, neuroprotection and induction of neurite outgrowth, dendritic spines and synaptogenesis. The ®rst clinical investigations in humans produced evidence for an involvement of neuroactive steroids in conditions such as fatigue during pregnancy, premenstrual syndrome, post partum depression, catamenial epilepsy, depressive disorders and dementia disorders. Better knowledge of the biochemical pathways of neurosteroidogenesis and
    [Show full text]
  • Disruption of Androgen Metabolism, Regulation and Effects: Involvement of Steroidogenic Enzymes
    Disruption of Androgen Metabolism, Regulation and Effects: Involvement of Steroidogenic Enzymes Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Cornelia Fürstenberger, aus Basel, Schweiz Basel, 2014 Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von Prof. Dr. Alex Odermatt (Fakultätsverantwortlicher) ________________________ Fakultätsverantwortlicher Prof. Dr. Alex Odermatt und Prof. Dr. Rik Eggen (Korreferent) ________________________ Korreferent Prof. Dr. Rik Eggen Basel, den 20. Mai 2014 ________________________ Dekan Prof. Dr. Jörg Schibler 2 Table of content Table of content I. Abbreviations ................................................................................................................................. 6 1. Summary ........................................................................................................................................ 9 2. Introduction .................................................................................................................................. 12 2.1 Steroid hormones .................................................................................................................. 12 2.2 Steroidogenesis ..................................................................................................................... 14 2.3 Steroid hormones in health and disease ..............................................................................
    [Show full text]
  • Integrating Clinical and Genetic Approaches in the Diagnosis of 46,XY Disorders of Sex Development
    ID: 18-0472 7 12 Z Kolesinska et al. Diagnostic approach of 46,XY 7:12 1480–1490 DSD RESEARCH Integrating clinical and genetic approaches in the diagnosis of 46,XY disorders of sex development Zofia Kolesinska1, James Acierno Jr2, S Faisal Ahmed3, Cheng Xu2, Karina Kapczuk4, Anna Skorczyk-Werner5, Hanna Mikos1, Aleksandra Rojek1, Andreas Massouras6, Maciej R Krawczynski5, Nelly Pitteloud2 and Marek Niedziela1 1Department of Pediatric Endocrinology and Rheumatology, Poznan University of Medical Sciences, Poznan, Poland 2Endocrinology, Diabetology & Metabolism Service, Lausanne University Hospital, Lausanne, Switzerland 3Developmental Endocrinology Research Group, School of Medicine, Dentistry & Nursing, University of Glasgow, Glasgow, UK 4Division of Gynecology, Department of Perinatology and Gynecology, Poznan University of Medical Sciences, Poznan, Poland 5Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland 6Saphetor, SA, Lausanne, Switzerland Correspondence should be addressed to M Niedziela: [email protected] Abstract 46,XY differences and/or disorders of sex development (DSD) are clinically and Key Words genetically heterogeneous conditions. Although complete androgen insensitivity f array-comparative syndrome has a strong genotype–phenotype correlation, the other types of 46,XY DSD genomic hybridization are less well defined, and thus, the precise diagnosis is challenging. This study focused f differences and/or disorders of sex on comparing the relationship between clinical assessment and genetic findings in development a cohort of well-phenotyped patients with 46,XY DSD. The study was an analysis of f massive parallel/next clinical investigations followed by genetic testing performed on 35 patients presenting generation sequencing to a single center. The clinical assessment included external masculinization score f oligogenicity (EMS), endocrine profiling and radiological evaluation.
    [Show full text]