PLEASE DO NOT LEAVE DURING THE TALKS ...

WE ARE WATCHING THE PERIMETER FENCE ...

1 (Imported for this occasion)

2 HST mid-UV and near-IR Imaging of Nearby : Tools to Understand High- Morphology

Rogier A. Windhorst (ASU) + the HST mid-UV Team: V. Taylor, R. Jansen, & S. Cohen (ASU) S. Odewahn (U. Texas) C. Conselice (Caltech), R. de Grijs (Sheffield) R. S. de Jong (STScI), J. MacKenty (STScI) P. Eskridge (Minnesota), J. Frogel (OSU) J. Gallagher, (U. Wis), L. Matthews (Harvard CfA) J. Hibbard (NRAO), R. O’Connell (U. Virginia)

Sponsored by NASA/STScI hubblesite.org/newscenter/archive/2001/04/ www.asu.edu/clas/hst/www/midUV.html hubblesite.org/newscenter/archive/2001/37/ Talk to the 2004 Bars Conference, June 10, 2004, Bakubung, South Africa

3 Outline

• (1) Scientific Background

• (2) Scientific Goals

• (3) Experimental Design of the HST mid-UV Survey

• (4) Results for Early, Mid- and Late-type galaxies

• (5) Results from Near-IR images and Ground-based Light-profiles

• (6) Predict Galaxy Appearance for JWST at z'1–15

• (7) Summary — Consequences of More Reliable Galaxy Classifications

4 (1) Scientific Background

< • At ∼1990: Little known about UV morphology/structure of galaxies.

• Early 1990’s: ASTRO/UIT imaging of nearby galaxies at 150 (& some at 250) nm (Bohlin et al. 1992; Hill et al. 1992).

=⇒ Galaxies often appear of later Hubble type at shorter λrest =⇒ significant “Morphological K-correction” (Kmorph ).

• Mid 1990’s: Faint high redshift galaxies are observed by HST in the rest-frame mid-UV (0.2-0.3 µm).

• These resemble nearby late-type galaxies (e.g., Driver et al.1995, Ode- wahn et al. 1996), but are they really physically similar classes of objects, or are they due to the Kmorph in earlier types?

5 Imaging nearby galaxies at 250–290 nm is critical because:

• (1) Largest HST samples, best sampling & FOV available in the red.

00 < • (2) At I'26 mag, median sizes are re'0. 25 ⇒ need λobs∼800 nm.

> 5 < • (3) Morphology available today for ∼10 HST galaxies with I∼26–27. < Fewer galaxies have both zspect and spatially resolved spectra (I∼24).

N(m,T) & N(zphot,T) constrain galaxy evolution, if T-types reliable.

< • (4) Median redshift at I∼26 mag is “only” zmed '1–2.

=⇒ Need local benchmark at λrest '250–400 nm to reliably classify high-z galaxies in I814 .

6 (2) Scientific Goals of our HST Cycle 9, 10, 12 projects:

1. Provide local benchmark that we can redshift to z ≈ 1→20 for quan- titative comparison of structural properties of high-z galaxies.

2. Consistently classify structure and photometric properties of galaxies from 0.2-2µ (using Artificial Neural Networks; S. Odewahn’s talk), and reliably determine N(m,Type) for AB=15–27 mag.

3. Map the dust as function of type, inclination, and radius.

4. Map the spatial distribution, luminosities, sizes of SF regions responsible for the UV morphology, and relate these to global galaxy properties.

7 • Main Science Goal: Understanding the Faint Blue Galaxies

One of the remarkable HST discoveries was how numerous and small faint galaxies are: the building blocks of the giant galaxies seen today?!

8 • The uncertain rest-frame UV-morphology of galaxies is dominated by young and hot , with often significant dust superimposed. • This complicates comparison with high redshift galaxies seen by HST, but with good images a quantitative analysis of the restframe-λ dependent morphology and structure can be made (Odewahn et al. 2002; talk here).

9 (3) Experimental Design of the HST Survey

• ∼100 nearby galaxies with WFPC2 in mid-UV: F300W & F255W (Windhorst et al. 2002, ApJS, 143, 113; Taylor et al. 2005, ApJ, 630, 784; Taylor et al. 2007, ApJ, 659, 162).

• Short F814W exposures for old stellar pops and red-leak removal.

> • NIC3: ∼12 have F160W images to study old stellar pops and dust.

• Carefully select sample for size and surface brightness: < 0 < −2 re∼1 and SB(290 nm)∼23.0 mag arcsec

• Representative range of Hubble types and inclinations.

• Ground-based UBVR+(IJHK) images (Taylor et al. 2005). Some also have ACS H-α images (see R. Jansen’s talk here).

• Include 15 galaxies with far-UV UIT images at 150 nm.

10 Distribution of mid-UV SB out to re

• Predicted average mid-UV surface brightness (SB) out to refor HST Cycle 9 and Archival sample is ∼1.5 mag brighter than that of RC3. • For high redshift comparisons, this deliberate bias is acceptable: The cosmological (1+z)4 SB-dimming at high redshift is much worse.

11 Distribution over Type, b/a, (U–B), half-light radius re

• Sample all types: (a) Emphasize late-types ⇐⇒ High-z FBG connection. • Axis ratio representative of RC3 and HDF: View SF+dust at all angles. • Sample all colors: Emphasize nearby blue gxys ⇐⇒ High-z FBG’s. • Sample re range as in RC3: Emphasize smaller galaxies.

12 (4) Results for Early-type Galaxies

(1) EARLY-TYPE GALAXIES show a significant change in SB from the mid-UV to the red, reflecting the lack of young stellar population in general.

• Faint mid-UV bulges ⇐ Older stellar populations.

• Some nuclear disks and/or significant dust disks.

• Others are merger remnants, dusty in the mid-UV.

• Several of the selected ellipticals become dominated by point sources in the mid-UV (weak AGN, Seyferts, LINER’s).

⇒ Kmorph may cause (part of) the cosmological evolution of (weak) AGN in early-type galaxies.

13 HST/WFPC2 images of: NGC 4478

F300W F814W

NGC 4478 F300W NGC 4478 F814W

10" 10"

1kpc 1kpc

• Ordinary ellipticals are dim and dull in the UV, but ...

14 HST/WFPC2 images of: NGC 3516 and UGC 03426 (Mrk 3) F255W F300W F814W

NGC 3516 F255W NGC 3516 F300W NGC 3516 F814W

5" 5" 5"

500pc 500pc 500pc

UGC 03426 (Mrk 3) F255W UGC 03426 (Mrk 3) F300W UGC 03426 (Mrk 3) F814W

5" 5" 5"

1kpc 1kpc 1kpc • But some turn into point sources in the mid-UV (NGC 3516). • Others have blue nuclear disks or bipolar outflow (UGC 03426).

15 HST/WFPC2 images of: UGC 05101 and UGC 08698 (Mrk 273)

F255W F300W F814W

UGC 05101 F255W UGC 05101 F300W UGC 05101 F814W

5" 5" 5"

2kpc 2kpc 2kpc

UGC 08696 (Mrk 273) F255W UGC 08696 (Mrk 273) F300W UGC 08696 (Mrk 273) F814W

10" 10" 10"

4kpc 4kpc 4kpc • Early-type galaxies that are merger remnants: dusty and dim in UV.

16 4. Results for Mid-type Galaxies

(2) MID-TYPE SPIRALS can appear as later/different types in the mid-UV. > < But most (∼70%) appear similar from mid-UV to optical (∆T∼1–2).

• Some show drastic changes in type, since spiral arms more pronounced in mid-UV. One shows a spectacular resonance ring of young stars.

• Dust lanes are well traceable comparing mid-UV to I814 . Visible dust is in lanes (following spiral arms), patches, pockets, or bubbles (?).

• Most spirals show nuclear dust lanes emerging from a small bulge.

• Many edge-on’s are nearly opaque in the mid-UV, some have UV-sources in front of the dust. Most show F300W/I814 increasing from inside out (decreasing dust content or stellar population age?).

17 HST/WFPC2 images of: NGC 2551

F300W F814W

NGC 2551 F300W NGC 2551 F814W

10" 10"

1kpc 1kpc

• Early-type spirals are dim in the mid-UV, with faint spiral arms in the UV, and dominant bulges in the red =⇒ significant Kmorph .

18 HST/WFPC2 images of: NGC 6753

NGC6753 F300W NGC6753 F814W

5" 5"

500pc 500pc

• Some grand-design spirals appear of later-type in the mid-UV (due to more pronounced SF in spiral arms), • Dust lanes are well traceable comparing mid-UV to I814 . Visible dust is in lanes (following spiral arms). • Most spirals show nuclear dust lanes emerging from small bulge.

19 150 nm UIT 250 nm UIT F255W HST

HST & ground-based images of NGC 6753:

NGC 6753 F300W HST U CTIO 0.9m B CTIO 0.9m

HST F300 g-b U360 g-b B436

10" 10" 10"

1kpc 1kpc 1kpc

V CTIO 0.9m R CTIO 0.9m F814W HST

g-b V540 g-b R634 HST F814

10" 10" 10"

1kpc 1kpc 1kpc

J CTIO 1.5m H CTIO 1.5m K CTIO 1.5m

J1.25µm H1.65µm K2.2µm

10" 10" 10"

1kpc 1kpc 1kpc

• Overall, the mid-UV–red wavelengths broadly indicate the same type, but the near-IR shows an earlier bulge-dominated type.

20 (a) (b)

oo o

o

o

Eskridge (2003, ApJ, 586, 923): Pixel-to-pixel color-mag diagrams. These pCMD’s show stellar population “plumes” of different ages that are not arbitrarily distributed in the galaxy, but become younger outwards in distinct dynamical entities — from the inner bulge to the outer spiral disk. =⇒ Powerful diagnostic to study ages/evolution of bars (if present).

21 HST/WFPC2 image of: NGC 6782

SF-rings (at orbital resonances?) can be spectacular in the mid-UV.

22 HST/WFPC2 images of: NGC 6782

F255W F300W F814W

NGC6782 F255W NGC6782 F300W NGC6782 F814W

5" 5" 5"

1kpc 1kpc 1kpc

SF-rings (at orbital resonances?) can be spectacular in the mid-UV. HST pixel-to-pixel CMD’s may help address issues like: • Are bars secular phenomena in the disk? (Kormendy; Hunt; this Conf.). • What drives SF in the ring, and how does it affect the bar-formation? (various speakers; this Conference).

23 150 nm UIT 250 nm UIT NGC 6782 F255W HST HST & g-b images of: NGC 6782

HST F255

10"

2kpc

F300W HST U CTIO 0.9m B CTIO 0.9m

HST F300 g-b U360 g-b B436

10" 10" 10"

2kpc 2kpc 2kpc

V CTIO 0.9m R CTIO 0.9m F814W HST g-b V540 g-b R634 HST F814

10" 10" 10"

2kpc 2kpc 2kpc

J CTIO 1.5m H CTIO 1.5m K KPNO 2.2m g-b J1.25µm H1.65µm K2.2µm

10" 10" 10"

2kpc 2kpc 2kpc Dominated by resonance ring of hot stars in mid-UV, faint disk+inner bar in optical–red, and bulge+outer bar in red/near-IR. Significant Kmorph .

24 HST/WFPC2 images of: NGC 3310 F300W F814W

NGC 3310 (Arp 217) F300W NGC 3310 (Arp 217) F814W

10" 10"

400pc 400pc

NGC 3310 (Arp 217) F300W NGC 3310 (Arp 217) F814W

2.5" 2.5"

100pc 100pc

• Other spirals are dominated by a global starburst and similar at all λ’s. • Most spirals show nuclear dust lanes emerging from small bulge.

25 NGC 3310 (Arp 217) 150nm UIT 250 nm UIT F255W HST UIT, HST & g-b images: NGC 3310

UIT 150nm

10"

400pc

F300W HST U VATT B VATT

HST F300 g-b U360 g-b B436

10" 10" 10"

400pc 400pc 400pc

V VATT R VATT F814W HST g-b V540 g-b R634 HST F814

10" 10" 10"

400pc 400pc 400pc

J ground F160W HST K or K’ ground Nic3 F160

10"

400pc • Most actively starforming galaxies are dominated by a global starburst and look similar at all wavelengths (UIT-FUV–near-IR).

26 HST/WFPC2 images of: UGC 10043 F300W F814W

Image edge-on galaxies of all types to find-out where the dust is: • Many edge-on’s are nearly opaque in the mid-UV, some have UV-sources in front of the dust. Most show U290 /I814 increasing from inside out (younger stellar population with decreasing dust content?).

27 HST/WFPC2 images of: ESO 446-G44 F300W F814W

Image edge-on galaxies of all types to find-out where the dust is: • Many edge-on’s are nearly opaque in the mid-UV, some have UV-sources in front of the dust. Most show F300W/I814 increasing from inside out (younger stellar population with decreasing dust content?).

28 4. Results for Late-type Galaxies

(3) MOST LATE-TYPES/IRREGULARS/PECULIARS & MERGERS show similar morphology from the mid-UV to the red, due to their dominant young and hot stellar population.

• A few yield significantly different classifications in mid-UV and I814. Important differences due to recognizable dust-lanes blocking out mid-UV light — dust pockets, holes or bubbles (?).

• ∃ -formation “ridges”, hot stars or star-clusters, mostly visible in the mid-UV, but less so in I814.

• In general, bars in late-type galaxies do not disappear in the mid-UV, contrary to most bars in early–mid type spirals.

29 HST/WFPC2 images of: CGC G97-114

F300W F814W

• Possibly the beginning of spiral structure plus stochastic SF. • Dominated by starburst, so similar appearance at all wavelengths.

30 HST/WFPC2 images of: NGC 5253 F300W F814W

NGC5253 F300W NGC5253 F814W

5" 5"

100pc 100pc

• Small star-forming galaxy with significant super star-clusters. • Late-type actively star-forming galaxies are possibly local counterparts of the faint blue galaxies at high , which may be the building blocks of the giant galaxies seen today.

31 NGC 5253 150nm UIT 250 nm UIT F255W HST UIT, HST & g-b images: NGC 5253

UIT 150nm HST F255

10" 10"

200pc 200pc

F300W HST U VATT B VATT HST F300 g-b U360 g-b B436

10" 10" 10"

200pc 200pc 200pc

V VATT R VATT F814W HST g-b V540 g-b R634 HST F814

10" 10" 10"

200pc 200pc 200pc

J LCO 2.5m H LCO 2.5m K LCO 2.5m g-b J1.25µm H1.65µm K2.2µm

10" 10" 10"

200pc 200pc 200pc • Most late-type galaxies are dominated by recent star-formation and look similar at all wavelengths (UIT-FUV—near-IR).

32 HST/WFPC2 images of: UGC 06471-2

F300W F814W

• Major merger with active SF that look similar at all wavelengths. Are the rare local train-wrecks counterparts of high-z star-forming objects?

33 150 nm UIT 250 nm UIT NGC 3690/IC 694 (Arp 299) F255W HST HST & g-b images of: U06471-2

HST F255

10"

1kpc

F300W HST U VATT B UH 2.2m

HST F300 g-b U360 g-b B436

10" 10" 10"

1kpc 1kpc 1kpc

V UH 2.2m R UH 2.2m F814W HST g-b V540 g-b R634 HST F814

10" 10" 10"

1kpc 1kpc 1kpc

F110M HST F160W HST K UH 2.2m Nic F110M Nic F160W K2.2µm

10" 10" 10"

1kpc 1kpc 1kpc • Most mergers and actively starforming galaxies are dominated by a global starburst and look similar at all wavelengths (HST mid-UV–near-IR).

34 (5) Near-IR images and Ground-based Light-profiles

UGC10043 F300W UGC10043 F814W 2 U G C 1 0 0 4 3 T = 2

1 .5 ] g a m

[ U − R

1 r o l o

C B − V .5 V − R U − B 0

0 2 0 4 0 6 0 R a d iu s [a rc s e c ]

UGC01104 F300W UGC01104 F814W 1 .5 U G C 0 1 1 0 4 T = 1 0 U − R

1

] B − V g a m [

r

o .5 l V − R o C

0 U − B

− .5 0 1 0 2 0 3 0 R a d iu s [a rc s e c ] • Early–mid-type spirals get (slightly) bluer with increasing radius. • Majority of late-type galaxies get redder outwards. =⇒ Significant halo or (thick) disk of older stars (?)

35 Cardinal WFC3 filters compared to BC03 galaxy SED templates at z=0–4.

36 R e d d e r 1 o u t 1

.5 .5

0

f 0 f e R

e − .5 d i

s − .5 t u o

t i − 1 f E S 0 S a S b S c S d Im M e r g e

l − 1 i

f B lu e r o

r − 5 0 5 1 0 1 5 o u t − 2 2 − 2 0 − 1 8 − 1 6 − 1 4 − 1 2 p

r T y p e T o ta l a b s o lu te B − m a g o l o c

R e d d e r

R 1 o u t 1 − U

f o

e

p .5 .5 o l S

0 0

− .5 − .5

− 1 B lu e r − 1 F la t R o u n d 1 5 1 0 5 0 o u t 0 .2 .4 .6 .8 1 R e ff ( k p c ) In c lin a tio n ( b /a )

Most later-types get redder outwards, especially those with lower luminosity, smaller re, lower average SB(r

37 • V. Taylor et al. (2007): Morphological K-correction now mapped into the UV, and is mostly small, except for C in early- and C, A in mid-types. • 12 years of WFPC2 and 3 years of GALEX still leave us still with poor S/N, poor resolution, or poor statistics on nearby galaxies below 3000A.˚

38 E-S0 Sa-Sc Sd-Im pM mM M MR P

Taylor et al. (2007): CAS(λ) traces (some of) galaxy merging sequence. • WFC3 SNAPs will do this with far superior sampling and statistics !

39 (6) Predict Galaxy Appearance for JWST at z'1–15 HST z=0 JWST z=2 z=5 z=9 z=15 With proper restframe-UV HST λ = 0.293 µ JWST λ = 0.879 µ JWST λ = 1.76 µ JWST λ = 2.93 µ JWST λ = 4.69 µ training, JWST can quan- titatively measure the evo- z = 0 z = 2 z = 5 z = 9 z = 15 lution of galaxy morphology HST λ = 0.293 µ JWST λ = 0.879 µ JWST λ = 1.76 µ JWST λ = 2.93 µ JWST λ = 4.69 µ and structure over a wide range of cosmic time: z = 0 z = 2 z = 5 z = 9 z = 15 HST λ = 0.293 µ JWST λ = 0.879 µ JWST λ = 1.76 µ JWST λ = 2.93 µ JWST λ = 4.69 µ • (1) Most disks will SB- dim away at high z, but they z = 0 z = 2 z = 5 z = 9 z = 15 < ' HST λ = 0.293 µ JWST λ = 0.879 µ JWST λ = 1.76 µ JWST λ = 2.93 µ JWST λ = 4.69 µ formed at z∼zform 1–2. • (2) High SB structures are

z = 0 z = 2 z = 5 z = 9 z = 15 visible to very high z. HST λ = 0.293 µ JWST λ = 0.879 µ JWST λ = 1.76 µ JWST λ = 2.93 µ JWST λ = 4.69 µ • (3) Point sources (AGN) are visible to very high z. z = 0 z = 2 z = 5 z = 9 z = 15

HST λ = 0.293 µ JWST λ = 0.879 µ JWST λ = 1.76 µ JWST λ = 2.93 µ JWST λ = 4.69 µ • (4) High SB-parts of mergers/train-wrecks are z = 0 z = 2 z = 5 z = 9 z = 15 visible to very high z.

40 (7) Summary and Conclusions

• (1) In the rest-frame mid-UV, early- to mid-type galaxies are more likely to be misclassified as later-types than late-type galaxies are misclassified as earlier-types.

• (2) The change of galaxy morphology with rest-frame wavelength can ex- < plain part (∼20–30%) but not all of the excess faint blue late-type/irregular/ peculiar galaxies seen in the deepest HST fields.

> • (3) The excess of late-type/irregular/peculiar galaxies at AB∼22 mag is thus real, and an essential clue to the process of galaxy formation — the building blocks or merging stages of giant galaxies seen today?

• (4) and ...

41 (a) Total (b) E/S0

4

2 ) g

a 0 m

5 . 0 / .

g −2 e d

.

q (c) Sabc (d) Sd−Irr s /

# 4 ( HST data B>20 mag g

o HDF(N+S)+BBPS L HUDF

2

Key for B < 20 mag MGC (w/Types) 0 DLS (w/Types) NDWFS (w/Types) Key for B < 25 mag MGC (Liske et al) −2 16 18 20 22 24 26 16 18 20 22 24 26

Corrected B−magnitude Cohen et al. (2003): • Artificial Neural Networks calibrated in the mid-UV. • Available ground-based and HST images covering AB=15–29 mag. =⇒ Faint late-types have largest excess compared to local LF, but early- & mid-types have some excess too. This is now a secure result, since their rest-frame mid-UV mis-classifications go mostly in the opposite direction.

42 (7) Summary and Conclusions

• (1) In the rest-frame mid-UV, early- to mid-type galaxies are more likely to be misclassified as later-types than late-type galaxies are misclassified as earlier-types.

• (2) The change of galaxy morphology with rest-frame wavelength can ex- < plain part (∼20–30%) but not all of the excess faint blue late-type/irregular/ peculiar galaxies seen in the deepest HST fields.

> • (3) The excess of late-type/irregular/peculiar galaxies at AB∼22 mag is thus real, and an essential clue to the process of galaxy formation — the building blocks or merging stages of giant galaxies seen today?

> • (4) Early-mid types also show an excess for AB∼23 mag, possibly caused by the Cosmological Constant winding down the strongly epoch-dependent rate of (minor) mergers when it forever took over the expansion at: < 1/3 zm−Λ ∼ (Ωm/ΩΛ) – 1 = 0.39 (WMAP value).

43 SPARE CHARTS

44 45

, , , , , , , , , , , , , , , ,

%



$

!#"

+ +

- -

1 & &

. .



+

- -

2 2 2 2 2

0 / 0 .0 ./

* )* ) )

0 0 0

 









 

¢

¥

§



¢

¦

46

¥

©

¢

¨

§

¢

¢

¦

¢

¤¥

¤

¡£

¡ ¢

+ + +

------

1 2

.

) )

+ +

- -

& & 1 1

. . .

* ) )*



/ 0

*

' ' &(' &(' 2(' ' ' &(' ' ' ' ' &(' &(' &(' &('

) ) ) ) ) )

0 0 Total Ell/S0 Sabc Irr/Mergers

22

25

Driver et al. 1998, ApJL, 496, L93

47 Taylor et al. (2007): CAS in GOODS and HUDF match well, given com- pleteness limits. Galaxies don’t get a whole lot more asymmetric or clumpy at faint mags. Improper S/N cutoffs in CAS affected previous studies.

48 Taylor et al. (2007): CAS(λ, S/N, resolution/sampling) may be used to quantitatively classify & compare high and low redshift merger sequence. • WFC3 SNAPs will do this with far superior sampling and statistics !

49 HST/WFPC2 images of: UGC 03426

F255W F300W F814W

• Early-type galaxies can be full of surprises in the mid-UV ...

50 HST/WFPC2 images of: UGC 08823 and NGC 3921 F300W F814W

UGC 08823 (Mrk 279) F300W UGC 08823 (Mrk 279) F814W

10" 10"

4kpc 4kpc

NGC 3921 (Arp 224, Mrk 430) F300W NGC 3921 (Arp 224, Mrk 430) F814W

10" 10"

2kpc 2kpc

• Early-type galaxies that are AGN dominated in the mid-UV (UGC 00823). • Others are merger remnants (NGC 3921).

51 HST/WFPC2 images of: UGC 08696

F255W F300W F814W

• Dust can hide most of the SF-regions ⇒ sample many objects and many inclination angles.

52 HST/WFPC2 images of: NGC 7769 F300W F814W

NGC 7769 (Mrk 9005) F300W NGC 7769 (Mrk 9005) F814W

10" 10"

2kpc 2kpc

NGC 7769 (Mrk 9005) F300W NGC 7769 (Mrk 9005) F814W

5" 5"

1kpc 1kpc • Some grand-design spirals appear of later-type in the mid-UV due to more pronounced SF in spiral arms. • Most spirals show nuclear dust lanes emerging from small bulge.

53 150 nm UIT 250 nm UIT F255W HST

UIT, HST & ground-based images of NGC 7769:

NGC 7769 (Mrk 9005) F300W HST U VATT B VATT

HST F300 g-b U360 g-b B436

10" 10" 10"

2kpc 2kpc 2kpc

V VATT R VATT F814W HST

g-b V540 g-b R634 HST F814

10" 10" 10"

2kpc 2kpc 2kpc

I JKT H UKIRT K or K’ ground

g-b I-band H1.6µm

10" 10"

2kpc 2kpc

• Dominated by spiral structure in mid-UV and bulge+bar in red/near-IR.

54 0 0

15 8

19 14 2 8 7 6

NGC 6782 14 C G 0

20 15 N 0 6

13

21 16 12 0 M 0 X V n 4 u U v N 22 17

11

23 18 0 0 2 10

24 19

9 0 25 20 0 0 0 0 0

0 0 0 0

8 6 4 2

4 2 0 2 4 Y (NUVI)

Eskridge et al. (2003, ApJ, 586, 923): Pixel-to-pixel color-mag diagrams. =⇒ Powerful diagnostic to study ages/evolution of bars, rings, spiral arms, and other distinct dynamical entities.

55 HST/WFPC2 images of: Mrk 66 and UGC 05189 F300W F814W

Mrk 66 F300W Mrk 66 F814W

5" 5"

1kpc 1kpc

UGC 05189 F300W UGC 05189 F814W

5" 5"

500pc 500pc

• Most late-type galaxies are dominated by a global starburst and similar at all wavelengths.

56 150 nm UIT 250 nm UIT F255W HST

HST and ground-based images of UGC 05189: F300W U360 B436

UGC 05189 F300W HST U VATT B VATT

10" 10" 10"

2kpc 2kpc 2kpc

V VATT R VATT F814W HST

10" 10" 10"

2kpc 2kpc 2kpc J V540 ground H or F160W R634 ground or HST K or K’ F814 ground • Most mergers and actively starforming galaxies are dominated by a global starburst and similar at all wavelengths (HST mid-UV–near-IR).

57 UGC05028 F300W UGC05028 F814W

5" 5"

1kpc 1kpc Lop-sided star-forming in pair, with interaction likely triggering star- bursts. Spatially resolved (Integral Field) spectra can provide powerful constraints on the influence of the dynamical environment on SF (see S. Odewahn’s talk): Mid-UV/Blue ⇐⇒ Recent SF ⇐⇒ large- < scale bulk velocities (v∼vrot)?

58 HST/WFPC2 images of: UGC 05028 F300W F814W

Lop-sided star-forming spiral galaxy in pair, with interaction likely triggering star-bursts. Spatially resolved (Integral Field) spectra can provide powerful constraints on the influence of the dynamical environment on SF: < Mid-UV/Blue ⇐⇒ Recent SF ⇐⇒ large-scale bulk velocities (v∼vrot)?

59 HST/WFPC2 images of: UGC 08677-8

F255W F300W F814W

• Major merger with active SF that look similar at in mid-UV and red, but with significant dust superimposed.

60 GALEX and HST/WFPC2 images of UGC 10445:

GALEX 150+230nm F300W F814W

GALEX 150+230 nm images will measure the total FUV flux at low SB- levels escaping from the young hot stellar population, while comparison of the high-resolution HST F300W and F814W images lo- cates the individual hot stars, SF clusters and dust, and locates the possible paths of the escaping FUV light.

61 (5) mid-UV–Near-IR images and Light-profiles

F300W

F814W

F160W

• Majority of late-types get redder outwards, including in the NIC3 H-band.

=⇒ Significant halo or (thick) disk of older stars (?)

62 (7) Consequences of more reliable galaxy classifications

• (1) For AB<23-24 mag (zmed<0.3–0.4), early-types follow the L(z)=L(0) (1=z)1.4 model. The CFRS redshift survey found this a good representa- tion of the luminosity evolution of early-types to z<1. 1.4 • (2) For AB<22 (zmed<0.2), late-types follow the L(z)=L(0) (1=z) model.

• (3) For AB>23-24 mag (zmed>0.4), early-, mid- AND late-types follow the L(z)=L(0) (1=z)2.0−2.5 model, suggesting an additional excess in numbers of all types for z>0.4. • (4) This can be explained if the Cosmological Constant itself was winding down the strongly epoch-dependent rate of (minor) mergers for z<0.4, when it forever took over the expansion at: 1/3 zm−Λ = (Ωm/ΩΛ) – 1 = 0.39 (WMAP value).

63 (6) Predict Galaxy Appearance for JWST at z'1–15

Use HST mid-UV images to simulate galaxy appearance to the 6.0m James Webb Space Telescope (≥2011) at z'1–15: (1) Galaxies detectable to z'10–15 and structures recognizable to z'7– 10, if the average rest-frame mid-UV SB(≤re) is brighter than 18.0–20.0 mag arcsec−2 (at z=0, i.e., top few % of the RC3). (2) Faint extensions are not well visible beyond z'5–7 due to cosmological > SB-dimming, but z∼5 objects will be point sources anyway. (3) Regions of very high SB or star-formation rate, and AGN, are generally > visible to z'10–15. Population III star clusters to z∼20 (see poster). (4) The minimum in the Θ-z relation (at z'1.7) and the JWST diffraction > limit at λ∼2µm conspire to improve the effective JWST resolution from z'2 to z'7 for objects of very high SB.

64 Details on JWST image simulations: • Based on HST/WFPC2 F300W images from the HST mid-UV survey of nearby galaxies (Windhorst et al. 2002, ApJS, 143, 113)

• WMAP COSMOLOGY: H0=71 km/s/Mpc, Ωm=0.27, ΩΛ=0.73. > • INSTRUMENT: 6.0 m effective aperture, diffraction limited at λ∼2.0µm, JWST/NIRCam, 000. 034/pix, read-noise=5.0 e−, dark-current=0.02 e−/s, 2 NEP-Sky(1.6 µm)=21.7 mag/(” ) in L2, Zodi spectrum, texp=4×900s. Row Telesc. Redshift λ (µm) FWHM (00 ) 1 HST z∼0 0.293µm 000. 04 JWST z=1.0 0.586µm 000. 084 JWST z=2.0 0.879µm 000. 084 2 JWST z=3.0 1.17 µm 000. 084 JWST z=5.0 1.76 µm 000. 084 JWST z=7.0 2.34 µm 000. 098 3 JWST z=09.0 2.93 µm 000. 122 JWST z=12.0 3.81 µm 000. 160 JWST z=15.0 4.69 µm 000. 197

65 Theta−z relation for Ho=71, Ωm=0.27, ΩΛ=0.73 20 Angular size vs. redshift Best segmented pol fit 15 relation in a Lambda dom- N. Wright c p k

inated cosmology of H r 10 H. J. Yan 0 e p − −

1 1 c =71 km s Mpc , e s c r 5 a Ωm=0.27, ΩΛ=0.73.

0 In the top panel the re- lation is nearly linear in 0 10 20 30 40 50 60 < 1/z for z∼0.05 (the small Redshift z 3 angle approximation) and > linear in z for z∼3 (the 2 Best segmented pol fit ) c p Lambda dominated uni- k N. Wright r e p 1 H. J. Yan verse). c e s c r a (

All curvature occurs in the g 0 o l

< < range 0.05∼z∼3, which

−1 is coded up in the IRAF

0 .5 1 1.5 2 script that does the JWST log (1+z) simulations.

66 HST z=0 λ = 0.293 µ JWST z=1 λ = 0.586 µ JWST z=2 λ = 0.879 µ FOV=75" FOV~1.0"

JWST z=3 λ = 1.17 µ JWST z=5 λ = 1.76 µ JWST z=7 λ = 2.34 µ

JWST z=9 λ = 2.93 µ JWST z=12 λ = 3.81 µ JWST z=15 λ = 4.69 µ The compact high-SB dwarf irreg- ular galaxy NGC1140 (z=0.0050). With JWST, this object would be 34 67 6 9 6 ; = ?@ B ? F FJ = ;LM O L ; ?@ S T U V S ? V V B VW Y YZ 8 > A CD E >G C >HI E N C H > E D H I C H A C X N : < < PQ Q Q 5 R R K ] T V B ? S B B \ Y ^ ^ = T ? @ T ? T c U B e ? ? B \ Y \ ^ G AD I C D E a C > > C D C >a E C a D E G H a D E I A G H G > H D E < f _ Q Q Q_ Q g h b d R i ` [ ] ] ] j l M =m W o l p q o J Yt @ l u ^ O F u ^ ^ N X s a s C I s > < H a < k z Q : < Q Q P _ Q Q Q Q g g g g g b b K K K ‚ ‚ ] ] J F t O Y ^ @ V ? F p O „ ? B V @ Y ^ T V V e V ^ G C I s C C a >H a}ƒ E I C a C > H a D A D > H C I E AD H H >H a < Q ˆ Q Q g g g † h b h R K ‡ to classify at all redshifts z≥1. | | | | ] ] ] ] ] ] ] J = ^ O @ L ; J l ^ Z \ Y ^ ; = ^ @ L ; J l ^ Z F \ O ^ ‹ 9Œ \ ^   C I ‰Š < Q ˆ P Q Q Q : < Q _ z Q Q  Q Q Q g g g g Ž Ž [ [ ` ` | ] ] L ; J l ^ Z}| ^ @ ^ ; = s  Q Q  ˆ  Q : < g Ž ` [ | | | ] ] ] ] ] ] ] \ ^ L ; J l ^ Z}| F Y ^ @ \ ^ ; = L ; J l ^ Z Y ^ Y @ ‹ Œ \ ^ ; = s C I s  s ‰Š  Q z Q Q  _ Q : < Q Q  P Q : < g g g g Ž Ž ` [ ` [ | | ] ] L ; J l ^ ^ O ^ Z @ ; =  Q Q ˆ  P : < g Ž ` [ Note that the object indeed | | | | ] ] ] ] ] ] L ; J l ^ Y F ^ Y @ \ Y O ^ ; = O ^ L ; J l ^ Y O O ‹ Œ \ ^ ; = @ C I  ‰Š ‘  Q z Q  P Q : < ˆ P Q ˆ Q : < g g g g Ž Ž ` [ ` [ | | ] ] ] L ; J l ^ Y Z ^ @ \ Y ^ ; = s  Q ˆ z ˆ _ Q : < g Ž ` [ reaches a minimum angular size at z'1.7.

67 HST z=0 λ = 0.293 µ FOV=75" JWST z=1 λ = 0.586 µ JWST z=2 λ = 0.879 µ FOV~1.0"

JWST z=3 λ = 1.17 µ JWST z=5 λ = 1.76 µ JWST z=7 λ = 2.34 µ

The mid-type spiral NGC2551 (z=0.0078) would be visible out

JWST z=9 λ = 2.93 µ JWST z=12 λ = 3.81 µ JWST z=15 λ = 4.69 µ to z'10, but only recognizable out to z'7. Its disk is in principle visible to > z∼5–7. Hence, if such objects are ´ ’“ •– • ˜ • š œ žŸ ¡ ž ¥ ¥© œ š«¬ ® « š žŸ ² ³ Ÿ ž ž· ¡¸ ® » ½ ½ —  ¢£ ¤ ¦ ¢ §¨ ¤ ­ ¢ §  ¤ £ § ¨ £ §  ¢ ¹ ­ ¾ ™ › › ¯° ° º º ° ° ° ¿ µ¶ ¶ ” ± ª ¼ À ¥ ¡ · ¥ ž Å ¡ Å ½ ³ ¥ à ¡ Ä ž ž ¡ Å » ¦ £ ¤ § Á ¤ ¢ ¦ § £ ¤ ¾ Á ¢ ¤ ¦ § Á £ ¤ ¨ ¦ § ¦ § £ ¤ Æ › Æ ° Ç µ  ± < Ñ Ñ Ñ È Ê ¬ œË ¸ Í Ê Î Ï Í © »Ò Ÿ Ê Ó ½ ® ¥ Ó ½ ½ ­ ¹ ¾ Á ¾ ¢ ¨ ¾  › ›É Ì › Ì › Ì Ì ° ° ¯ Ç Ç Õ Ð Ô ¶ ª ª not seen by JWST at z∼3, then Û Ñ Ñ Ë ¸ œÖ Ê× ¸ œ Í ½ Ÿ Ù ž Ä · · š œ ¸ Ë Ö Ÿ ½ Ú}Û žÜ Ö ¸ ½ Þ · Ò ½ ® ¸ × ¬ § § Á £ § ¢ § £ § ­ ¢ §€Ý ¢ §€Ý § Á › É Ø ° ™ › ° ° ¯ º ° ° ° ° Ç Ç Ç Ç Ç ¶ ¶ ª ª ª

´ ´ < Ñ Ñ © ¥ Ò ® »½ Ÿ · ž ¥ Î ® á ž ¡ · Ÿ » ½ ³ · · Ä · ½ ¦ ¢ ¨ ¾ ¢ ¢ Á § Áàß ¤ ¨ ¢Á ¢  § Á £ £  § ¢ ¨ ¤ £ § § § Á › ° å ° ° Ç Ç Ç âã µ ¶ µ ± ª ä disks likely form at z∼3. Û Û Û Û Ñ Ñ Ñ Ñ Ñ Ñ Ñ © œ ½ ® Ÿ « š © Ê ½ Ú Å » ½ š œ ½ Ÿ « š © Ê ½ Ú ¥ Å ® ½ èéê Å ½ ë ë ¢ ¨ æç › ° å ¯ ° ° ° ™ › ° º ¿ Ø ° ° ¿ ° ° ° Ç Ç Ç Ç ì ì ¼ ¼ À À Û Ñ Ñ « š © Ê ½ Ú}Û ½ ½ Ÿ š œ ë ¾ ° ° ¿ ° ¿ å ™ › Ç ì À ¼ Û Û Û Ñ Ñ Ñ Ñ Ñ Ñ Ñ « š © Ê ½ Ú}Û ¥ Å » ½ Ÿ ½ Å ½ š œ « š © Ê ½ Ú »½ » Ÿ è ˜ ê Å ½ š œ ¢ ¨ ¾ ¾ ë ¾ æç ë Ø ° ° ¿ ° º ° ™ › ° ° ¿ ¯ ° ™ › Ç Ç Ç Ç ì ì À ¼ À ¼ Û Û Ñ Ñ « š © Ê ½ ½ ® ½ Ú Ÿ š œ ë ° ° å ¿ ¯ ™ › Ç ì À ¼ With HST we have seen glimpses Û Û Û Ñ Ñ Ñ Ñ Ñ Ñ « š © Ê ½ » ¥ ½ » Ÿ Å » ® ½ š œ ® ½ « š © Ê ½ » ® ® è ê Å ½ š œ Ÿ ¢ ¨ ë æç í ë ° Ø°îÛ ¯ ¿ ° ™ › å ¯ ° å ° ™ › Ç Ç Ç Ç ì ì À ¼ À ¼ Û Û Ñ Ñ Ñ « š © Ê ½ » Ú ½ Ÿ Å » ½ š œ ¾ ë ° å Ø å º ° ™ › Ç ì À ¼ of this, but with JWST these will become robust conclusions.

68 HST z=0 λ = 0.293 µ FOV=75"

HST z=0 λ = 0.293 µ FOV=75" JWST z=1 λ = 0.586 µ JWST z=2 λ = 0.879 µ FOV~1.0" The very high-SB, compact starbursting NGC3310 (z=0.0033). JWST z=3 λ = 1.17 µ JWST z=5 λ = 1.76 µ JWST z=7 λ = 2.34 µ The minimum in the Θ-z relation at z'1.7 and the JWST diffrac- tion limit at λ ≥2.2µm — com- JWST z=9 λ = 2.93 µ JWST z=12 λ = 3.81 µ JWST z=15 λ = 4.69 µ bined with the object’s very high rest-frame UV-SB — conspire to improve the effective JWST reso- lution on the mid-UV morphology  ïð òó ò ò ÷ ù ûü þ û ¢ ¢ ¦ ù ÷ ¨© ¨ ÷ ûü    û     û ¢    û  þ ôõ ú ý ÿ ¡ ú £ ÿ ú¤ ¥ ¡ ÿ ¤ ú ¡ ¤ ú ÿ £ ý ú ¥ ÿ ú ÿ ö ø ø ø  ñ    §   ù  ü û ¢ ûü ü û ¢   þ û ¢   ¢  ÷ ù û"  û ¢ þ ûü û þ     ¤ ý ¤  ¤ ÿ ¡ ÿ ! ÿ ¥ ¤ ¥ ÿ# ¡ ÿ ÿ ÿ  ö ø

    ' '   ü ü û ¢  û   +   û     ü -  ¢ û  ûü  +  " û + $ # ¡ £ ¤ ¥ ¤ ¡ £ ¤ # *) ú ¤ ¤ ú ÿ ¤ # ¡ ú ¤ ¡ ¡ ¤ ¤ ¤ ¤ # ¤ , ø (    &  % of this object from z'2 to z'7.  ÷ ù  þ û ¢ ¢  ü û - ü   þ   û   ü  ¤ ú ¡ ý ¡ ¡ ¤ ¥ ¡ ¡ ¡ ¡ ú ¡ £ ¤ # ¡ ¡ ! ö ø ,   (   6 6 6 . / © ù 0  2 / 3 4 2 ¦  7 ü / 9  ¢ 9   0  ù < / =  ù 2  ü   ! # ! ÿ ¥ ! ¤ ú ø ø , 1 ø 1 ø 1 1 ø , > 8 8 ; 5 :  § § @  6 6 6  û +   ÷ ù  0 < ü  ?A@ û  <   E  7   = © ¦ ¢ 7   ¤ # ¤ ÿ ¤ ý ¤ ÿ ¤DC ÿ ¤DC ú¤ # £ ÿ ¥ ! ö ø B ø 8 8 8 8 8    § § §  6 ü  û ¢ 3 G û þ  ü      +   ÿ ÿ # ú¤ #AF ¡ ¥ ÿ# ÿ ú ¤ # ý ú ¤ ÿ ¥ ¡ ý ¤ ¤ ú¤ # K 8 8 8 HI    § J A rather exceptional case of where @ @ @ 6 6 6 6 6 6  ¨ ÷ ¦ /  ? ¢   ÷ ù ü  ¨ ÷ ¦ /  ?Q@ N OP  ¦ ù ü ÿ ¥ $ LM $ BR > R ö ø K ø 8 8 8 8 & &     @ @ 6 6 6 6 6 6 6  ¨ ÷ ¦ /  ?A@    ü ¨ ÷ ¦ /  ?A@  N S P  ÷ ù ü   ÷ ù ! LM $ ! $ B R R ö ø K R ö ø 8 8 8 & &     @ @ @ 6 6 6 6 6 6 ¨ ÷ ¦ /   N P   ? ü ¨ ÷ ¦ /  ? ¢  ÷ ù   ü ÷ ù LM õ ÿ ¥ ! $ ! $ K RT@ K

> R ö ø ö ø 8 8 8 & &     nasty cosmology doesn’t appear @ @ @ @ 6 6 6 6 6 6 ¨ ÷ ¦ /   ¢   ÷ ù   ü   ÷ ù  ¨ ÷ ¦ /   ÷ ù ü ÿ ¥ $ $ > B ö ø R ö ø K ö ø 8 8 8 8 & &      @ @ 6 6 ¨ ÷ ¦ /   ?  ü ! $ K > K 8 &  to cost you prohibitive sensitivity, but gains you resolution!

69 HST z=0 λ = 0.293 µ FOV=75" JWST z=1 λ = 0.586 µ JWST z=2 λ = 0.879 µ FOV~1.0"

JWST z=3 λ = 1.17 µ JWST z=5 λ = 1.76 µ JWST z=7 λ = 2.34 µ The NGC3516 (z=0.0088) has a faint nebulosity surrounding its AGN in the mid- JWST z=9 λ = 2.93 µ JWST z=12 λ = 3.81 µ JWST z=15 λ = 4.69 µ UV, while at longer wavelengths the surrounding is present (not shown here).  UV XY X Y X \ ^ `a c ` g g k ^ \ mn p m \ `a t u t w c x y |  Z _ b de f _h d _ij f o d i _ f e i i i e d d z o [ ] ] qr r ] q{ } r r r€ € v v W s s ~  l

ƒ The nebulosity surrounding the ‡ y u u t ` g g c ` w w g ` g u ‚ y ` g u a ` † g ` c c ` w † f e i e de e i d e i h b f _ e _ b f b j e i z e i j d e i _ _i e d j _ d i d _ d e Š _ f „ r ‹ v v ˆ ˆ s ‰ u u ` u w u ` t u Ž c c  c `  w ‚ y  e d e de ij _ e _ _ bŒ f h i Œ e _ f j b f f i d b i z  ˆ s ‡ ‡ ‡ ‚  n ^ ‘ y “  ” • “ k |  a  —  p g —   o z Š Œ Š d j Š _ ] ] „ ’ ] ’ ] ’ ’ r r q ‹ ‹ ™ – ˜ ˆ l l AGN is essentially SB-dimmed Ÿ ‡ ‡ ‘ y ^ š  › y ^ “  a œ ` w w \ ^ y ‘ š a  žQŸ ` x š y  ¢ w   p y › n i i Œ e i d i e b i o d i¡ d i¡ _i Œ ] „ } r [ ] r r q { r r r r ‹ ‹ ‹ ‹ ‹ ˆ ˆ l l l ƒ ƒ ‡ ‡ k g  p |  a w ` g ” p ¤ ` c w a |  u w w  w  h d j Š d d Œ _i ŒA£ f j dŒ d _ i Œ e b e _ i d j f b e i i _i Œ ] r ¨ r r ‹ ‹ ‹ ¥¦ v ˆ v s l § away at z≥7, so that at high Ÿ Ÿ Ÿ ‡ ‡ ‡ ‡ ‡ ‡  m \ k   ž g † |  \ ^ a  p m \ k   žAŸ « ¬­ †  k ^ a d j ® ©ª ® r {€ } r r€ r [ ] r ¨ q r r r r ] ‹ ‹ ‹ ‹ ¯ ¯  ~  ~ Ÿ Ÿ ‡ ‡ ‡ ‡ ‡ ‡ ‡ †  m \ k   žQŸ |  | a m \ k   žQŸ  « ° ­ †  \ ^  a † p  \ ^ Š ©ª ® ® Š { r r r € r r € q r [ ] r € ¨ r [ ] ‹ ‹ ‹ ¯ ¯   ~ ~ Ÿ Ÿ Ÿ Ÿ ‡ ‡ ‡ ‡ ‡ ‡ m \ k    « ­ †  m \ k   ž g † p  ž a |  a  \ ^ \ ^ ©ª ± d j Š Š ® ® r r ¨ € ¨ r } r r€ q r [ ] [ ] ‹ ‹ ‹ ¯ ¯   ~ ~ redshifts these objects would Ÿ Ÿ Ÿ ‡ ‡ ‡ ‡ ‡ ‡ m \ k   | g † |  \ ^  | a † | p  \ ^ p  m \ k   | p p \ ^ a d j ® ® r }rTŸ { r [ ] € q r [ ] ¨ q r [ ] ‹ ‹ ‹ ‹ ¯ ¯  ~ ~  ~ Ÿ Ÿ ‡ ‡ m \ k   | ž  a Š ® r ¨ } ¨ ‹ ¯  look like purely stellar objects (“”).

70 HST z=0 λ = 0.293 µ FOV=75" JWST z=1 λ = 0.586 µ JWST z=2 λ = 0.879 µ FOV~1.0"

JWST z=3 λ = 1.17 µ JWST z=5 λ = 1.76 µ JWST z=7 λ = 2.34 µ

JWST z=9 λ = 2.93 µ JWST z=12 λ = 3.81 µ JWST z=15 λ = 4.69 µ The barred NGC6782 (0.0125) shows that at z'2 to z'7, the effective resolution on its high-SB bright star-forming ²³ µ ¶µ µ º ¼ ¾¿ Á ¾ Å Å É ¼ º ËÌ Î Ë º ¾ ¿ Ò Ó Ô Ô Ô ¾ Å Á Õ × Î ·¸ ½ À ÂÃ Ä ½Æ  ½ÇÈ Ä Í Â Ç ½ Ä Ã Ç Æ Â ÇÈ Â Â Ø Í Ú ¹ » » ÏÐ Ð Ù Û Ö ´ Ñ Ñ Ñ Ê ã è Ý × ¾ Å Ó Ò Ôá Î Ý Þ Î Ó å ¾ç Ô Á ¾ Å Å Ó Ô ¾ Ó Ô Ò Ô ¿ ¾ Å Ô ¾ Å ¾ ¿ Ô ç ê ¾ Ó Ä Ã Ç Â Â Ã Â Ã Ä Ú Ã Ç Ç Çæ Ã Ç Ç ½ Ä À Ã Ä Ä Ã Ç Æ Ã ½ Ã Â Ä Ä Ç ½ à â Ð Ð ß ä é Ñ Ñ Ñ Ñ Ü à è Þ á ¾ Å Ô ¾ Å Ô Ó ¾ Ò Å ¾ Á Ó ¾ ¿ ¿ ¾ Å ¿ Á Á î ¾ Á Á ¾ Ò Ô á Þ Ý æ Ç Â ½ Ç È ½ à À Ã Ã Ç È æ Ä Ç Ã Ç ½ Ã Ä Ð ë ä é Ö Ñ Ñ ï Ü àíì ring improves with increasing red- ù ù ù ð ò Ì ¼ ó × õ ò ö ÷ õ É Þ î ¿ ò ú Ý Î Å ú Ý Ý Í Ø Ú æ Ú Â È Ú ½ » »ñ ô » ô » ô ô Ð Ð Ï ä ä ü ø û é Ê Ê ¢ ¢

ù ù 4 ó × ¼ ý òþ × ¼ õ Ý ¿ å ¾ ç Ô Ô º ¼ × ó ý ¿ Ý ÿ¡ ¾ Õ ý × Ý £ Ô î Ý Î × þ Ì Ç Çæ Ã Ç Â Ç Ã À Ç Í Â Ç Â Ç ½Ç æ » ñ Ù Ð ¹ » Ð Ð Ï ß Ð Ð Ð Ð ä ä ä ä ä é é Ê Ê Ê ¤ è è

ù ù shift, until the (1+z) -dimming É Å î Î Þ Ý ¿ Ô ¾ Å ö Î ¥ ¾ Á Ô ¿ Þ Ý Ó Ô Ô ç Ô Ý Æ Â È Ú Â æ  ½Çæ Ä È Â æ  ½ Çæ à À à ½ Ç Â È Ä À Ã Ç Ç ½Çæ » Ð ©Ð Ð ä ä ä ¦§ Ö é Ö Ñ Ê ¨

ù ù ù ù ù ù Ý Ë º É ò Ý ÿ Å á Þ Ý º ¼ ¿ Ý Î Ë º É ò Ý ÿ  á Ý É ¼ ¿ Â È  

Ð ß Û Ù Ð Ð Û Ð ¹ » Ð © Ï Ð Ð Ð Ð » ä ä ä ä   à Ü à Ü >

ù ù ù ù ù ù ù á Ý Ë º É ò Ý ÿ Þ Ý Þ ¿   á Ý º ¼ Ý Ë º É ò Ý ÿ Ý á Î Ý º ¼ ¿ Ú 

 Ú ß Ð Ð Ð Û Ï Ð ¹ » Ð Û © Ð Ð Û Ð ¹ » ä ä ä   à Ü à Ü completely kills it for z∼10–12.

ù ù ù ù ù ù  á Ý Ë º É ò Ý Ý Ë º É ò Ý ÿ Å á Î Ý ÿ ¿ Þ Ý ¿ Ý º ¼ º ¼ 

Â È Ú Ú   © Ð Ð Ð © Û Ù Ð Ð Û Ï Ð ¹ » ¹ » ä ä ä   à à Ü Ü

ù ù ù ù ù ù Ë º É ò Ý Þ Å á Þ Ý º ¼ Ý Þ ¿ á Þ Î Ý º ¼ Î Ý Ë º É ò Ý Þ Î Î º ¼ ¿ Â È   Ð Ù Ð ß Ð ¹ » Ï Û Ð ¹ » © Ï Ð ¹ » ä ä ä ä   à Ü Ü à Ü

ù ù ÿ Ý Ë º É ò Ý Þ ¿  Ú Ù © Ð © ä  à Another good case showing why cosmology is not “WYSIWYG”.

71 HST z=0 λ = 0.293 µ FOV=75" JWST z=1 λ = 0.586 µ JWST z=2 λ = 0.879 µ FOV~1.0"

The UGC06471-2 (z=0.0104) is a major and very JWST z=3 λ = 1.17 µ JWST z=5 λ = 1.76 µ JWST z=7 λ = 2.34 µ dusty collision of two massive disk galaxies. It shows two bright unresolved JWST z=9 λ = 2.93 µ JWST z=12 λ = 3.81 µ JWST z=15 λ = 4.69 µ star-bursting knots to the upper- right of the center, which remain visible until z'12, beyond which the cosmic SB-dimming kills their > A       !" $ ! ( ( ,  ./ 1 .  !" 5 6 " 7 7 ; = 1 @ B = B ;   # %& ' ) % *+ ' 0 % * ' & * * * 9 0 <    23 3 8 3: 3 3 3  4 4 - ? C > I D 6 6 E ( 7 $F 7 7 ! ( G ( ! ( 6 ( 7 7 " ! ( F ! ! $ ( ! $ @ = 1 ( E 6 ! 6 6 ' & * & % & & * & ' # * ' *+ & % ) # & ' & & * H * & * * % ) * # & ) * ' + H & * J K 4 > A L !" " ! ( $ G ! $ $ 6 ! 7 M N B 6 ! ! 6 D P Q DR S  R S V W 1 B Q V W P W D + % ' & * # & * 9  O   O  8  U X 4 T ? C - Y flux. These are more typical for A A A R P / Q D Z P S [ Z , = G " P ^ B 1 ( ^ B B 0 9 < H < % + <

  8 O  O  O O 3 3 2 J J ` \ _ ] - - b A A Q D V P W D Z B " a ! F 7 7  D Q V " B ;¡b ! N V D B f 7 G B 1 D W / * * H & * % * & # * 0 % *ed % *ed * H  8 : 3   3 3 2 c 3 3 3 3 J J J J J ] ] - - - > >

A A the small star-forming objects ex- D P Q DR Spo B , ( G 1 = B " 7 ! ( S 1 h ! $ 7 " = B 6 7 7 F 7 ) % + < % % H * Hg ' + % H % * H & # & * % + ' #& * * * H O  3 l 3 3 J J J ij K ] K 4 - ?nm C k b b b A A A A A A .  , P B ; ( B " @ =B  B 1 .  , P B ;b s tu @ B , " % + v v qr 3 3 x 3 cx: 3   3 l 2 3 3 3 3  J J J J w w C ? C ? b b A A A A A A A @ B .  , P B ;b = B = " sy u @ B  .  , P B ;b B " B @ 1 B  < v qr < v c 3 3 3 x 2 3   3 3 x l 3 x 3   J J J w w C ? C ? pected at z'10–15. b b b b A A A A A A s u @ B .  , P B B 1 B ; " @ B  .  , P B ; ( " =B  z qr < v % + < v l 3 3 3 l x 2 3   3 3 x :   J J J w w C ? C ? b b b b A A A A A A @ = B  .  , P B = ( B = " @ = 1 B  1 B .  , P B = 1 1  " % + v v c 3   3 : 3 2 x 3   l 2 3   J J J J w w ? C ? C ? b b A A .  , P B = ; B " < v 3 l : l J w C This is the NOMINAL JWST = (GOALS+REQUIREMENTS)/2.

72 HST z=0 λ = 0.293 µ FOV=75" JWST z=1 λ = 0.586 µ JWST z=2 λ = 0.879 µ FOV~1.0" The galaxy merger UGC06471-2 (z=0.0104). This is the BEST CASE JWST.

JWST z=3 λ = 1.17 µ JWST z=5 λ = 1.76 µ JWST z=7 λ = 2.34 µ It assumes that all GOALS are met, and that texp=100 hrs. The whole object (including the two star-forming knots) is recogniz- JWST z=9 λ = 2.93 µ JWST z=12 λ = 3.81 µ JWST z=15 λ = 4.69 µ able to z'15. This does not imply that observ- ing galaxies at z=15 with JWST ¥ ¨ {| ~ ~ ~ ~ „ † ˆ‰ ‹ ˆ   “ † „ •– ˜ • „ ˆ‰ œ  ‰ ž ž ¢ ¤ ˜ § © ¤ © ¢ € ‚ ‡ Š Œ Ž ‡ Œ ‡‘’ Ž — Œ ‘ ‡ Ž  ‘ ‘ ‘ — £ ƒ ™š š Ÿ š¡ š š š } › › ” ¦ ª

¨ will be easy. On the contrary, © †  ˆ ž  ˆ § ‹ § ¤ ©  ¤  ž †  ˆ ˆ  «¬ † ­ ¬ „ † ‰ ˆ  ‹ ‹ ­ ° ‘ Ž  ‘·  ‡ ‘· Ž Œ  ‘  Ž Œ ’  ‡ ‡ ‡  ‘ — ‘ ‘  Œ ¸ ¹ š š ƒ ¯ ± ²³ ¶ › › µ ® ´ ¨ ¨ ¨ ­ º – † » ¼ ½ º ° ¾ ½ “ ¤ À ‰ º  © ˜   © © — £ · £ Œ ’ £ ‡ Ÿ ¯ ¯ ¯ ¯ š š ™ ± ± Ä ¿ à Á ” ” È ¨ ¨ » ¼ † Å º ¬ ¼ † ½ © ‰ Æ ˆÇ ž ž „ † ¼ » Å ‰ ž © ¢È ˆÉ Å ¼ © Ì ž À © ¤ ‘ ‘·  ‘ Œ ‘  Š ‘ · Œ ‘ Œ ‘ËÊ Œ ‘ËÊ ‡ ‘· Ÿ ¡ š ƒ š š ™ ™ š š š š ± ± ± ± ± since galaxies formed through hi- Á Á ” ” ” Î ¥ ¥ ¨ ¨ © ¼ ¬ – “  À ˜ ¤ © ‰ ž ˆ  ° ˜ Ï ˆ ž ‰ ¤ ©  ž ž Ç ž ­ °  Œ ’ £ Œ · Œ ‡ ‘ · Ž ’ ‡ ‘ ·  Š  ‡ ‘ Œ ’ Ž Š  ‘ ‘ ‡ ‘· š š š Ð š š ¯ eÒ ± ± ± ²³ Í Á Í › ” ¦nÑ ª ´ È È È ¨ ¨ ¨ ¨ ¨ ¨ “ † © ˜ ‰ • „ “ º © ¢ § ¤ © „ † © ‰ • „ “ º © ¢È  Õ Ö× § © Ø Ø Œ ’ ÓÔ š Ð ™ š š š ƒ š ¹Ú ¡ š š Ú š š ± ± ± ± Ù Ù ¦ ¦ ª ª È È È È erarchical merging, real objects ¨ ¨ ¨ ¨ ¨ ¨ ¨ § © • „ “ º © ¢ ¤ © ¤ ‰ ÕÛ × § © „ † • „ “ º © ¢ © ‰ © § ˜ © „ † £ Ø ÓÔ £ Ø ¹ š š š Ú ™ š ƒ š š Ú Ð š Ú š ƒ ± ± ± Ù Ù ª ¦ ª ¦ È È È ¨ ¨ ¨ ¨ ¨ ¨ Õ × § © • „ “ º © © ˜ © ¢ ‰ § © „ † • „ “ º © ¢È  ‰ ¤ © „ † Ü ÓÔ £ Ø Œ ’ £ Ø Ð š š š Ð Ú ™ š ƒ š š Ú ¡ ƒ ± ± ± Ù Ù ª ¦ ª ¦ È È È È 1 4 ¨ ¨ ¨ ¨ ¨ ¨ § ¤ © „ † • „ “ º © ¤  © ¤ ‰ § ¤ ˜ © „ † ˜ © • „ “ º © ¤ ˜ ˜ „ † ‰ Œ ’ Ø Ø ¹ š ƒ š ¡ š ™ Ú š ƒ Ð ™ š ƒ ± ± ± ± Ù Ù ¦ ª ¦ ª ¦ ' × È È at z 10–15 will be 10 –10 ¨ ¨ • „ “ º © ¤ ¢ © ‰ £ Ø š Ð ¡ Ð ± Ù ª less luminous, requiring to push JWST to its limits.

73 8. Future plans

• Rest-frame Artificial Neural Network construction using Fourier decom- positions (Odewahn, Jansen, Taylor).

• Pixel-to-pixel decomposition, asymmetry (Taylor, Eskridge et al.)

• Correlations with other imaging data: H-α, H-I, etc (Jansen).

• Follow-up with Chandra, XMM in X-rays (hot gas, weak hidden AGN) and Spitzer in mid-IR (dust), and GALEX in FUV (Lyman escape fraction).

• WFC3 in 2007-2010 (?): Systematic UV survey of 1000 nearby galaxies and ∼10× better sensitivity.

• JWST in 2011-2015: Quantitative measurement of galaxy structure and trace the formation of the Hubble sequence with cosmic time.

74