Allergy Entry in Powerchart

Total Page:16

File Type:pdf, Size:1020Kb

Allergy Entry in Powerchart PowerChart Allergy Entry Table of Contents ALLERGY ENTRY ............................................................................................................................................. 2 Accessing the Add Allergy Window from the Allergies section of the Menu .................................................... 2 Accessing the Add Allergy Window from the Demographic Bar ...................................................................... 2 Accessing the Add Allergy Window from the PAL .......................................................................................... 3 Accessing the Add Allergy/Adverse Effect Window from PowerForms in Ad Hoc Charting ............................ 3 Entering Allergy Information ........................................................................................................................... 4 Common Substance, Food, and Environmental Lists ..................................................................................... 5 No Known Allergies ........................................................................................................................................ 5 No Known Medication Allergies ...................................................................................................................... 6 Allergy substance is not available in the search tool ...................................................................................... 7 Unable to obtain allergy information ............................................................................................................... 8 Canceling an allergy ...................................................................................................................................... 8 Modifying an allergy ....................................................................................................................................... 8 My Favorites: ................................................................................................................................................. 8 Viewing Current Allergies only ....................................................................................................................... 9 Allergy Verification Process............................................................................................................................ 9 Tips ................................................................................................................................................................. 10 Revised April 2016 1 ALLERGY ENTRY Allergies can be entered multiple ways in PowerChart and FirstNet: from the Allergies section of the Floating Menu, from the Demographic Bar, and from Tracking Lists. They can also be entered via the Admission tasks on the PAL and from PowerForms in Ad Hoc charting. All methods use the Add Allergy / Adverse Effect window. Accessing the Add Allergy Window from the Allergies section of the Menu 1. Click Allergies on the Floating Menu. 2. Right click the white section of the Allergies window. 3. Select Add New. 4. Select Drug Allergy. 5. The Add Allergy/Adverse Effect window opens. OR 1. Click on the + Add icon on the Floating Menu. 2. The Add Allergy/Adverse Effect window opens. Accessing the Add Allergy Window from the Demographic Bar 1. Click the Allergies section of the demographic bar. The bar will either display Allergies Not Recorded, No Known Allergies, No Known Medication Allergies with associated other identified allergies or the patient’s drug allergies. 1. The Custom Information Allergy window opens. 2. Click the + Add icon on the window. 3. The Add Allergy/ Adverse Effect window opens. 2 Accessing the Add Allergy Window from the PAL 1. Right click the Allergy Review task. 2. Select Chart Details. 3. Right click in the white area of the Allergies window. 4. Select Add New. 5. Select Drug Allergy. 6. The Add Allergy/ Adverse Effect window opens. Accessing the Add Allergy/Adverse Effect Window from PowerForms in Ad Hoc Charting 1. Click the box in front of the Allergies. 2. Click Chart or double left click on the Allergies form name. 3. Right click in the white area of the Allergies window. 4. Select Add New. 5. Select Drug Allergy. 6. The Add Allergy/Adverse Effect window opens. 3 Entering Allergy Information ALL Allergies and Reactions are ENTERED using the Add/Allergy Effect Window below 1. The Type field should read Allergy. If it does not, click the drop-down arrow and select Allergy. Yellow indicates required. 2. Common allergies display below. a. If desired list does not display, click Folders icon to display Common Lists. 3. Click in the Substance field. 4. Double click the desired allergy substance. a. If the allergy is not listed, click the binoculars, then select substance and click OK. b. If the patient is unable to state the substance, free text the substance i.e., blood pressure pill. 5. Click Reaction. 6. Common Reactions open below. a. If reaction is not listed, click binoculars, type reaction and click Search. b. Do NOT type in the Reaction field, then press the Enter key. This may result in incorrect or misspelled reactions. c. All typed or free texted Reactions display with a pencil icon. 7. Double click Reaction. 8. Do not enter Severity. MHC does not use this field. 9. Enter Information Source, using the drop down arrow. 10. Do not enter Onset date unless the allergy occurs during this hospitalization. 11. Enter Category, using the drop down arrow. 12. If a comment is needed, click the Comments button and OK. 13. If entering more than one allergy substance, click OK & Add New and repeat steps. 14. Click OK when finished entering allergies. Common Lists 4 Note: If the patient had an entry of No Known Allergies entered from a previous visit, the system will generate the following warning: To add the allergy and cancel NKA, click Yes. Common Substance, Food, and Environmental Lists 1. Click the Folders icon. 2. Click desired common list. No Known Allergies The patient is not allergic to any substance. This is the broader general term used for no allergies to medications or any other substance. From the Demographic Bar 1. Double click on the Allergies section of the Demographic Bar. 2. Click No Known Allergies on the Custom Information window. 3. Click OK. 4. Close the window. Ad Hoc Charting or PAL 1. Access the form. 2. Right click in the white area. 3. Click Add New. 4. Click No Known Allergies. 5 Note: Once allergies have been entered on a patient, the “NKA” button is dithered (grayed out). To re-enter No Known Allergies the existing allergies must to be canceled first. No Known Medication Allergies The patient is not allergic to any medications. The patient is allergic to food, environment or other substances. Anytime a patient has a non-medication allergy ALONE, NKMA must be documented also. When entering and reviewing allergy information, users must indicate No Known Medication Allergies for all patients with environmental or drug allergies (ie. Latex or eggs), but no allergies to medications. From the Demographic Bar 1. Double click on the Allergies section of the Demographic Bar. 2. Click No Known Medication Allergies on the Custom Information window. 3. Click OK. 4. Close the window. Enter the patient’s non-drug allergy. Be sure to select the correct category, ‘environment’, ‘food’, or ‘other’. 6 When opening the chart of patients with only non-drug allergies documented or only No Known Medication Allergies without a non-medication allergy entered, users will see one of 2 new alerts alert. User needs to add “No Known Medication Allergies” (if patient truly has no med allergies). User needs to add non -medication allergies using the Allergy Search (if patient truly has non- med allergies). Allergy substance is not available in the search tool The ability to enter free text allergies is available. Use this option with caution. Free text allergies entered in PowerChart are potentially unsafe for patients. The system is set to search for the same or similar products and alert the pharmacist to the allergy. Free text allergies are not recognized by the pharmacy system when orders are being entered. No alert will display for the pharmacist. Entering a free text allergy creates the potential for a patient to receive a drug to which they are allergic. 1. Enter substance, click binoculars. 2. No item displays, click Cancel. Click Free text box. 3. Click OK to alert. 4. Complete process. 7 Unable to obtain allergy information When the patient or other sources (family, old records or family physician) are unable to provide allergy information, enter ‘Unknown” in the Add Allergy Substance field. An Allergy report is printed at 0700 and 1900 daily as a reminder to the unit to obtain allergy information. Communicate the inability to obtain allergies to Pharmacy by written order or phone. Canceling an allergy Allergies should only be canceled if entered in error or if there is a physician order. From the PAL tab, Ad Hoc Charting, Demographic Bar, or Patient Info tab: 1. Right click on the allergy to be canceled. 2. Click Cancel with drug name 3. Click drop down arrow in Reason field. 4. Click OK. Modifying an allergy 1. Right click on the allergy to be modified. 2. Click Modify. 3. Add or change the reaction. 4. Click OK. My Favorites Each user can create “Favorites” for both allergy substances and reactions. Favorites can be created from searching the Substance or Reaction fields using the binoculars. Click in the Substance field: 1. After typing the
Recommended publications
  • Allergic Reactions After Vaccination: Translating Guidelines Into Clinical Practice
    R E V I E W EUR ANN ALLERGY CLIN IMMUNOL VOL 51, N 2, 51-61, 2019 A. RADICE1, G. CARLI2, D. MACCHIA1, A. FARSI2 Allergic reactions after vaccination: translating guidelines into clinical practice 1SOS Allergologia e Immunologia, Firenze, Azienda USL Toscana Centro, Italy 2SOS Allergologia e Immunologia, Prato, Azienda USL Toscana Centro, Italy KEYWORDS Summary vaccine; vaccination; allergic reactions; Vaccination represents one of the most powerful medical interventions on global health. anaphylaxis; vaccine hesitancy; vaccine Despite being safe, sustainable, and effective against infectious and in some cases also components; desensitization non-infectious diseases, it’s nowadays facing general opinion’s hesitancy because of a false perceived risk of adverse events. Adverse reactions to vaccines are relatively rare, instead, and those recognizing a hypersensitivity mechanism are even rarer. Corresponding author The purpose of this review is to offer a practical approach to adverse events after vaccina- Anna Radice Ospedale San Giovanni di Dio tion, focusing on immune-mediated reactions with particular regard to their recognition, Via Torregalli 3, 50143 Firenze diagnosis and management. Phone: +39 055 6932304 According to clinical features, we propose an algorythm for allergologic work-up, which E-mail: [email protected] helps in confirming hypersensitivity to vaccine, nonetheless ensuring access to vaccination. Finally, a screening questionnaire is included, providing criteria for immunisation in spe- Doi cialized care settings. 10.23822/EurAnnACI.1764-1489.86 Introduction The gain from vaccination is not just about human health, but it is also a matter of financial resources for health systems. “Smallpox is dead” stated the magazine of the World Health It has been calculated that for every dollar spent in vaccines, Organisation (WHO) in 1980.
    [Show full text]
  • A Randomized, Double-Blind, Placebo-Controlled Study
    medRxiv preprint doi: https://doi.org/10.1101/2020.04.06.20055715; this version posted April 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . 1 Mo%on Sifnos: A randomized, double-blind, placebo-controlled study demonstra%ng the effec%veness of tradipitant in the treatment of mo%on sickness Vasilios M. Polymeropoulos*1, Mark É. Czeisler1#a, Mary M. Gibson1¶, Aus%n A. Anderson1¶, Jane Miglo1#b, Jingyuan Wang1, Changfu Xiao1, Christos M. Polymeropoulos1, Gunther Birznieks1, Mihael H. Polymeropoulos1 1 Vanda Pharmaceu%cals, Washington, District of Columbia, United States of America #a The Ins%tute for Breathing and Sleeping, Aus%n Health, Heidelberg, Victoria, Australia #b College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America *Corresponding author Email: [email protected] (VMP) ¶These authors contributed equally to this work. NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.04.06.20055715; this version posted April 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . 2 Abstract Background Novel therapies are needed for the treatment of mo%on sickness given the inadequate relief, and bothersome and dangerous adverse effects of currently approved therapies.
    [Show full text]
  • Adverse Drug Reactions Sample Chapter
    Sample copyright Pharmaceutical Press www.pharmpress.com 5 Drug-induced skin reactions Anne Lee and John Thomson Introduction Cutaneous drug eruptions are one of the most common types of adverse reaction to drug therapy, with an overall incidence rate of 2–3% in hos- pitalised patients.1–3 Almost any medicine can induce skin reactions, and certain drug classes, such as non-steroidal anti-inflammatory drugs (NSAIDs), antibiotics and antiepileptics, have drug eruption rates approaching 1–5%.4 Although most drug-related skin eruptions are not serious, some are severe and potentially life-threatening. Serious reac- tions include angio-oedema, erythroderma, Stevens–Johnson syndrome and toxic epidermal necrolysis. Drug eruptions can also occur as part of a spectrum of multiorgan involvement, for example in drug-induced sys- temic lupus erythematosus (see Chapter 11). As with other types of drug reaction, the pathogenesis of these eruptions may be either immunological or non-immunological. Healthcare professionals should carefully evalu- ate all drug-associated rashes. It is important that skin reactions are identified and documented in the patient record so that their recurrence can be avoided. This chapter describes common, serious and distinctive cutaneous reactions (excluding contact dermatitis, which may be due to any external irritant, including drugs and excipients), with guidance on diagnosis and management. A cutaneous drug reaction should be suspected in any patient who develops a rash during a course of drug therapy. The reaction may be due to any medicine the patient is currently taking or has recently been exposed to, including prescribed and over-the-counter medicines, herbal or homoeopathic preparations, vaccines or contrast media.
    [Show full text]
  • Drug Allergies: an Epidemic of Over-Diagnosis
    Drug Allergies: An Epidemic of Over-diagnosis Donald D. Stevenson MD Senior Consultant Div of Allergy, Asthma and Immunology Scripps Clinic Learning objectives • Classification of drug induced adverse reactions vs hypersensitivity reactions • Patient reports of drug induced reactions grossly overstate the true prevalence • The 2 most commonly recorded drug “allergies”: NSAIDs and Penicillin • Accurate diagnoses of drug allergies • Consequences of falsely identifying a drug as causing allergic reactions Classification of Drug Associated Events • Type A: Events occur in most normal humans, given sufficient dose and duration of therapy (85-90%) – Overdose Barbiturates, morphine, cocaine, Tylenol – Side effects ASA in high enough doses induces tinnitus – Indirect effects Alteration of microbiota (antibiotics) – Drug interactions Increased blood levels digoxin (Erythromycin) • Type B: Drug reactions are restricted to a small subset of the general population (10-15%) where patients respond abnormally to pharmacologic doses of the drug – Intolerance: Gastritis sometimes bleeding from NSAIDs – Hypersensitivity: Non-immune mediated (NSAIDs, RCM) – Hypersensitivity: Immune mediated (NSAIDs, Penicillins ) Celik G, Pichler WJ, Adkinson Jr NF Drug Allergy Chap 68 Middleton’s Allergy: Principles and Practice, 7th Ed, Elsevier Inc. 2009; pg 1206 1206. Immunopathologic (Allergic) reactions to drugs (antigens): Sensitization followed by re-exposure to same drug antigen triggering reaction Type I Immediate Hypersensitivity IgE Mediated Skin testing followed
    [Show full text]
  • Chapter 5 Biological Effects of Ionizing Radiation Page I
    CHAPTER 5 BIOLOGICAL EFFECTS OF IONIZING RADIATION PAGE I. Introduction ............................................................................................................................ 5-3 II. Mechanisms of Radiation Damage ........................................................................................ 5-3 A. Direct Action .............................................................................................................. 5-3 B. Indirect Action ........................................................................................................... 5-3 III. Determinants of Biological Effects ........................................................................................ 5-4 A. Rate of Absorption ..................................................................................................... 5-5 B. Area Exposed ............................................................................................................. 5-5 C. Variation in Species and Individual Sensitivity ......................................................... 5-5 D. Variation in Cell Sensitivity ....................................................................................... 5-5 IV. The Dose-Response Curve ..................................................................................................... 5-6 V. Pattern of Biological Effects .................................................................................................. 5-7 A. Prodromal Stage ........................................................................................................
    [Show full text]
  • Acute Radiation Syndrome (ARS) – Treatment of the Reduced Host Defense
    International Journal of General Medicine Dovepress open access to scientific and medical research Open Access Full Text Article REVIEW Acute radiation syndrome (ARS) – treatment of the reduced host defense Lars Heslet1 Background: The current radiation threat from the Fukushima power plant accident has prompted Christiane Bay2 rethinking of the contingency plan for prophylaxis and treatment of the acute radiation syndrome Steen Nepper-Christensen3 (ARS). The well-documented effect of the growth factors (granulocyte colony-stimulating factor [G-CSF] and granulocyte-macrophage colony-stimulating factor [GM-CSF]) in acute radia- 1Serendex ApS, Gentofte; 2University of Copenhagen, tion injury has become standard treatment for ARS in the United States, based on the fact that Medical Faculty, Copenhagen; growth factors increase number and functions of both macrophages and granulocytes. 3 Department of Head and Neck Review of the current literature. Surgery, Otorhinolaryngology, Methods: Køge University Hospital, Køge, Results: The lungs have their own host defense system, based on alveolar macrophages. After Denmark radiation exposure to the lungs, resting macrophages can no longer be transformed, not even during systemic administration of growth factors because G-CSF/GM-CSF does not penetrate the alveoli. Under normal circumstances, locally-produced GM-CSF receptors transform resting macrophages into fully immunocompetent dendritic cells in the sealed-off pulmonary compartment. However, GM-CSF is not expressed in radiation injured tissue due to deferves- cence of the macrophages. In order to maintain the macrophage’s important role in host defense after radiation exposure, it is hypothesized that it is necessary to administer the drug exogenously in order to uphold the barrier against exogenous and endogenous infections and possibly prevent the potentially lethal systemic infection, which is the main cause of death in ARS.
    [Show full text]
  • Angioedema After Long-Term Use of an Angiotensin-Converting Enzyme Inhibitor
    J Am Board Fam Pract: first published as 10.3122/jabfm.10.5.370 on 1 September 1997. Downloaded from BRIEF REPORTS Angioedema After Long-Term Use of an Angiotensin-Converting Enzyme Inhibitor Adriana]. Pavietic, MD Angioedema is an uncommon adverse effect of cyclobenzaprine, her angioedema was initially be­ angiotensin-converting enzyme (ACE) inhib­ lieved to be an allergic reaction to this drug, and itors. Its frequency ranges from 0.1 percent in pa­ it was discontinued. She was also given 125 mg of tients on captopril, lisinopril, and quinapril to 0.5 methylprednisolone intramuscularly. Her an­ percent in patients on benazepril. l Most cases are gioedema did not improve, and she returned to mild and occur within the first week of treat­ the clinic the following day. She was seen by an­ ment. 2-4 Recent reports indicate that late-onset other physician, who discontinued lisinopril, and angioedema might be more prevalent than ini­ her symptoms resolved within 24 hours. Mter her tially thought, and fatal cases have been de­ ACE inhibitor was discontinued, she experienced scribed.5-11 Many physicians are not familiar with more symptoms and an increased frequency of late-onset angioedema associated with ACE in­ palpitations, but she had no change in exercise hibitors, and a delayed diagnosis can have poten­ tolerance. A cardiologist was consulted, who pre­ tially serious consequences.5,8-II scribed the angiotensin II receptor antagonist losartan (initially at dosages of 25 mg/d and then Case Report 50 mg/d). The patient was advised to report any A 57-year-old African-American woman with symptoms or signs of angioedema immediately copyright.
    [Show full text]
  • Angioedema, a Life-Threatening Adverse Reaction to ACE-Inhibitors
    DOI: 10.2478/rjr-2019-0023 Romanian Journal of Rhinology, Volume 9, No. 36, October - December 2019 LITERATURE REVIEW Angioedema, a life-threatening adverse reaction to ACE-inhibitors Ramona Ungureanu1, Elena Madalan2 1ENT Department, “Dr. Victor Babes” Diagnostic and Treatment Center, Bucharest, Romania 2Allergology Department, “Dr. Victor Babes” Diagnostic and Treatment Center, Romania ABSTRACT Angioedema with life-threatening site is one of the most impressive and serious reasons for presenting to the ENT doctor. Among different causes (tumors, local infections, allergy reactions), an important cause is the side-effect of the angiotensin converting enzyme (ACE) inhibitors drugs. ACE-inhibitors-induced angioedema is described to be the most frequent form of bradykinin- mediated angioedema presented in emergency and also one of the most encountered drug-induced angioedema. The edema can involve one or more areas of the head and neck region, the most affected being the face, the lips, the tongue, followed by the larynx, when it may determine respiratory distress and even death. There are no specific diagnosis tests available and the positive diagnosis of ACE-inhibitors-induced angioedema is an exclusion diagnosis. The authors performed a review of the most important characteristics of the angioedema caused by ACE-inhibitors and present their experience emphasizing the diagnostic algorithm. KEYWORDS: angioedema, ACE-inhibitors, hereditary angioedema, bradykinin, histamine. INTRODUCTION with secondary local extravasation of plasma and tissue swelling5,6. Angioedema (AE) is a life-threatening condition Based on this pathomechanism, the classification presented as an asymmetric, localised, well-demar- of angioedema comprises three major types: 1). cated swelling1, located in the mucosal and submu- bradykinin-mediated – with either complement C1 cosal layers of the upper respiratory airways.
    [Show full text]
  • Pilot Study to Assess Outcomes of a Drug Allergy Clarification Service on a General Medicine Floor at a Local Community Hospital Crystal M
    Original Research PRACTICE-BASED RESEARCH Pilot Study to Assess Outcomes of a Drug Allergy Clarification Service on a General Medicine Floor at a Local Community Hospital Crystal M. Deas, PharmD, BCPS1; C. Whitney White, PharmD, BCPS2 1Samford University, McWhorter School of Pharmacy, Clinical Pharmacist, Cooper Green Mercy Health Services, Birmingham, AL 2University of Mississippi School of Pharmacy, University of Mississippi Medical Center, Jackson, MS Abstract Purpose: Drug allergy documentation in the patient medical record varies in level of detail, and drug intolerances are often inappropriately documented as an allergy in the medical record. A pilot study was conducted to determine the impact of a pharmacy- led drug allergy clarification service. Methods: The pilot quality improvement service was implemented in Fall 2016. General medicine patients were identified through daily census reporting and the electronic medical record (EMR) was reviewed within 72 hours of admission for documented drug allergies and/or intolerances. Patients were interviewed by a clinical pharmacist or a fourth year pharmacy student to determine a complete drug allergy and intolerance history. Results: A total of 55 patients were interviewed and received the pilot service. A drug allergy/intolerance was documented in EMR for 54.5% (n=30) of patients interviewed. Of those 30 patients, 96.6% (n=29) were noted to have at least one discrepancy between EMR documentation and patient interview. The primary discrepancy noted was drug allergies or intolerances documented in the EMR without a description of the reaction. Conclusion: A pharmacy-led drug allergy clarification service was effective in identifying and clarifying EMR documentation of patients’ drug allergies and intolerances.
    [Show full text]
  • Prevalence and Impact of Reported Drug Allergies Among Rheumatology Patients
    diagnostics Article Prevalence and Impact of Reported Drug Allergies among Rheumatology Patients Shirley Chiu Wai Chan , Winnie Wan Yin Yeung, Jane Chi Yan Wong, Ernest Sing Hong Chui, Matthew Shing Him Lee, Ho Yin Chung, Tommy Tsang Cheung, Chak Sing Lau and Philip Hei Li * Division of Rheumatology and Clinical Immunology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong; [email protected] (S.C.W.C.); [email protected] (W.W.Y.Y.); [email protected] (J.C.Y.W.); [email protected] (E.S.H.C.); [email protected] (M.S.H.L.); [email protected] (H.Y.C.); [email protected] (T.T.C.); [email protected] (C.S.L.) * Correspondence: [email protected]; Tel.: +852-2255-3348 Received: 28 October 2020; Accepted: 7 November 2020; Published: 9 November 2020 Abstract: Background: Drug allergies (DA) are immunologically mediated adverse drug reactions and their manifestations depend on a variety of drug- and patient-specific factors. The dysregulated immune system underpinning rheumatological diseases may also lead to an increase in hypersensitivity reactions, including DA. The higher prevalence of reported DA, especially anti-microbials, also restricts the medication repertoire for these already immunocompromised patients. However, few studies have examined the prevalence and impact of reported DA in this group of patients. Methods: Patients with a diagnosis of rheumatoid arthritis (RA), spondyloarthritis (SpA), or systemic lupus erythematosus (SLE) were recruited from the rheumatology clinics in a tertiary referral hospital between 2018 and 2019. Prevalence and clinical outcomes of reported DA among different rheumatological diseases were calculated and compared to a cohort of hospitalized non-rheumatology patients within the same period.
    [Show full text]
  • NIH Public Access Author Manuscript Neurocrit Care
    NIH Public Access Author Manuscript Neurocrit Care. Author manuscript; available in PMC 2013 June 10. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Neurocrit Care. 2012 December ; 17(3): 441–467. doi:10.1007/s12028-012-9747-4. Brain Resuscitation in the Drowning Victim Alexis A. Topjian, The Children’s Hospital of Philadelphia, 7th floor, 34th Street and Civic Center Boulevard, Suite 7C23, Philadelphia, PA 19104, USA, [email protected] Robert A. Berg, The Children’s Hospital of Philadelphia, 7th floor, 34th Street and Civic Center Boulevard, Suite 7C23, Philadelphia, PA 19104, USA, [email protected] Joost J. L. M. Bierens, Maatschappij tot Redding van Drenkelingen, Amsterdam, The Netherlands, [email protected] Christine M. Branche, National Institute for Occupational Safety and Health/Centers for Disease Control, Washington, DC, USA, [email protected] Robert S. Clark, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA, [email protected] Hans Friberg, Department of Intensive and Perioperative Care, Skåne University Hospital, Lund, Sweden, [email protected]; Department of Clinical Sciences, Lund University, 221 85 Lund, Sweden Cornelia W. E. Hoedemaekers, Department of ICU, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands, [email protected] Michael Holzer, Department of Emergency Medicine, Medical University of Vienna, Waehringer Guertel 18-20/6D, 1090 Vienna, Austria, [email protected] Laurence M. Katz, Department of Emergency Medicine, Neurosciences, University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC 27599, USA, [email protected] Johannes T.
    [Show full text]
  • Unlocking the Non-Ige-Mediated Pseudo-Allergic Reaction Puzzle with Mas-Related G-Protein Coupled Receptor Member X2 (MRGPRX2)
    cells Review Unlocking the Non-IgE-Mediated Pseudo-Allergic Reaction Puzzle with Mas-Related G-Protein Coupled Receptor Member X2 (MRGPRX2) Mukesh Kumar, Karthi Duraisamy and Billy-Kwok-Chong Chow * School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China; [email protected] (M.K.); [email protected] (K.D.) * Correspondence: [email protected]; Tel.: +852-2299-0850; Fax: +852-2559-9114 Abstract: Mas-related G-protein coupled receptor member X2 (MRGPRX2) is a class A GPCR ex- pressed on mast cells. Mast cells are granulated tissue-resident cells known for host cell response, allergic response, and vascular homeostasis. Immunoglobulin E receptor (Fc"RI)-mediated mast cell activation is a well-studied and recognized mechanism of allergy and hypersensitivity reac- tions. However, non-IgE-mediated mast cell activation is less explored and is not well recognized. After decades of uncertainty, MRGPRX2 was discovered as the receptor responsible for non-IgE- mediated mast cells activation. The puzzle of non-IgE-mediated pseudo-allergic reaction is unlocked by MRGPRX2, evidenced by a plethora of reported endogenous and exogenous MRGPRX2 ag- onists. MRGPRX2 is exclusively expressed on mast cells and exhibits varying affinity for many molecules such as antimicrobial host defense peptides, neuropeptides, and even US Food and Drug Administration-approved drugs. The discovery of MRGPRX2 has changed our understanding of mast cell biology and filled the missing link of the underlying mechanism of drug-induced MC degranulation and pseudo-allergic reactions. These non-canonical characteristics render MRGPRX2 Citation: Kumar, M.; Duraisamy, K.; Chow, B.-K.-C.
    [Show full text]