Report Phylogeographic Analysis of Haplogroup E3b (E-M215) Y Chromosomes Reveals Multiple Migratory Events Within and out Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Y-Chromosome and Surname Analyses for Reconstructing Past Population Structures: the Sardinian Population As a Test Case
International Journal of Molecular Sciences Article Y-chromosome and Surname Analyses for Reconstructing Past Population Structures: The Sardinian Population as a Test Case Viola Grugni 1, Alessandro Raveane 1, Giulia Colombo 1, Carmen Nici 1, Francesca Crobu 1,2, Linda Ongaro 1,3,4, Vincenza Battaglia 1, Daria Sanna 1,5, Nadia Al-Zahery 1, Ornella Fiorani 6, Antonella Lisa 6, Luca Ferretti 1 , Alessandro Achilli 1, Anna Olivieri 1, Paolo Francalacci 7, Alberto Piazza 8, Antonio Torroni 1 and Ornella Semino 1,* 1 Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; [email protected] (V.G.); [email protected] (A.R.); [email protected] (G.C.); [email protected] (C.N.); [email protected] (F.C.); [email protected] (L.O.); [email protected] (V.B.); [email protected] (D.S.); [email protected] (N.A.-Z.); [email protected] (L.F.); [email protected] (A.A.); [email protected] (A.O.); [email protected] (A.T.) 2 Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Italy 3 Estonian Biocentre, Institute of Genomics, Riia 23, 51010 Tartu, Estonia 4 Department of Evolutionary Biology, Institute of Molecular and Cell Biology, Riia 23, 51010 Tartu, Estonia 5 Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy 6 Istituto di Genetica Molecolare “L.L. Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), 27100 Pavia, Italy; fi[email protected] -
Germanic Origins from the Perspective of the Y-Chromosome
Germanic Origins from the Perspective of the Y-Chromosome By Michael Robert St. Clair A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor in Philosophy in German in the Graduate Division of the University of California, Berkeley Committee in charge: Irmengard Rauch, Chair Thomas F. Shannon Montgomery Slatkin Spring 2012 Abstract Germanic Origins from the Perspective of the Y-Chromosome by Michael Robert St. Clair Doctor of Philosophy in German University of California, Berkeley Irmengard Rauch, Chair This dissertation holds that genetic data are a useful tool for evaluating contemporary models of Germanic origins. The Germanic languages are a branch of the Indo-European language family and include among their major contemporary representatives English, German, Dutch, Danish, Swedish, Norwegian and Icelandic. Historically, the search for Germanic origins has sought to determine where the Germanic languages evolved, and why the Germanic languages are similar to and different from other European languages. Both archaeological and linguist approaches have been employed in this research direction. The linguistic approach to Germanic origins is split among those who favor the Stammbaum theory and those favoring language contact theory. Stammbaum theory posits that Proto-Germanic separated from an ancestral Indo-European parent language. This theoretical approach accounts for similarities between Germanic and other Indo- European languages by posting a period of mutual development. Germanic innovations, on the other hand, occurred in isolation after separation from the parent language. Language contact theory posits that Proto-Germanic was the product of language convergence and this convergence explains features that Germanic shares with other Indo-European languages. -
An Overview of the Independent Histories of the Human Y Chromosome and the Human Mitochondrial Chromosome
The Proceedings of the International Conference on Creationism Volume 8 Print Reference: Pages 133-151 Article 7 2018 An Overview of the Independent Histories of the Human Y Chromosome and the Human Mitochondrial chromosome Robert W. Carter Stephen Lee University of Idaho John C. Sanford Cornell University, Cornell University College of Agriculture and Life Sciences School of Integrative Plant Science,Follow this Plant and Biology additional Section works at: https://digitalcommons.cedarville.edu/icc_proceedings DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Carter, R.W., S.S. Lee, and J.C. Sanford. An overview of the independent histories of the human Y- chromosome and the human mitochondrial chromosome. 2018. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. Whitmore, pp. 133–151. Pittsburgh, Pennsylvania: Creation Science Fellowship. Carter, R.W., S.S. Lee, and J.C. Sanford. An overview of the independent histories of the human Y-chromosome and the human mitochondrial chromosome. 2018. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. -
DNA Evidence of a Croatian and Sephardic Jewish Settlement on the North Carolina Coast Dating from the Mid to Late 1500S Elizabeth C
International Social Science Review Volume 95 | Issue 2 Article 2 DNA Evidence of a Croatian and Sephardic Jewish Settlement on the North Carolina Coast Dating from the Mid to Late 1500s Elizabeth C. Hirschman James A. Vance Jesse D. Harris Follow this and additional works at: https://digitalcommons.northgeorgia.edu/issr Part of the Anthropology Commons, Communication Commons, Genealogy Commons, Geography Commons, International and Area Studies Commons, Jewish Studies Commons, Political Science Commons, and the United States History Commons Recommended Citation Hirschman, Elizabeth C.; Vance, James A.; and Harris, Jesse D. () "DNA Evidence of a Croatian and Sephardic Jewish Settlement on the North Carolina Coast Dating from the Mid to Late 1500s," International Social Science Review: Vol. 95 : Iss. 2 , Article 2. Available at: https://digitalcommons.northgeorgia.edu/issr/vol95/iss2/2 This Article is brought to you for free and open access by Nighthawks Open Institutional Repository. It has been accepted for inclusion in International Social Science Review by an authorized editor of Nighthawks Open Institutional Repository. DNA Evidence of a Croatian and Sephardic Jewish Settlement on the North Carolina Coast Dating from the Mid to Late 1500s Cover Page Footnote Elizabeth C. Hirschman is the Hill Richmond Gott rP ofessor of Business at The nivU ersity of Virginia's College at Wise. James A. Vance is an Associate Professor of Mathematics at The nivU ersity of Virginia's College at Wise. Jesse D. Harris is a student studying Computer Science -
Carriers of Mitochondrial DNA Macrohaplogroup L3 Basal Lineages Migrated Back to Africa from Asia Around 70,000 Years Ago Vicente M
Cabrera et al. BMC Evolutionary Biology (2018) 18:98 https://doi.org/10.1186/s12862-018-1211-4 RESEARCHARTICLE Open Access Carriers of mitochondrial DNA macrohaplogroup L3 basal lineages migrated back to Africa from Asia around 70,000 years ago Vicente M. Cabrera1* , Patricia Marrero2, Khaled K. Abu-Amero3,4 and Jose M. Larruga1 Abstract Background: The main unequivocal conclusion after three decades of phylogeographic mtDNA studies is the African origin of all extant modern humans. In addition, a southern coastal route has been argued for to explain the Eurasian colonization of these African pioneers. Based on the age of macrohaplogroup L3, from which all maternal Eurasian and the majority of African lineages originated, the out-of-Africa event has been dated around 60-70 kya. On the opposite side, we have proposed a northern route through Central Asia across the Levant for that expansion and, consistent with the fossil record, we have dated it around 125 kya. To help bridge differences between the molecular and fossil record ages, in this article we assess the possibility that mtDNA macrohaplogroup L3 matured in Eurasia and returned to Africa as basal L3 lineages around 70 kya. Results: The coalescence ages of all Eurasian (M,N) and African (L3 ) lineages, both around 71 kya, are not significantly different. The oldest M and N Eurasian clades are found in southeastern Asia instead near of Africa as expected by the southern route hypothesis. The split of the Y-chromosome composite DE haplogroup is very similar to the age of mtDNA L3. An Eurasian origin and back migration to Africa has been proposed for the African Y-chromosome haplogroup E. -
Rare Human Mitochondrial HV Lineages Spread from the Near East
www.nature.com/scientificreports OPEN Rare human mitochondrial HV lineages spread from the Near East and Caucasus during post-LGM and Received: 11 January 2019 Accepted: 21 June 2019 Neolithic expansions Published: xx xx xxxx Michel Shamoon-Pour1, Mian Li2 & D. Andrew Merriwether1 Of particular signifcance to human population history in Eurasia are the migratory events that connected the Near East to Europe after the Last Glacial Maximum (LGM). Utilizing 315 HV*(xH,V) mitogenomes, including 27 contemporary lineages frst reported here, we found the genetic signatures for distinctive movements out of the Near East and South Caucasus both westward into Europe and eastward into South Asia. The parallel phylogeographies of rare, yet widely distributed HV*(xH,V) subclades reveal a connection between the Italian Peninsula and South Caucasus, resulting from at least two (post-LGM, Neolithic) waves of migration. Many of these subclades originated in a population ancestral to contemporary Armenians and Assyrians. One such subclade, HV1b-152, supports a postexilic, northern Mesopotamian origin for the Ashkenazi HV1b2 lineages. In agreement with ancient DNA fndings, our phylogenetic analysis of HV12 and HV14, the two exclusively Asian subclades of HV*(xH,V), point to the migration of lineages originating in Iran to South Asia before and during the Neolithic period. With HV12 being one of the oldest HV subclades, our results support an origin of HV haplogroup in the region defned by Western Iran, Mesopotamia, and the South Caucasus, where the highest prevalence of HV has been found. Te major subclade of R0, haplogroup HV has a pivotal position in human mitochondrial (mtDNA) phylogeny as the ancestral clade to haplogroup H-the most common clade in Europe1 and the best-defned mtDNA hap- logroup according to Phylotree2. -
The Radial Expansion of the Diego Blood Group System Polymorphisms in Asia: Mark of Co-Migration with the Mongol Conquests
The radial expansion of the Diego blood group system polymorphisms in Asia: mark of co-migration with the Mongol conquests Florence Petit, Francesca Minnai, Jacques Chiaroni, Peter Underhill, Pascal Bailly, Stéphane Mazières, Caroline Costedoat To cite this version: Florence Petit, Francesca Minnai, Jacques Chiaroni, Peter Underhill, Pascal Bailly, et al.. The radial expansion of the Diego blood group system polymorphisms in Asia: mark of co-migration with the Mongol conquests. European Journal of Human Genetics, Nature Publishing Group, 2019, 27 (1), pp.125-132. 10.1038/s41431-018-0245-9. hal-01863088 HAL Id: hal-01863088 https://hal.archives-ouvertes.fr/hal-01863088 Submitted on 25 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License European Journal of Human Genetics (2019) 27:125–132 https://doi.org/10.1038/s41431-018-0245-9 ARTICLE The radial expansion of the Diego blood group system polymorphisms in Asia: mark of co-migration with the Mongol conquests 1 1,2 1,3 4 1,3 Florence Petit ● Francesca Minnai ● Jacques Chiaroni ● Peter A. Underhill ● Pascal Bailly ● 1 1 Stéphane Mazières ● Caroline Costedoat Received: 24 February 2018 / Revised: 9 June 2018 / Accepted: 18 July 2018 / Published online: 24 August 2018 © The Author(s) 2018. -
A New Topology of the Human Y Chromosome Haplogroup E1b1 (E-P2) Revealed Through the Use of Newly Characterized Binary Polymorphisms
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central A New Topology of the Human Y Chromosome Haplogroup E1b1 (E-P2) Revealed through the Use of Newly Characterized Binary Polymorphisms Beniamino Trombetta1, Fulvio Cruciani1, Daniele Sellitto1,2, Rosaria Scozzari1* 1 Dipartimento di Biologia e Biotecnologie ‘‘Charles Darwin’’, Sapienza Universita` di Roma, Rome, Italy, 2 Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy Abstract Haplogroup E1b1, defined by the marker P2, is the most represented human Y chromosome haplogroup in Africa. A phylogenetic tree showing the internal structure of this haplogroup was published in 2008. A high degree of internal diversity characterizes this haplogroup, as well as the presence of a set of chromosomes undefined on the basis of a derived character. Here we make an effort to update the phylogeny of this highly diverse haplogroup by including seven mutations which have been newly discovered by direct resequencing. We also try to incorporate five previously-described markers which were not, however, reported in the 2008 tree. Additionally, during the process of mapping, we found that two previously reported SNPs required a new position on the tree. There are three key changes compared to the 2008 phylogeny. Firstly, haplogroup E-M2 (former E1b1a) and haplogroup E-M329 (former E1b1c) are now united by the mutations V38 and V100, reducing the number of E1b1 basal branches to two. The new topology of the tree has important implications concerning the origin of haplogroup E1b1. Secondly, within E1b1b1 (E-M35), two haplogroups (E-V68 and E- V257) show similar phylogenetic and geographic structure, pointing to a genetic bridge between southern European and northern African Y chromosomes. -
Most of the Extant Mtdna Boundaries in South and Southwest Asia Were
BMC Genetics BioMed Central Research article Open Access Most of the extant mtDNA boundaries in South and Southwest Asia were likely shaped during the initial settlement of Eurasia by anatomically modern humans Mait Metspalu*1, Toomas Kivisild1, Ene Metspalu1, Jüri Parik1, Georgi Hudjashov1, Katrin Kaldma1, Piia Serk1, Monika Karmin1, DoronMBehar2, M Thomas P Gilbert6, Phillip Endicott7, Sarabjit Mastana4, Surinder S Papiha5, Karl Skorecki2, Antonio Torroni3 and Richard Villems1 Address: 1Institute of Molecular and Cell Biology, Tartu University, Tartu, Estonia, 2Bruce Rappaport Faculty of Medicine and Research Institute, Technion and Rambam Medical Center, Haifa, Israel, 3Dipartimento di Genetica e Microbiologia, Università di Pavia, Pavia, Italy, 4Department of Human Sciences, Loughborough University, Loughborough, United Kingdom, 5Department of Human Genetics, University of Newcastle-upon- Tyne, United Kingdom, 6Ecology and Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA and 7Henry Wellcome Ancient Biomolecules Centre, Department of Zoology, University of Oxford, Oxford OX1 3PS,United Kingdom Email: Mait Metspalu* - [email protected]; Toomas Kivisild - [email protected]; Ene Metspalu - [email protected]; Jüri Parik - [email protected]; Georgi Hudjashov - [email protected]; Katrin Kaldma - [email protected]; Piia Serk - [email protected]; Monika Karmin - [email protected]; Doron M Behar - [email protected]; M Thomas P Gilbert - [email protected]; Phillip Endicott - [email protected]; Sarabjit Mastana - [email protected]; Surinder S Papiha - [email protected]; Karl Skorecki - [email protected]; Antonio Torroni - [email protected]; Richard Villems - [email protected] * Corresponding author Published: 31 August 2004 Received: 07 May 2004 Accepted: 31 August 2004 BMC Genetics 2004, 5:26 doi:10.1186/1471-2156-5-26 This article is available from: http://www.biomedcentral.com/1471-2156/5/26 © 2004 Metspalu et al; licensee BioMed Central Ltd. -
Among Jewish Populations, the Frequency of T Haplogroup Is
Supplementary methods Estimation of TMRCA using BATWING The program Bayesian Analysis of Trees With Internal Node Generation (BATWING) (Wilson et al. 2003) was run using a model of a single population with a period of constant size followed by exponential growth. The BATWING run consisted of 700,000 sampled points, following 50,000 steps of warmup. The parameters Nbetasamp and Treebetn were set to 20 and 15, respectively. The results were qualitatively the same for a run half as long. The states of several SNPs were used to condition the genealogy. The SNPs considered were M91, M42, M60, M168, M96, M35, P143, M216, P14, M201, P123, M304, M9, M526, P326, M20, M184, M70, L131, PS21, P77, M214, M45, M242, M207, M267, M172, P321, and P322. To estimate the age of individual branches, the minimum time of the mutations defining a branch was extracted from the output of BATWING and the distribution of those times was used in downstream analyses. The distributions of ratios of branch ages were obtained analogously. These ratios were seen to be rather independent of the priors on effective size (data not shown). Median and mean values, and 95% confidence intervals were obtained for the age of the mutations (Tables 1 and 2). Method of estimating TMRCA using the distribution of SNPs in the genealogy Mutations ascertained in a single lineage were examined, determining their temporal distribution in the genealogy of haplogroup T. This distribution was used to calculate the likelihoods of the relative branching times within the genealogy, which can be converted into absolute times by the use of an appropriate calibration point. -
The Genome-Wide Structure of the Jewish People
doi:10.1038/nature09103 LETTERS The genome-wide structure of the Jewish people Doron M. Behar1,2*, Bayazit Yunusbayev2,3*, Mait Metspalu2*, Ene Metspalu2, Saharon Rosset4,Ju¨ri Parik2, Siiri Rootsi2, Gyaneshwer Chaubey2, Ildus Kutuev2,3, Guennady Yudkovsky1,5, Elza K. Khusnutdinova3, Oleg Balanovsky6, Ornella Semino7, Luisa Pereira8,9, David Comas10, David Gurwitz11, Batsheva Bonne-Tamir11, Tudor Parfitt12, Michael F. Hammer13, Karl Skorecki1,5 & Richard Villems2 Contemporary Jews comprise an aggregate of ethno-religious communities clustered close to each other and intermediate between communities whose worldwide members identify with each other non-Jewish Middle Eastern and European populations10. through various shared religious, historical and cultural tradi- Illumina 610K and 660K bead arrays were used to genotype 121 tions1,2. Historical evidence suggests common origins in the Middle samples from 14 Jewish communities. The results were compared East, followed by migrations leading to the establishment of com- with 1,166 individuals from 69 non-Jewish populations (Supplemen- munities of Jews in Europe, Africa and Asia, in what is termed the tary Note 1 and Supplementary Table 1), with particular attention to Jewish Diaspora3–5. This complex demographic history imposes neighbouring or ‘host’ populations in corresponding geographic special challenges in attempting to address the genetic structure regions. These results were also integrated with analyses of genotype of the Jewish people6. Although many genetic studies have shed data from about 8,000 Y chromosomes and 14,000 mitochondrial light on Jewish origins and on diseases prevalent among Jewish DNA (mtDNA) samples (Supplementary Note 6 and Supplemen- communities, including studies focusing on uniparentally and tary Tables 4 and 5). -
Y-Chromosomal Microsatellites and Genetic Affinity Between
Genetics and the History of the Samaritans: Y-Chromosomal Microsatellites and Genetic AfÀnity between Samaritans and Cohanim 1,2 1 3 4 5 PETER J. OEFNER, GEORG HÖLZL, PEIDONG SHEN, ISAAC SHPIRER, DOV GEFEL, TAL 6 6 6 7 7 LAVI, EILON WOOLF, JONATHAN COHEN, CENGIZ CINNIOGLU, PETER A. UNDERHILL, 8 1 8,9 6 NOAH A. ROSENBERG, JOCHEN HOCHREIN, JULIE M. GRANKA, JOSSI HILLEL, AND 8 MARCUS W. FELDMAN Abstract The Samaritans are a group of some 750 indigenous Middle Eastern people, about half of whom live in Holon, a suburb of Tel Aviv, and the other half near Nablus. The Samaritan population is believed to have numbered more than a million in late Roman times but less than 150 in 1917. The ancestry of the Samaritans has been subject to controversy from late Biblical times to the present. In this study, liquid chromatography/electrospray ionization/quad- rupole ion trap mass spectrometry was used to allelotype 13 Y-chromosomal and 15 autosomal microsatellites in a sample of 12 Samaritans chosen to have as low a level of relationship as possible, and 461 Jews and non-Jews. Estimation of genetic distances between the Samaritans and seven Jewish and three non-Jewish populations from Israel, as well as populations from Africa, Pakistan, Turkey, and Europe, revealed that the Samaritans were closely related to Cohanim. This result supports the position of the Samaritans that they are descendants from the tribes of Israel dating to before the Assyrian exile in 722–720 BCE. In concordance with previously published single-nucleotide polymorphism haplotypes, each Samaritan family, with the exception of the Samaritan Cohen lineage, was observed to carry a distinctive Y-chromosome short tandem repeat haplotype that was not more than one mutation removed from the six-marker Cohen modal haplotype.