Emerging Therapeutic Options in Hepatitis C Virus Infection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
HCV Protease
HCV Protease HCV NS3-4A serine protease is a complex composed of NS3 and its cofactor NS4A. It harbours serine protease as well as NTPase/RNA helicase activities and is essential for viral polyprotein processing, RNA replication and virion formation. The HCV NS3/4A protease efficiently cleaves and inactivates two important signaling molecules in the sensory pathways that react to HCV pathogen-associated molecular patterns (PAMPs) to induce interferons (IFNs), i.e., mitochondrial antiviral signaling protein (MAVS) and Toll-IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF). HCV infection is associated with chronic liver disease, including hepatic steatosis, fibrosis, cirrhosis, and hepatocellular carcinoma. The NS3-4A serine protease of HCV has been one of the most attractive targets for developing specific antiviral agents against HCV. www.MedChemExpress.com 1 HCV Protease Inhibitors & Antagonists ACH-806 Asunaprevir (GS9132) Cat. No.: HY-19512 (BMS-650032) Cat. No.: HY-14434 ACH-806 is an NS4A antagonist which can inhibit Asunaprevir (BMS-650032) is a potent and orally Hepatitis C Virus (HCV) replication with an bioavailable hepatitis C virus (HCV) NS3 protease EC50 of 14 nM. inhibitor, with IC50 of 0.2 nM-3.5 nM. Asunaprevir inhibits SARS-CoV-2 3CLpro activity. Purity: >98% Purity: 99.74% Clinical Data: No Development Reported Clinical Data: Launched Size: 1 mg, 5 mg Size: 10 mM × 1 mL, 2 mg, 5 mg, 10 mg, 50 mg BI 653048 BI 653048 phosphate Cat. No.: HY-12946 Cat. No.: HY-12946A BI 653048 is a selective and orally active BI 653048 phosphate is a selective and orally nonsteroidal glucocorticoid (GC) agonist active nonsteroidal glucocorticoid with an IC50 value of 55 nM. -
Direct-Acting Antiviral Medications for Chronic Hepatitis C Virus Infection
Direct-Acting Antiviral Medications for Chronic Hepatitis C Virus Infection Alison B. Jazwinski, MD, and Andrew J. Muir, MD, MHS Dr. Jazwinski is a Fellow and Dr. Muir Abstract: Treatment of hepatitis C virus has traditionally been diffi- is an Associate Professor in the Division cult because of low rates of treatment success and high rates of treat- of Gastroenterology and Duke Clinical ment discontinuation due to side effects. Current standard therapy Research Institute at Duke University consists of pegylated interferon α and ribavirin, both of which have Medical Center in Durham, North Carolina. nonspecific and largely unknown mechanisms of action. New thera- pies are in development that act directly on the hepatitis C virus at various points in the viral life cycle. Published clinical trial data on these therapies are summarized in this paper. A new era of hepatitis Address correspondence to: C virus treatment is beginning, the ultimate goals of which will be Dr. Andrew J. Muir directly targeting the virus, shortening the length of therapy, improv- P.O. Box 17969 Durham, NC 27715; ing sustained virologic response rates, and minimizing side effects. Tel: 919-668-8557; Fax: 919-668-7164; E-mail: [email protected] epatitis C virus (HCV) is a major public health problem, with an estimated 180 million people infected worldwide. Up to 25% of chronically infected patients eventually Hdevelop cirrhosis and related complications, including hepatocellular carcinoma.1 Chronic liver disease secondary to HCV thus remains the leading indication for liver transplantation in the United States.2 The goal of HCV treatment is to eradicate the virus and pre- vent the development of cirrhosis and its complications. -
Twelve-Week Ravidasvir Plus Ritonavir-Boosted Danoprevir And
bs_bs_banner doi:10.1111/jgh.14096 HEPATOLOGY Twelve-week ravidasvir plus ritonavir-boosted danoprevir and ribavirin for non-cirrhotic HCV genotype 1 patients: A phase 2 study Jia-Horng Kao,* Min-Lung Yu,† Chi-Yi Chen,‡ Cheng-Yuan Peng,§ Ming-Yao Chen,¶ Huoling Tang,** Qiaoqiao Chen** and Jinzi J Wu** *Graduate Institute of Clinical Medicine and Hepatitis Research Center, National Taiwan University College of Medicine and Hospital, ¶Division of Gastroenterology, Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, Taipei, †Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, ‡Division of Gastroenterology, Department of Internal Medicine, Chia-Yi Christian Hospital, Chiayi, and §Division of Hepatogastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; and **Ascletis BioScience Co., Ltd., Hangzhou, China Key words Abstract danoprevir, efficacy, hepatitis C, interferon free, ravidasvir. Background and Aim: The need for all-oral hepatitis C virus (HCV) treatments with higher response rates, improved tolerability, and lower pill burden compared with Accepted for publication 9 January 2018. interferon-inclusive regimen has led to the development of new direct-acting antiviral agents. Ravidasvir (RDV) is a second-generation, pan-genotypic NS5A inhibitor with high Correspondence barrier to resistance. The aim of this phase 2 study (EVEREST study) was to assess the ef- Jia-Horng Kao, Graduate Institute of Clinical ficacy and safety of interferon-free, 12-week RDV plus ritonavir-boosted danoprevir Medicine and Hepatitis Research Center, (DNVr) and ribavirin (RBV) regimen for treatment-naïve Asian HCV genotype 1 (GT1) National Taiwan University College of Medicine patients without cirrhosis. and Hospital, 7 Chung-Shan South Road, Taipei Methods: A total of 38 treatment-naïve, non-cirrhotic adult HCV GT1 patients were en- 10002, Taiwan. -
Caracterización Molecular Del Perfil De Resistencias Del Virus De La
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Programa de doctorado en Medicina Departamento de Medicina Facultad de Medicina Universidad Autónoma de Barcelona TESIS DOCTORAL Caracterización molecular del perfil de resistencias del virus de la hepatitis C después del fallo terapéutico a antivirales de acción directa mediante secuenciación masiva Tesis para optar al grado de doctor de Qian Chen Directores de la Tesis Dr. Josep Quer Sivila Dra. Celia Perales Viejo Dr. Josep Gregori i Font Laboratorio de Enfermedades Hepáticas - Hepatitis Víricas Vall d’Hebron Institut de Recerca (VHIR) Barcelona, 2018 ABREVIACIONES Abreviaciones ADN: Ácido desoxirribonucleico AK: Adenosina quinasa ALT: Alanina aminotransferasa ARN: Ácido ribonucleico ASV: Asunaprevir BOC: Boceprevir CCD: Charge Coupled Device CLDN1: Claudina-1 CHC: Carcinoma hepatocelular DAA: Antiviral de acción directa DC-SIGN: Dendritic cell-specific ICAM-3 grabbing non-integrin DCV: Daclatasvir DSV: Dasabuvir -
Review Resistance to Mericitabine, a Nucleoside Analogue Inhibitor of HCV RNA-Dependent RNA Polymerase
Antiviral Therapy 2012; 17:411–423 (doi: 10.3851/IMP2088) Review Resistance to mericitabine, a nucleoside analogue inhibitor of HCV RNA-dependent RNA polymerase Jean-Michel Pawlotsky1,2*, Isabel Najera3, Ira Jacobson4 1National Reference Center for Viral Hepatitis B, C and D, Department of Virology, Hôpital Henri Mondor, Université Paris-Est, Créteil, France 2INSERM U955, Créteil, France 3Roche, Nutley, NJ, USA 4Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY, USA *Corresponding author e-mail: [email protected] Mericitabine (RG7128), an orally administered prodrug passage experiments. To date, no evidence of genotypic of PSI-6130, is the most clinically advanced nucleoside resistance to mericitabine has been detected by popula- analogue inhibitor of the RNA-dependent RNA poly- tion or clonal sequence analysis in any baseline or on- merase (RdRp) of HCV. This review describes what has treatment samples collected from >600 patients enrolled been learnt so far about the resistance profile of mericit- in Phase I/II trials of mericitabine administered as mon- abine. A serine to threonine substitution at position 282 otherapy, in combination with pegylated interferon/ (S282T) of the RdRp that reduces its replication capacity ribavirin, or in combination with the protease inhibitor, to approximately 15% of wild-type is the only variant danoprevir, for 14 days in the proof-of-concept study of that has been consistently generated in serial in vitro interferon-free therapy. Introduction The approval of boceprevir and telaprevir [1,2], the first HCV variants are selected and grow when the inter- inhibitors of the non-structural (NS) 3/4A (NS3/4A) feron response is inadequate [3,4,6]. -
Synthesis and Evaluation of New HCV NS3/4A Protease Inhibitors
Synthesis and Evaluation of New HCV NS3/4A Protease Inhibitors A Major Qualifying Project Report: Submitted to the Faculty Of WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Bachelor of Science By: ______________________ Evangelos Koumbaros Advisor Destin Heilman In Cooperation with Akbar Ali, Ph.D. UMass Medical School Table of Contents Acknowledgments ..................................................................................................................................... 4 Abstract ..................................................................................................................................................... 5 Background ............................................................................................................................................... 6 Protease Inhibitors ................................................................................................................................ 8 Telaprevir .............................................................................................................................................. 8 Boceprevir ............................................................................................................................................. 9 MK-5172 ............................................................................................................................................... 9 Methods ................................................................................................................................................. -
Global Eradication of Hepatitis C Virus: a Herculean Task Rajinder M Joshi* Nuclear Medicine and Laboratory Center, Yiaco Medical Co
log bio y: O ro p c e i n M A l c Joshi, Clin Microbial 2014, 3:3 a c c i e n s i l s DOI: 10.4172/2327-5073.1000e118 C Clinical Microbiology: Open Access ISSN: 2327-5073 EditorialResearch Article OpenOpen Access Access Global Eradication of Hepatitis C Virus: A Herculean Task Rajinder M Joshi* Nuclear Medicine and Laboratory Center, Yiaco Medical Co. Al Adan Hospital, Kuwait Once dubbed under the entity of Non A-Non B (NANB) hepatitis with ribavirin which produced sustained virological response (SVR) in agents, Hepatitis C Virus (HCV) was finally discovered and named in about 40-50% for genotype I patients and upto 80% for other genotypes 1989 [1,2]. HCV is an enveloped single stranded positive sense 9.6 kb after 24-48 weeks therapy. Besides, the non-specific actions of RNA virus about 50 nm in diameter under the hepacivirus genus within interferon (injectable) and ribavirin (oral), these two drugs have their the Flaviviridae family. Approximately 200 million people (about 3% own undesirable side effects. With the FDA approval of two oral direct of the world population) are currently infected with HCV including acting antiviral (DAA) drugs, telaprevir and boceprevir in 2011, triple- about 4 million in USA itself. The virus has 6 major genotypes and drug regime started with the addition of one of these two oral drugs to over 50 subtypes based on the genomic heterogeneity. Some experts the earlier protocol. This not only improved SVR but also shortened recognize even more genotypes but it remains debatable until major the treatment duration. -
First Clinical Study Using HCV Protease Inhibitor Danoprevir to Treat Naïve and Experienced COVID-19 Patients
medRxiv preprint doi: https://doi.org/10.1101/2020.03.22.20034041; this version posted March 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license . First Clinical Study Using HCV Protease Inhibitor Danoprevir to Treat Naïve and Experienced COVID-19 Patients Hongyi Chen1*, Zhicheng Zhang2, Li Wang1, Zhihua Huang3, Fanghua Gong4, Xiaodong Li5, Yahong Chen5, Jinzi J. Wu5,6* 1 The first department of infectious disease, the nineth hospital of Nanchang, Nanchang, Jiangxi province, China 2 The intensive care unit, the nineth hospital of Nanchang, Nanchang, Jiangxi province, China 3 The radiology department, the nineth hospital of Nanchang, Nanchang, Jiangxi province, China 4 The second department of infectious disease, the nineth hospital of Nanchang, Nanchang, Jiangxi province, China 5 Ascletis Bioscience Co., Ltd., Hangzhou, Zhejiang province, China 6 Ascletis pharmaceuticals Co., Ltd., Shaoxing, Zhejiang province, China * Corresponding authors (1) Jinzi J. Wu: Room 1201, Building 3, No.371 Xingxing road, Xiaoshan district, Hangzhou City, Zhejiang province; E-mail: [email protected] (2) Hongyi Chen: 167 Hongdu Middle Road, Nanchang, Jiangxi province, China; E-mail: [email protected] Abstract As coronavirus disease 2019 (COVID-19) outbreak, caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), started in China in January, 2020, repurposing approved drugs is emerging as important therapeutic options. We reported here the first clinical study using hepatitis C virus (HCV) protease inhibitor, danoprevir, to treat COVID-19 patients. -
PI Narlaprevir in Russian Patients with Genotype 1 Chronic Hepatitis C
The «second wave» PI Narlaprevir in Russian patients with genotype 1 chronic hepatitis C Professor Igor Bakulin Moscow Clinical Scientific Center June 5, 2015 Key points Background Narlaprevir in clinical trials Interim results of Phase III Russian PIONEER study Conclusions 11.06.2015 2 HCV Epidemiology in Russia Total population size1 143 000 000 Anti-HCV Ab-positive1 5 861 000 CHC diagnosed (viremic)1 1 789 500 New cases2 55 900/year AVT3 5 500*/year AVT – antiviral therapy; CHC – chronic hepatitis C 1 2010 data, Saraswat V, Norris S, et al. J Viral Hepat. 2015 ;22 Suppl 1:6-25; 2 Yuschuk ND, Znoyko OO, et al. Epidemiol Vaccine Prevent. 2013; 3 11.06.2015 Regional registries data, 2011 in Saraswat V, Norris S, et al. J Viral Hepat. 2015 ;22 Suppl3 1:6-25 *8 000/year according to IMS Health data calculated on the basis of PegIFN sales for all genotypes in 2014 Access to Direct Acting Antivirals in 2015 SMV SOF SMV No access to PR federal budget SOF SOF LDV Access to new DAA in DCV Russia and some other European countries is limited 3D/r EASL Monothematic Conference on “Liver Disease in Resource Limited Settings”, 2015 11.06.2015 4 EASL Recommendations 2015 IFN-free regimens Genotype Sofosbuvir + RBV 2, 3 Sofosbuvir/Ledipasvir (+/- RBV) 1, 4, 5, 6 Ombitasvir/Paritaprevir/Ritonavir + Dasabuvir (+/- RBV) 1 Sofosbuvir + Simeprevir (+/- RBV) 1, 4 Sofosbuvir + Daclatasvir (+/- RBV) All Ombitasvir/Paritaprevir/Ritonavir (+/- RBV) 4 For countries with limited resources IFN-containing regimens are still relevant PegIFN-α + RBV + Sofosbuvir All PegIFN-α + RBV + Simeprevir 1, 4 11.06.2015 5 HCV Protease Inhibitors Value in Russia Protease inhibitors - a promising DAA group for the treatment of HCV 1b GT, the most prevalent genotype in Russia HCV Genotypes Protease inhibitors Asunaprevir Boceprevir Narlaprevir/r Paritaprevir/r Simeprevir Saraswat V, Norris S, de Knegt RJ, et al. -
ABT-450/R (Abbott) – GS-9451 (Gilead) • Second Generation (Pan-Genotype, High Barrier to Resistance) – MK-5172 (Merck) – ACH-2684 (Achillion)
Paris Hepatitis Conference New Therapeutic Strategies Second Generation Protease inhibitors David R Nelson MD Professor and Associate Dean Director, Clinical and Translational Science Institute University of Florida Gainesville, USA Outline • HCV protease structure and drug targeting • First generation PIs – Major step forward – Major limitations • PIs in development – Second wave – Second generation • Clinical trial data – IFN-containing PI regimens – IFN-free PI containing regimens • Timelines and treatment paradigms NS3 protease targeting active site “catalytic triad” NS4A TARGETING . Substrate- and product analogs . Tri-peptides . Serine-trap inhibitors subdomain . Ketoamides (boceprevir, telaprevir) boundary . Macrocyclic inhibitors (e.g. Simeprevir, Danoprevir, Vaniprevir, etc.) zinc-finger . NS4A inhibitors Lorenz et al., Nature 2006 Kronenberger et al., Clin Liver Dis 2008 Welsch et al. Gut in press A Major Step Forward: First Generation PIs PegIFN/RBV BOC or TVR + pegIFN/RBV 100 69-83 80 63-75 40-59 60 38-44 29-40 SVR SVR (%) 40 24-29 20 7-15 5 0 Naive[1,2] Relapsers[3,4] Partial Null Responders[3,4] Responders[3,4] 1. Poordad F, et al. N Engl J Med. 2011;364:1195-1206. 2. Jacobson IM, et al. N Engl J Med. 2011;364:2405-2416. 3. Bacon BR, et al. N Engl J Med. 2011;364:1207-1217. 4. Zeuzem S, et al. N Engl J Med. 2011;364:2417-2428. 3. Bronowicki JP, et al. EASL 2012. Abstract 11. Limitations of First Generation PI-Based Therapy • Efficacy – Very dependent on the IFN response – Limited to gen 1 (1b>1a) • Low genetic barrier to -
Documents Numérisés Par Onetouch
19 ORGANISATION AFRICAINE DE LA PROPRIETE INTELLECTUELLE 51 8 Inter. CI. C07D 471/04 (2018.01) 11 A61K 31/519 (2018.01) N° 18435 A61P 29/00 (2018.01) A61P 31/12 (2018.01) A61P 35/00 (2018.01) FASCICULE DE BREVET D'INVENTION A61P 37/00 (2018.01) 21 Numéro de dépôt : 1201700355 73 Titulaire(s): PCT/US2016/020499 GILEAD SCIENCES, INC., 333 Lakeside Drive, 22 Date de dépôt : 02/03/2016 FOSTER CITY, CA 94404 (US) 30 Priorité(s): Inventeur(s): 72 US n° 62/128,397 du 04/03/2015 CHIN Gregory (US) US n° 62/250,403 du 03/11/2015 METOBO Samuel E. (US) ZABLOCKI Jeff (US) MACKMAN Richard L. (US) MISH Michael R. (US) AKTOUDIANAKIS Evangelos (US) PYUN Hyung-jung (US) 24 Délivré le : 27/09/2018 74 Mandataire: GAD CONSULTANTS SCP, B.P. 13448, YAOUNDE (CM). 45 Publié le : 15.11.2018 54 Titre: Toll like receptor modulator compounds. 57 Abrégé : The present disclosure relates generally to toll like receptor modulator compounds, such as diamino pyrido [3,2 D] pyrimidine compounds and pharmaceutical compositions which, among other things, modulate toll-like receptors (e.g. TLR-8), and methods of making and using them. O.A.P.I. – B.P. 887, YAOUNDE (Cameroun) – Tel. (237) 222 20 57 00 – Site web: http:/www.oapi.int – Email: [email protected] 18435 TOLL LIKE RECEPTOR MODULATOR COMPOUNDS CROSS REFERENCE TO RELATED APPLICATIONS [0001] This application claims priority to U.S. Provisional Application Nos. 62/128397, filed March 4, 2015, and 62/250403, filed November 3, 2015, both of which are incorporated herein in their entireties for all purposes. -
Hepatitis C Virus Drugs Simeprevir and Grazoprevir Synergize With
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.13.422511; this version posted December 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Hepatitis C Virus Drugs Simeprevir and Grazoprevir Synergize with 2 Remdesivir to Suppress SARS-CoV-2 Replication in Cell Culture 3 Khushboo Bafna1,#, Kris White2,#, Balasubramanian Harish3, Romel Rosales2, 4 Theresa A. Ramelot1, Thomas B. Acton1, Elena Moreno2, Thomas Kehrer2, 5 Lisa Miorin2, Catherine A. Royer3, Adolfo García-Sastre2,4,5,*, 6 Robert M. Krug6,*, and Gaetano T. Montelione1,* 7 1Department of Chemistry and Chemical Biology, and Center for Biotechnology and 8 Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, 12180 9 USA. 10 11 2Department of Microbiology, and Global Health and Emerging Pathogens Institute, 12 Icahn School of Medicine at Mount Sinai, New York, NY10029, USA. 13 14 3Department of Biology, and Center for Biotechnology and Interdisciplinary Sciences, 15 Rensselaer Polytechnic Institute, Troy, New York, 12180 USA. 16 17 4Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at 18 Mount Sinai, New York, NY 10029, USA. 19 20 5The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 21 10029, USA 22 23 6Department of Molecular Biosciences, John Ring LaMontagne Center for Infectious 24 Disease, Institute for Cellular and Molecular Biology, University of Texas at Austin, 25