A Newly Designed Modular Znbr2 Single Cell Structure

Total Page:16

File Type:pdf, Size:1020Kb

A Newly Designed Modular Znbr2 Single Cell Structure batteries Article A Newly Designed Modular ZnBr2 Single Cell Structure Zongqiang Pang 1,* , Yutao Gong 1, Ming Yuan 1 and Xin Li 2 1 College of Automation, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; [email protected] (Y.G.); [email protected] (M.Y.) 2 NARI Technology Co., Ltd., Nanjing 211000, China; [email protected] * Correspondence: [email protected]; Tel.: +86-186-5291-9118 Received: 18 February 2020; Accepted: 28 April 2020; Published: 4 May 2020 Abstract: We describe a ZnBr2 single cell which has a highly modular symmetrical structure. With designed polyethylene shell frames, membrane frame and composite titanium-carbon felt electrodes, it has a higher energy density and is more flexible compared with traditional flow batteries. We repeatedly tested its performance, which showed good tightness, high reliability and a high energy efficiency of 75%. Due to the special symmetrical structure and modular design, it is easy to assemble and disassemble, which makes it suitable as a test platform for electrodes, membranes and electrolyte performance testing. The designed modular flow cell has low cost and high energy density, and can provide good guidance for flow battery research. Keywords: composite electrodes; energy density; flow battery; flexibility; membrane frame; zinc bromide 1. Introduction Energy storage is the key technology to promote the replacement of traditional energy types and closely affects the development of new energy technology, making how to build efficient, reliable and cost-effective large-scale energy storage systems critical for societal development [1,2]. Due to flow batteries’ long cycle life, deep discharge depth, high safety, low cost and high energy efficiency, they are considered an important long-term energy storage mode [3]. Theoretically, the flow battery capacity is only determined by the volume of the electrolyte stored in the tanks. According to the different active substances, flow batteries can be divided into vanadium, zinc/bromine, sodium polysulfide/bromine, iron/chromium, etc. Among of them, the vanadium redox battery (VRB) and zinc-bromine flow battery (ZBFB) are two of the most widely used flow batteries. Different from VRB, ZBFB has higher energy density, lower building cost and better environmentally friendliness [4–6]. The ZBFB system is based on the deposition of zinc at the negative electrode and bromine evolution at the positive electrode and consists of the cell, electrolyte tanks and pumps [7]. As shown in Figure1, different from conventional batteries, the active materials of ZBFB at both electrodes are the same ZnBr2 solution that is stored in two external tanks and separately circulated inside the flow cell by two magnetic pumps [4]. In order to reduce the self-discharge inside the flow cell, the ZnBr2 solutions inside two half-cells are separated by an exchange membrane to prevent the two solutions from mixing. The basic electrochemical reactions of a ZBFB are as follows [8]: Anode reaction : Zn2+ + 2e Zn (1) Cathode reaction : 2Br− Br2 + 2e (2) 2+ Net cell reaction : Zn + 2Br− Zn + Br2 (3) Batteries 2020, 6, 27; doi:10.3390/batteries6020027 www.mdpi.com/journal/batteries Batteries 2020, 6, x FOR PEER REVIEW 2 of 8 Batteries 2020, 6, 27 2 of 8 Batteries 2020, 6, x FOR PEER REVIEW 2 of 8 Figure 1. Schematic diagram of the ZnBr2 single cell. Figure 1. Schematic diagram of the ZnBr2 single cell. During the charging process,Figure 1. zinc Schematic ions are diagram redu cedof the to ZnBr zinc2 particlessingle cell and. deposit on the surface of theDuring anode theelectrode. charging At process,the same zinc time, ions the are bromine reduced ions to converted zinc particles into and bromine deposit by onthe the oxidation surface During the charging process, zinc ions are reduced to zinc particles and deposit on the surface reactionof the anode will be electrode. captured At by the the same ligand time, complex the bromine forming ions an converted oily complex into precipitate bromine by and the are oxidation stored of the anode electrode. At the same time, the bromine ions converted into bromine by the oxidation atreaction the bottom will be of captured the positive by the electrode ligand complex electrolyte. forming During an oily the complexdischarging precipitate process, and in arecontrast stored to at the reaction will be captured by the ligand complex forming an oily complex precipitate and are stored chargingbottom of process, the positive zinc electrode and bromide electrolyte. ions Duringare generated the discharging at the negative process, inand contrast positive to the electrodes, charging at the bottom of the positive electrode electrolyte. During the discharging process, in contrast to the respectively.process, zinc and bromide ions are generated at the negative and positive electrodes, respectively. charging process, zinc and bromide ions are generated at the negative and positive electrodes, Although ZBFB systems have have been studied for a long time, the problems of charge-discharge respectively. efficiencyefficiency and and battery battery charge charge are are still still not not solved solved ad adequatelyequately [9]. [9 ].In Inorder order to tocheck check the the performance performance of Although ZBFB systems have been studied for a long time, the problems of charge-discharge electrodes,of electrodes, membranes membranes and and electrolytes, electrolytes, we we have have toto design design and and build build many many single single cells cells which which is efficiency and battery charge are still not solved adequately [9]. In order to check the performance of complicated and a heavy waste. How How to to design design one one flexib flexiblele flow flow cell cell structure structure that that has has good good flexibility, flexibility, electrodes, membranes and electrolytes, we have to design and build many single cells which is high space utilization rate and great fluidfluid tightnesstightness is still a research focusfocus forfor ZBFBZBFB systems.systems. complicated and a heavy waste. How to design one flexible flow cell structure that has good flexibility, InIn this paper, we describedescribe a modularmodular ZnBrZnBr2 single cell structure, which adopts a symmetrical high space utilization rate and great fluid tightness is still a research focus for ZBFB systems. structure with a membrane sandwichedsandwiched between two shell frames [[10].10]. The symmetrical structure In this paper, we describe a modular ZnBr2 single cell structure, which adopts a symmetrical and modular design make it flexible flexible for assembly assembly and and disassembly, disassembly, so it is suitable to be use as a test structure with a membrane sandwiched between two shell frames [10]. The symmetrical structure platform for electrodes, membranes andand electrolyte performance testing. and modular design make it flexible for assembly and disassembly, so it is suitable to be use as a test platform for electrodes, membranes and electrolyte performance testing. 2. Experimental Experimental 2.1.2. Experimental Flow Frame ZnBr 2 Single Cell 2.1. Flow Frame ZnBr2 Single Cell The ZnBr2 single cell system includes a cell, three magnetic pumps, and two electrolyte tanks. 2.1. FlowThe ZnBrFrame2 ZnBrsingle2 Singlecell system Cell includes a cell, three magnetic pumps, and two electrolyte tanks. The most important part is the cell, which is the core component of the ZnBr2 cell system. A schematic The most important part is the cell, which is the core component of the ZnBr2 cell system. A schematic viewThe of the ZnBr cell2 issingle shown cell in system Figure 2includes. a cell, three magnetic pumps, and two electrolyte tanks. view of the cell is shown in Figure 2. The most important part is the cell, which is the core component of the ZnBr2 cell system. A schematic view of the cell is shown in Figure 2. Figure 2. Schematic view of modular ZnBr2 single cell structure. 1. Shell frame, 2. Carbon felt, Figure 2. Schematic view of modular ZnBr2 single cell structure. 1. Shell frame, 2. Carbon felt, 3. 3. Membrane frame, 4. O-ring, 5. Titanium foam. Membrane frame, 4. O-ring, 5. Titanium foam. Figure 2. Schematic view of modular ZnBr2 single cell structure. 1. Shell frame, 2. Carbon felt, 3. TheMembrane cell is frame, composed 4. O-ring, of two 5. Titanium symmetrical foam. polyethylene shell frames, two composite electrodes and aThe membrane cell is composed frame, which of two are symmetrical squeezed together polyet inhylene series shell through frames, two two fluorocarbon composite O-rings electrodes and and a membrane frame, which are squeezed together in series through two fluorocarbon O-rings and six stainlessThe cell steelis composed bolts. The of positivetwo symmetrical and negative polyet electrodeshylene shell are bothframes, composed two composite by titanium electrodes foam six stainless steel bolts. The positive and negative electrodes are both composed by titanium foam and a membrane frame, which are squeezed together in series through two fluorocarbon O-rings and six stainless steel bolts. The positive and negative electrodes are both composed by titanium foam Batteries 2020, 6, 27 3 of 8 Batteries 2020, 6, x FOR PEER REVIEW 3 of 8 and carbon felt [11]. The whole structure is symmetrical and simple [12], it is easy to assemble or and carbon felt [11]. The whole structure is symmetrical and simple [12], it is easy to assemble or disassemble, which makes it suitable to be used as a standard test platform for performance testing of disassemble, which makes it suitable to be used as a standard test platform for performance testing electrodes, membranes and electrolytes [13,14]. of electrodes, membranes and electrolytes [13,14]. 2.2. Electrode and Membrane Frame 2.2. Electrode and Membrane Frame As shown in Figure3a, the titanium foam electrode which has a titanium terminal at the center is manufacturedAs shown by in 3DFigure printing. 3a, the The titanium calculated foam active electrode area of which the electrode has a titanium is 24.72 terminal cm2.
Recommended publications
  • Studies on the Acid-Base Properties of the Znbr2nabr Molten Salt System
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Okayama University Scientific Achievement Repository Chemistry Physical & Theoretical Chemistry fields Okayama University Year 1992 Studies on the acid-base properties of the ZnBr2NaBr molten salt system Hidetaka Hayashi Kiyofumi Uno Okayama University Kyoto University Zen-ichiro Takehara Akira Katagiri Kyoto University Kyoto University This paper is posted at eScholarship@OUDIR : Okayama University Digital Information Repository. http://escholarship.lib.okayama-u.ac.jp/physical and theoretical chemistry/23 386 J. Electrochem. Soc., Vol. 140, No. 2, February 1993 The Electrochemical Society, Inc. 8. T. Yoshida, K. Okabayashi, T. Assoka, and K. Abe, Ab- ics: Materials and Devices for Transmittance Con- stract 380, p. 552, The Electrochemical Society Ex- trol, C. M. Lampert and C. G. Granqvist, Editors, tended Abstracts, Vol. 88-2, Chicago, IL, Meeting, p. 482, SPIE Optical Engineering Press, Bellingham, Oct. 9-14, 1988. WA (1990). 9. K. Honda, M. Fu]ita, H. Ishida, R. Yamamoto, and K. 21. S. Hub, A. Tranchant, and R. Messina, Electrochim. Ohgaki, This Journal, 135, 3151 (1988). Acta, 33, 997 (1988). 10. T. Kase, T. Miyamoto, T. Yoshimoto, u Ohsawa, H. 22. K. Ho, D. E. Singleton, and C. G. Greenberg, This Jour- Inaba, and K. Nakasi, in Large Area Chromogenics: nal, 137, 3858 (1990). Materials and Devices .for Transmittance Control, 23. J. P. Randin, in Large Area Chromogenics: Materials C. M. Lampert and C. G. Granqvist, Editors, p. 504, and Devices for Transmittance Control, C. M. Lain- SPIE Optical Engineering Press, Bellingham, WA pert and C.
    [Show full text]
  • Catalog 2014-2015
    RIEKE METALS, INC. Catalog 2014-2015 Founders of Rieke Metals, Inc. Dr. Reuben D. Rieke grew up in Fairfax, Minnesota. He received a Bachelor of Chemistry degree from the University of Minnesota-Minneapolis, doing undergraduate research with Professor Wayland E. Noland. He received a Ph.D. from the University of Wisconsin-Madison in 1966 under the direction of Professor Howard E. Zimmerman. He then did postgraduate work with Professor Saul Winstein at UCLA. He taught at the University of North Carolina at Chapel Hill from 1966 to 1976, at North Dakota State University in Fargo from 1976 to 1977, and at the University of Nebraska-Lincoln from 1977 to 2004. Loretta Rieke was born and raised in New York City. She earned a Bachelor of Science from Queens College and did graduate studies at the University of Wisconsin-Madison. High Quality Compounds The formula: Provide unique research reagents to the world with exceptional speed and attention to detail. Since 1991, Rieke Metals, Inc has been doing just that by supplying active metals, Grignard and organic semi-conducting polymers and monomers. Headquartered in Lincoln, Nebraska, the facility produces and supplies over 10,000 research compounds. We provide quantities from grams to kilograms, ensuring high purity and service every step of the way. High Quality Service Rieke Metals is run by scientists, and we understand that research is not simple. That’s why RMI strives to make your work easier. With thousands of compounds in stock, orders are processed immediately and shipped the same day. Material electronically provided for immediate information. Technical service is only a phone call away with Rieke Metals.
    [Show full text]
  • Zinc/Bromine Batteries
    SAND2000-0893 CHAPTER 37 ZINC/BROMINE BATTERIES Paul C. Butler, Phillip A. Eidler, Patrick G. Grimes, Sandra E. Klassen, and Ronald C. Miles 37.1 GENERAL CHARACTERISTICS The zinc/bromine battery is an attractive technology for both utility-energy storage and electric-vehicle applications. The major advantages and disadvantages of this battery technology are listed in Table 37.1. The concept of a battery based on the zinc/bromine couple was patented over 100 years ago,’ but development to a commercial battery was blocked by two inherent properties: (1) the tendency of zinc to form dendrites upon deposition and (2) the high volubility of bromine in the aqueous zinc bromide electrolyte. Dendritic zinc deposits could easily short-circuit the cell, and the high volubility of bromine allows diffusion and direct reaction with the zinc electrode, resulting in self-discharge of the cell. Development programs at Exxon and Gould in the mid-1970s to early 1980s resulted in designs which overcame these problems, however, and allowed development to proceed.’ The Gould technology was developed further by the Energy Research Corporation but a high level of activity was not maintained. s-’ In the mid-1980s Exxon licensed its TABLE 37.1 Major Advantages and Disadvantages of Zinc/Bromine Battery Technology Advantages Disadvantages Circulating electrolyte allows for ease of thermal Auxiliary systems are required for circulation management and uniformity of reactant supply to and temperature control each cell System design must ensure safety as for all Good
    [Show full text]
  • Itetall IC BROMIDES AS CATALYSTS in THE
    QUANTITATIVE COMPARISON OF ;itETALL IC BROMIDES AS CATALYSTS IN THE FRIED.liL-CRAFTS KETONE SYNTHESIS i QUANTITATIVE COMPARISON OF MET ALLIC BROMIDES AS CATAL YSTS IN THE FRIEDEL-CRAFTS KETONE SYNTHESIS By Peter Taketoshi M,, ori Bachelor of .Arts Park College Parkville, Missouri 1945 Submitted to the Department of Chemistry Oklahoma Agricultural and Mechanical College In partial fulfillment of the r equirement for t he Degree of Master of Science 194'~ ii \ APPROVED BY: Chairman, Thesis Committee Head of the Department ~he~ ( ~uate~~ School 2174~10 iii ACKNOWLEDGEMENT The author wis hes to express his s i neere gr atitude to Dr . O. C. Dermer under whose guidance t his work has been accomplished . He also wi s hes to express hi s a ppreciation to the Chemi stry Department for t he s uppl y of chemicals used. iv TABLE OF CONTENTS "P age Introduction • • l Historical • • • • 2 Experimental • • • • 5 Procadure • • • • • • • • 9 Table of results . • • • • • • • 12 Discussion of results • .. • • • • • • 15 Summary • • • • • • • • 22 Bibliography • • • • • • • • • • 23 Biography • • • • • • • • • • • 25 1 I NTRODCCT ION T~lis is a continuation of the s t udy of catalystf for the Friedel­ Crafts ketone synt hesis star ted by Wilson ( .38 ), a nd continued by Suguj.­ tan (34), Johnson (17), and Billme ier (4). Ma ny metallic chlorides have been used in t his reacti on, but metallic bromides, as cat alyst s, have been rather neelected . It is the purpose of this work to study the ef fectiveness of some of the metallic bromides by following essentially the experimental pro­ cedure of Billmeier (4). 2 HISTORICAL In 1877, the French chemist Friedel and his American colleague Crafts (12) discovered the f amous Friedel-Crafts reaction, which now has s uch great industrial a pplication (7 , 13, 18, 35).
    [Show full text]
  • Safety Review of Bromine- Based Electrolytes for Energy Storage Applications
    PP127316 Safety Review of Bromine- Based Electrolytes for Energy Storage Applications ICL Industrial Products Report No.: 1, Rev. 1 Date: February 26, 2016 Project name: PP127316 DNV USA, Inc. Report title: Safety Review of Bromine-Based Electrolytes for 5777 Frantz Rd Energy Storage Applications Dublin, OH 43017 Customer: ICL Industrial Products, Tel: +1-614-761-1214 Address Contact person: Sharona Atlas and David Murphy Date of issue: February 26, 2016 Project No.: PP127316 Organization unit: OAPUS304 Report No.: 1, 1 Document No.: No Task and objective: Create/Propose a Safety Testing Plan. To review Con Edison’s existing safety related materials and identify gaps by cross checking with relevant standards in the industry. Assess the risk and consequences of potential hazards that may occur to the TESS. Recommend the approach and relevant testing in order to fill the identified gaps. Davion M. Hill Prepared by: Verified by: Approved by: [Davion Hill, Ph.D.] William Kovacs III, P.E. [Name] [Group Leader, Energy & Materials] Senior Engineer – Oil & Gas Fatigue and [title] Fracture Rev. No. Date Reason for Issue Prepared by Verified by Approved by Table of contents 1 EXECUTIVE SUMMARY ..................................................................................................... 2 2 APPROACH ..................................................................................................................... 1 3 BOWTIE MODEL .............................................................................................................
    [Show full text]
  • List of Lists
    United States Office of Solid Waste EPA 550-B-10-001 Environmental Protection and Emergency Response May 2010 Agency www.epa.gov/emergencies LIST OF LISTS Consolidated List of Chemicals Subject to the Emergency Planning and Community Right- To-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act • EPCRA Section 302 Extremely Hazardous Substances • CERCLA Hazardous Substances • EPCRA Section 313 Toxic Chemicals • CAA 112(r) Regulated Chemicals For Accidental Release Prevention Office of Emergency Management This page intentionally left blank. TABLE OF CONTENTS Page Introduction................................................................................................................................................ i List of Lists – Conslidated List of Chemicals (by CAS #) Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act ................................................. 1 Appendix A: Alphabetical Listing of Consolidated List ..................................................................... A-1 Appendix B: Radionuclides Listed Under CERCLA .......................................................................... B-1 Appendix C: RCRA Waste Streams and Unlisted Hazardous Wastes................................................ C-1 This page intentionally left blank. LIST OF LISTS Consolidated List of Chemicals
    [Show full text]
  • Selection of Catalyst for Group Transfer Polymerization of 1-Butadienyloxytrimethylsilane
    Polymer Journal, Vol. 24, No. 7, pp 669-677 (1992) Selection of Catalyst for Group Transfer Polymerization of 1-Butadienyloxytrimethylsilane Hiroshi SuMI, Tadamichi HIRABAYASHI, Yoshihito INAI, and Kenji YoKOTA Department of Materials Science & Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan (Received November 19, 1991) ABSTRACT: Catalytic activity of various Lewis acids in the group transfer polymerization (GTP) of 1-butadienyloxytrimethylsilane (BdTMS) initiated with benzaldehyde was investigated. Among the Lewis acids studied, three zinc halides (ZnBr2 , Znl2 , ZnC1 2) and HgBr2 gave soluble polymers with narrow molecular weight distributions in quantitative yields. The polymerizations proceeded apparently on the insoluble solid catalyst. The other soluble Lewis acid catalysts, including (C2H 5),A1Cl, A1Cl 3 , SnC14 , SnBr4 , and TiBr4 , gave polymers in moderate to poor yields and often gelled polymers. Through 1 H NMR monitoring of the polymerization, time vs. monomer and initiator consumption curves were obtained, and then initiation and propagation rates were estimated from slopes of the curves. Both rates were enhanced in an order of ZnBr2 >Znl2 >ZnC12 . This order is consistent with that of chemical shifts of formyl carbon of equimolar mixture of ZnX2 with benzaldehyde, as well as crotonaldehyde which is a model for a polymer end, in chloroform-d. This order was also compatible with the decreasing order in MwiM. values of the resulting polymers. Thus, use of ZnBr2 as the catalyst resulted
    [Show full text]
  • Chemical Compatibility Chart
    Chemical Compatibility Chart www.topworx.com Rating Guide: A Good B Fair C Questionable D Poor Blank Insuffi cient Data Epoxy Polycarbonate PBT Brass 316 S.S. 304 S.S. 400 S.S. Aluminum Viton Buna N Neoprene EPDM Silicone Acetaldehyde A A A B D D C A A Acetamide A A B B A B A B Acetate Solvent B A A A A D C D A C Acetic Acid, Glacial A D A C D A D C D B B Acetic Acid, 20% C B D D A B D A B B A A B Acetic Acid, 80% C B D D A C D A B C C A B Acetic Acid A B D D A C D A B C C A C Acetic Anhydride D A A D A D D A B C Acetone A D B A A A B A D D C A B Acetyl Bromide Acetyl Chloride (dry) A A A A A A D D C Acetylene A A A A A A A A A B A B Acrylonitrile A A A B D D C D D Alcohols: Amyl D A A A A B B B A A D Benzyl A A A B A A C B Butyl A B A A A B A A A B B Diacetone A A A A D D D A D Ethyl A B A A A A A B A C A A B Hexyl A A A A C A A C B Isobutyl A A A B A B A A A Isopropyl A A A B A B B A A Methyl B A A A B A A A A Octyl A A A B A B B B A B Propyl A A A A A A A A A A Chemical Compatibility Chart (cont.) www.topworx.com Epoxy Polycarbonate PBT Brass 316 S.S.
    [Show full text]
  • Zinc Bromide As Working Fluids in Solar Absorption Cooling System
    Basrah Journal of Engineering Sciences, Vol. 20, No. 1, (2020), 23-29 Basrah Journal of Engineering Sciences Journal homepage: www.bjes.edu.iq ISSN (Online): 23118385, ISSN (Print): 18146120 Acetone - Zinc Bromide as Working Fluids in Solar Absorption Cooling System Nabeel A. Ghyadh 1,*, Salman H. Hammadi 2, Haroun A. K. Shahad 3 1Department of Mechanical Engineering, College of Engineering, University of Kufa, Najaf, Iraq 2Department of Mechanical Engineering, College of Engineering, University of Basrah, Basrah, Iraq 3Department of Mechanical Engineering, College of Engineering, University of Babylon, Babylon, Iraq E-mail address: [email protected] , [email protected] Received: 20 October 2019; Accepted: 11 December 2019; Published: 2 February 2020 Abstract Solar energy serves as a good replacement to traditional source of energy such oil and natural gas. The problem of In the present research, experimental and theoretical work is using conventional source of energy; oil and natural gas; is carried out using ecofriendly refrigeration as working fluid in the absorption system. The working pair is considered in the the emission of greenhouse gases, while solar energy do not analysis, namely, acetone and zinc bromide. The system is provoke the greenhouse gases making it safer to environment designed to work under outdoor conditions in Hila city-Iraq. In compared to fossil fuels [1]. the test, the outdoor conditions are varied and the hot water is Conventionally, heat pumps and refrigerators are used as heat source. To check the performance of the system, assembled using the vapor compression cycle. The use of various operating conditions are included in this study.
    [Show full text]
  • Zinc Bromide CAS No 7699-45-8 MATERIAL SAFETY DATA SHEET SDS/MSDS
    Zinc Bromide MATERIAL SAFETY DATA SHEET CAS No 7699-45-8 SDS/MSDS SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1 Product identifiers Product name : Zinc Bromide CAS-No. : 7699-45-8 1.2 Relevant identified uses of the substance or mixture and uses advised against Identified uses : Laboratory chemicals, Industrial & for professional use only. 1.3 Details of the supplier of the safety data sheet Company : Central Drug House (P) Ltd 7/28 Vardaan House New Delhi-10002 INDIA Telephone : +91 11 49404040 Email : [email protected] 1.4 Emergency telephone number Emergency Phone # : +91 11 49404040 (9:00am - 6:00 pm) [Office hours] SECTION 2: Hazards identification 2.1 Classification of the substance or mixture Classification according to Regulation (EC) No 1272/2008 Acute toxicity, Oral (Category 4), H302 Skin corrosion (Category 1B), H314 Skin sensitisation (Category 1), H317 Chronic aquatic toxicity (Category 2), H411 For the full text of the H-Statements mentioned in this Section, see Section 16. 2.2 Label elements Labelling according Regulation (EC) No 1272/2008 Pictogram Signal word Danger Hazard statement(s) H302 Harmful if swallowed. H314 Causes severe skin burns and eye damage. H317 May cause an allergic skin reaction. H411 Toxic to aquatic life with long lasting effects. Page 1 of 7 Precautionary statement(s) P273 Avoid release to the environment. P280 Wear protective gloves/ protective clothing/ eye protection/ face protection. P305 + P351 + P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
    [Show full text]
  • Safety Data Sheet
    Safety Data Sheet Page 1/5 per OSHA HazCom 2012 Printing date 11/24/2015 Reviewed on 02/21/2014 1 Identification Product identifier Product name: Zinc bromide, anhydrous Stock number: B22510 CAS Number: 7699-45-8 EC number: 231-718-4 Relevant identified uses of the substance or mixture and uses advised against. Identified use: SU24 Scientific research and development Details of the supplier of the safety data sheet Manufacturer/Supplier: Alfa Aesar Thermo Fisher Scientific Chemicals, Inc. 30 Bond Street Ward Hill, MA 01835-8099 Tel: 800-343-0660 Fax: 800-322-4757 Email: [email protected] www.alfa.com Information Department: Health, Safety and Environmental Department Emergency telephone number: During normal business hours (Monday-Friday, 8am-7pm EST), call (800) 343-0660. After normal business hours, call Carechem 24 at (866) 928-0789. 2 Hazard(s) identification Classification of the substance or mixture in accordance with 29 CFR 1910 (OSHA HCS) GHS05 Corrosion Skin Corr. 1B H314 Causes severe skin burns and eye damage. Eye Dam. 1 H318 Causes serious eye damage. Hazards not otherwise classified No information known. Label elements GHS label elements The product is classified and labeled in accordance with 29 CFR 1910 (OSHA HCS) Hazard pictograms GHS05 Signal word Danger Hazard statements H314 Causes severe skin burns and eye damage. Precautionary statements P260 Do not breathe dust/fume/gas/mist/vapours/spray. P303+P361+P353 If on skin (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower. P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes.
    [Show full text]
  • Bromine and Energy Storage
    The International Bromine Bromine Council and Energy Storage www.bsef.org ENERGY STORAGE A KEY ENABLER FOR LOW CARBON ENERGY SYSTEMS With the global population expected to grow by two billion people to reach 9.7 billion by 2050, the World Energy Council is predicting an almost twofold increase in global energy 2013 1 2050 demand over the period . The 2015 Paris Climate Agreement saw the global community commit to avoiding global temperature increases by reducing greenhouse gas emissions. On its way to decarbonisation, and to be able to meet growing demand, the electricity sector is undergoing a major transformation as economies and consumers move away from fossil-energy-based power systems towards climate- friendly systems with an increased production and use of renewable energy. As the supply of renewable energy grows, energy storage becomes more important. The production of electricity from wind and solar can vary significantly throughout the day. As a result, electricity is not always consumed at the time it is produced. By storing, we can use clean electricity when we need it. Energy storage will play a key role in enabling economies globally to accelerate the energy transition. Currently there is limited storage of electricity in global electricity systems. On average only 30 minutes of electrical energy storage is available compared to 30 days for oil2. Demand for energy storage is therefore expected to increase as the supply of renewable energy grows. By expanding energy storage capacity, we will be able to fully exploit the growing capacities of renewable energy for a range of energy service applications from grid balancing to facility energy management.
    [Show full text]