Glutamate Dehydrogenase As a Neuroprotective Target Against Neurodegeneration
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mt-Atp8 Gene in the Conplastic Mouse Strain C57BL/6J-Mtfvb/NJ on the Mitochondrial Function and Consequent Alterations to Metabolic and Immunological Phenotypes
From the Lübeck Institute of Experimental Dermatology of the University of Lübeck Director: Prof. Dr. Saleh M. Ibrahim Interplay of mtDNA, metabolism and microbiota in the pathogenesis of AIBD Dissertation for Fulfillment of Requirements for the Doctoral Degree of the University of Lübeck from the Department of Natural Sciences Submitted by Paul Schilf from Rostock Lübeck, 2016 First referee: Prof. Dr. Saleh M. Ibrahim Second referee: Prof. Dr. Stephan Anemüller Chairman: Prof. Dr. Rainer Duden Date of oral examination: 30.03.2017 Approved for printing: Lübeck, 06.04.2017 Ich versichere, dass ich die Dissertation ohne fremde Hilfe angefertigt und keine anderen als die angegebenen Hilfsmittel verwendet habe. Weder vorher noch gleichzeitig habe ich andernorts einen Zulassungsantrag gestellt oder diese Dissertation vorgelegt. ABSTRACT Mitochondria are critical in the regulation of cellular metabolism and influence signaling processes and inflammatory responses. Mitochondrial DNA mutations and mitochondrial dysfunction are known to cause a wide range of pathological conditions and are associated with various immune diseases. The findings in this work describe the effect of a mutation in the mitochondrially encoded mt-Atp8 gene in the conplastic mouse strain C57BL/6J-mtFVB/NJ on the mitochondrial function and consequent alterations to metabolic and immunological phenotypes. This work provides insights into the mutation-induced cellular adaptations that influence the inflammatory milieu and shape pathological processes, in particular focusing on autoimmune bullous diseases, which have recently been reported to be associated with mtDNA polymorphisms in the human MT-ATP8 gene. The mt-Atp8 mutation diminishes the assembly of the ATP synthase complex into multimers and decreases mitochondrial respiration, affects generation of reactive oxygen species thus leading to a shift in the metabolic balance and reduction in the energy state of the cell as indicated by the ratio ATP to ADP. -
Mutation of the Fumarase Gene in Two Siblings with Progressive Encephalopathy and Fumarase Deficiency T
Mutation of the Fumarase Gene in Two Siblings with Progressive Encephalopathy and Fumarase Deficiency T. Bourgeron,* D. Chretien,* J. Poggi-Bach, S. Doonan,' D. Rabier,* P. Letouze,I A. Munnich,* A. R6tig,* P. Landneu,* and P. Rustin* *Unite de Recherches sur les Handicaps Genetiques de l'Enfant, INSERM U393, Departement de Pediatrie et Departement de Biochimie, H6pital des Enfants-Malades, 149, rue de Sevres, 75743 Paris Cedex 15, France; tDepartement de Pediatrie, Service de Neurologie et Laboratoire de Biochimie, Hopital du Kremlin-Bicetre, France; IFaculty ofScience, University ofEast-London, UK; and IService de Pediatrie, Hopital de Dreux, France Abstract chondrial enzyme (7). Human tissue fumarase is almost We report an inborn error of the tricarboxylic acid cycle, fu- equally distributed between the mitochondria, where the en- marase deficiency, in two siblings born to first cousin parents. zyme catalyzes the reversible hydration of fumarate to malate They presented with progressive encephalopathy, dystonia, as a part ofthe tricarboxylic acid cycle, and the cytosol, where it leucopenia, and neutropenia. Elevation oflactate in the cerebro- is involved in the metabolism of the fumarate released by the spinal fluid and high fumarate excretion in the urine led us to urea cycle. The two isoenzymes have quite homologous struc- investigate the activities of the respiratory chain and of the tures. In rat liver, they differ only by the acetylation of the Krebs cycle, and to finally identify fumarase deficiency in these NH2-terminal amino acid of the cytosolic form (8). In all spe- two children. The deficiency was profound and present in all cies investigated so far, the two isoenzymes have been found to tissues investigated, affecting the cytosolic and the mitochon- be encoded by a single gene (9,10). -
Mitochondrial Protein Quality Control Mechanisms
G C A T T A C G G C A T genes Review Mitochondrial Protein Quality Control Mechanisms Pooja Jadiya * and Dhanendra Tomar * Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA * Correspondence: [email protected] (P.J.); [email protected] (D.T.); Tel.: +1-215-707-9144 (D.T.) Received: 29 April 2020; Accepted: 15 May 2020; Published: 18 May 2020 Abstract: Mitochondria serve as a hub for many cellular processes, including bioenergetics, metabolism, cellular signaling, redox balance, calcium homeostasis, and cell death. The mitochondrial proteome includes over a thousand proteins, encoded by both the mitochondrial and nuclear genomes. The majority (~99%) of proteins are nuclear encoded that are synthesized in the cytosol and subsequently imported into the mitochondria. Within the mitochondria, polypeptides fold and assemble into their native functional form. Mitochondria health and integrity depend on correct protein import, folding, and regulated turnover termed as mitochondrial protein quality control (MPQC). Failure to maintain these processes can cause mitochondrial dysfunction that leads to various pathophysiological outcomes and the commencement of diseases. Here, we summarize the current knowledge about the role of different MPQC regulatory systems such as mitochondrial chaperones, proteases, the ubiquitin-proteasome system, mitochondrial unfolded protein response, mitophagy, and mitochondria-derived vesicles in the maintenance of mitochondrial proteome and health. The proper understanding of mitochondrial protein quality control mechanisms will provide relevant insights to treat multiple human diseases. Keywords: mitochondria; proteome; ubiquitin; proteasome; chaperones; protease; mitophagy; mitochondrial protein quality control; mitochondria-associated degradation; mitochondrial unfolded protein response 1. Introduction Mitochondria are double membrane, dynamic, and semiautonomous organelles which have several critical cellular functions. -
Nerve Tissue-Specific Human Glutamate Dehydrogenase That Is Thermolabile and Highly Regulated by ADP , I *P
Fordham University Masthead Logo DigitalResearch@Fordham Chemistry Faculty Publications Chemistry 1997 Nerve tissue-specific umh an glutamate dehydrogenase that is thermolabile and highly regulated by adp / P. Shashidharan, Donald D. Clarke, Naveed Ahmed, Nicholas Moschonas, and Andreas Plaitakis Department of Neurology, Mount Sinai School of Medicine, New York; Department of Chemistry, Fordham University, Bronx New York, USA; and Department of Biology and School of Health Sciences, University of Crete, Crete, Greece P. Shashidharan Mount Sinai School of Medicine. Department of Neurology, [email protected] Donald Dudley Clarke PhD Fordham University, [email protected] Recommended Citation Shashidharan, P.; Clarke, Donald Dudley PhD; Ahmed, Naveed; and Moschonas, Nicholas, "Nerve tissue-specific umh an glutamate dehydrogenase that is thermolabile and highly regulated by adp / P. Shashidharan, Donald D. Clarke, Naveed Ahmed, Nicholas Moschonas, and Andreas Plaitakis Department of Neurology, Mount Sinai School of Medicine, New York; Department of Chemistry, Fordham University, Bronx New York, USA; and Department of Biology and School of Health Sciences, University of Crete, Crete, Greece" (1997). Chemistry Faculty Publications. 13. https://fordham.bepress.com/chem_facultypubs/13 This Article is brought to you for free and open access by the Chemistry at DigitalResearch@Fordham. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of DigitalResearch@Fordham. For more information, please contact [email protected]. Naveed Ahmed Mount Sinai School of Medicine. Department of Neurology Nicholas Moschonas University of Crete. Department of Biology Follow this and additional works at: https://fordham.bepress.com/chem_facultypubs Part of the Biochemistry Commons Journal of Neurochemistry Lippincott-Raven Publishers, Philadelphia © 1997 International Society for Neurochemistry Nerve Tissue-Specific Human Glutamate Dehydrogenase that Is Thermolabile and Highly Regulated by ADP , I *P. -
Taurine Reduction in Anaerobic Respiration of Bilophila Wadsworthia RZATAU
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, May 1997, p. 2016–2021 Vol. 63, No. 5 0099-2240/97/$04.0010 Copyright © 1997, American Society for Microbiology Taurine Reduction in Anaerobic Respiration of Bilophila wadsworthia RZATAU HEIKE LAUE, KARIN DENGER, AND ALASDAIR M. COOK* Faculta¨t fu¨r Biologie, Universita¨t Konstanz, D-78434 Konstanz, Germany Received 7 November 1996/Accepted 18 February 1997 Organosulfonates are important natural and man-made compounds, but until recently (T. J. Lie, T. Pitta, E. R. Leadbetter, W. Godchaux III, and J. R. Leadbetter. Arch. Microbiol. 166:204–210, 1996), they were not believed to be dissimilated under anoxic conditions. We also chose to test whether alkane- and arenesulfonates could serve as electron sinks in respiratory metabolism. We generated 60 anoxic enrichment cultures in mineral salts medium which included several potential electron donors and a single organic sulfonate as an electron sink, and we used material from anaerobic digestors in communal sewage works as inocula. None of the four aromatic sulfonates, the three unsubstituted alkanesulfonates, or the N-sulfonate tested gave positive enrichment cultures requiring both the electron donor and electron sink for growth. Nine cultures utilizing the natural products taurine, cysteate, or isethionate were considered positive for growth, and all formed sulfide. Two clearly different pure cultures were examined. Putative Desulfovibrio sp. strain RZACYSA, with lactate as the electron donor, utilized sulfate, aminomethanesulfonate, taurine, isethionate, and cysteate, converting the latter to ammonia, acetate, and sulfide. Strain RZATAU was identified by 16S rDNA analysis as Bilophila wadsworthia. In the presence of, e.g., formate as the electron donor, it utilized, e.g., cysteate and isethionate and converted taurine quantitatively to cell material and products identified as ammonia, acetate, and sulfide. -
WO 2017/083351 Al 18 May 2017 (18.05.2017) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/083351 Al 18 May 2017 (18.05.2017) P O P C T (51) International Patent Classification: MCAVOY, Bonnie D.; 110 Canal Street, Lowell, Mas- C12N 1/20 (2006.01) A01N 41/08 (2006.01) sachusetts 01854 (US). C12N 1/21 (2006.01) C07C 403/24 (2006.01) (74) Agent: JACOBSON, Jill A.; FisherBroyles, LLP, 2784 C12N 15/75 (2006.01) A23L 33/175 (2016.01) Homestead Rd. #321, Santa Clara, California 9505 1 (US). A23K 10/10 (2016.01) A23L 5/44 (2016.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: kind of national protection available): AE, AG, AL, AM, PCT/US20 16/06 1081 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (22) International Filing Date: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, ' November 2016 (09.1 1.2016) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (25) Filing Language: English KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (26) Publication Language: English MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (30) Priority Data: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, 62/252,971 ' November 2015 (09. -
Mitochondrial Enzyme Activities in Liver Biopsies from Patients with Alcoholic Liver Disease
Gut: first published as 10.1136/gut.19.5.341 on 1 May 1978. Downloaded from Gut, 1978, 19, 341-344 Mitochondrial enzyme activities in liver biopsies from patients with alcoholic liver disease W. J. JENKINS AND T. J. PETERS From the Department ofMedicine, Royal Pnvtgraduate Medical School, London W12 OHS SUMMARY The hypothesis that mitochondrial damage is a significant factor in the pathogenesis of alcoholicliverdisease (ALD) was investigated by enzymic analysis ofmitochondrial fractions isolated from needle biopsy specimens from control patients, patients with fatty liver due to chronic alcoholism, and from patients with other forms of liver disease. Enzymes associated with the inner and outer mitochondrial membranes showed normal levels in ALD. Enzymes associated with the mitochondrial matrix, glutamate dehydrogenase, malate dehydrogenase and aspartate amino- transferase showed significantly raised levels in ALD, but the levels in patients with non-alcoholic liver disease were normal. In addition, analysis of the mitochondria by sucrose density gradient centrifugation revealed no differences between control tissue and liver from patients with alcoholic liver disease. These results do not indicate that there is significant mitochondrial damage in ALD. The raised mitochondrial matrix enzymes may represent an adaptive response to the ethanol load. Alcoholic liver disease (ALD) is a major clinical alcoholics the levels of marker enzymes for mito- problem of increasing importance, and alcoholic chondrial inner and outer membranes, and matrix cirrhosis is now the third main cause of death were assayed in liver biopsies from patients with http://gut.bmj.com/ between the ages of 25 and 65 years in the USA ALD, and compared with controls and with patients (Lieber, 1975). -
Epigenetics Versus Genetic Determinism
Epigenetics Versus Genetic Determinism 19/4/2018 Long ring fingers means you won’t get lost and more adventurous in bed. Blue eyes mean you may be brainier Blondes are better in bed but brunettes earn more Gingers hate the dentist more Bigger breasts are linked to bigger IQs You'll sneeze less with a bigger nose Longer legs means you are healthier Stubbier toes help you run faster Bigger lips lead to longer relationships An hour-glass waist makes you more fertile while a bigger bottom will give you brainier babies 1/6/2018 The 7 foods and drink you should NEVER take with these common medicines 1. Grapefruit: statins (Furanocoumarins) 2. Cheese and meat: antibiotics (Tyramine) 3. Fizzy drinks: ibuprofen (Acid) 4. Booze: painkillers and antihistamines (Detoxification) 5. Milk: antibiotics, ibuprofen (Calcium inactivates) 6. Kale: warfarin Vitamin K) painkillers 7. Tea and coffee: anti-psychotics (Caffeine) 1 Gene expression versus Epigenetics Measurements have been made of different biological markers related to changing gene expression – a process known as epigenetics and it has been found we are not beholden to our genes and that gene expression is changeable. Becoming Supernatural by Joe Dispenza 2017 Page 11 Genes don’t create disease. Instead our external and internal environment programs our genes to create disease. Becoming Supernatural by Joe Dispenza 2017 Page 11 2 Introduction Photons participate in many atomic and molecular interactions and changes. Recent biophysical research has detected ultra-weak photons or biophotonic emission in biological tissue. Biophotons - The Light in Our Cells. Marco Bischof. ISBN 3-86150-095-7 It is now established that plants, animals and human cells emit a very weak radiation which can be readily detected with an appropriate photomultiplier system. -
Involvement of Mitochondrial Dynamics in the Segregation of Mitochondrial Matrix Proteins During Stationary Phase Mitophagy
ARTICLE Received 5 Aug 2013 | Accepted 17 Oct 2013 | Published 18 Nov 2013 DOI: 10.1038/ncomms3789 Involvement of mitochondrial dynamics in the segregation of mitochondrial matrix proteins during stationary phase mitophagy Hagai Abeliovich1,2, Mostafa Zarei3,4,5,*, Kristoffer T.G. Rigbolt3,4,5,*, Richard J. Youle2 & Joern Dengjel3,4,5 Mitophagy, the autophagic degradation of mitochondria, is an important housekeeping function in eukaryotic cells, and defects in mitophagy correlate with ageing phenomena and with several neurodegenerative disorders. A central mechanistic question regarding mitophagy is whether mitochondria are consumed en masse, or whether an active process segregates defective molecules from functional ones within the mitochondrial network, thus allowing a more efficient culling mechanism. Here we combine a proteomic study with a molecular genetics and cell biology approach to determine whether such a segregation process occurs in yeast mitochondria. We find that different mitochondrial matrix proteins undergo mitophagic degradation at distinctly different rates, supporting the active segregation hypothesis. These differential degradation rates depend on mitochondrial dynamics, suggesting a mechanism coupling weak physical segregation with mitochondrial dynamics to achieve a distillation-like effect. In agreement, the rates of mitophagic degradation strongly correlate with the degree of physical segregation of specific matrix proteins. 1 The Institute for Biochemistry, Food Science, and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, P.O. Box 12, Rehovot, Israel 76100. 2 Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Porter Neuroscience Research Center Building 35, Room 2C-917 35 Convent Drive, Bethesda, Maryland 20892-3704, USA. 3 FRIAS, Albertstr. -
12) United States Patent (10
US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S. -
Oxoglutarate Dehydrogenase Feng Qi1,2, Ranjan K Pradhan1, Ranjan K Dash1 and Daniel a Beard1*
Qi et al. BMC Biochemistry 2011, 12:53 http://www.biomedcentral.com/1471-2091/12/53 RESEARCHARTICLE Open Access Detailed kinetics and regulation of mammalian 2- oxoglutarate dehydrogenase Feng Qi1,2, Ranjan K Pradhan1, Ranjan K Dash1 and Daniel A Beard1* Abstract Background: Mitochondrial 2-oxoglutarate (a-ketoglutarate) dehydrogenase complex (OGDHC), a key regulatory point of tricarboxylic acid (TCA) cycle, plays vital roles in multiple pathways of energy metabolism and biosynthesis. The catalytic mechanism and allosteric regulation of this large enzyme complex are not fully understood. Here computer simulation is used to test possible catalytic mechanisms and mechanisms of allosteric regulation of the enzyme by nucleotides (ATP, ADP), pH, and metal ion cofactors (Ca2+ and Mg2+). Results: A model was developed based on an ordered ter-ter enzyme kinetic mechanism combined with con- formational changes that involve rotation of one lipoic acid between three catalytic sites inside the enzyme complex. The model was parameterized using a large number of kinetic data sets on the activity of OGDHC, and validated by comparison of model predictions to independent data. Conclusions: The developed model suggests a hybrid rapid-equilibrium ping-pong random mechanism for the kinetics of OGDHC, consistent with previously reported mechanisms, and accurately describes the experimentally observed regulatory effects of cofactors on the OGDHC activity. This analysis provides a single consistent theoretical explanation for a number of apparently contradictory results on the roles of phosphorylation potential, NAD (H) oxidation-reduction state ratio, as well as the regulatory effects of metal ions on ODGHC function. Background deamination of glutamate. OGDHC is a crucial target of The 2-oxoglutarate (a-ketoglutarate; aKG) dehydrogen- reactive oxygen species (ROS) and also able to generate ase complex (OGDHC, EC 1.2.4.2, EC 2.3.1.61, and EC ROS, which make it distinctly important for bioener- 1.6.4.3) is a multi-enzyme complex which catalyzes the getics [1]. -
Mitochondrialα-Ketoglutarate Dehydrogenase Complex
The Journal of Neuroscience, September 8, 2004 • 24(36):7779–7788 • 7779 Neurobiology of Disease Mitochondrial ␣-Ketoglutarate Dehydrogenase Complex Generates Reactive Oxygen Species Anatoly A. Starkov,1 Gary Fiskum,2 Christos Chinopoulos,2 Beverly J. Lorenzo,1 Susan E. Browne,1 Mulchand S. Patel,3 and M. Flint Beal1 1Department of Neurology and Neuroscience, Weill Medical College, Cornell University, New York, New York 10021, 2Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland 21202, and 3Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214 Mitochondria-produced reactive oxygen species (ROS) are thought to contribute to cell death caused by a multitude of pathological conditions. The molecular sites of mitochondrial ROS production are not well established but are generally thought to be located in complex I and complex III of the electron transport chain. We measured H2O2 production, respiration, and NADPH reduction level in rat brain mitochondria oxidizing a variety of respiratory substrates. Under conditions of maximum respiration induced with either ADP or ␣ carbonyl cyanide p-trifluoromethoxyphenylhydrazone, -ketoglutarate supported the highest rate of H2O2 production. In the absence of ADP or in the presence of rotenone, H2O2 production rates correlated with the reduction level of mitochondrial NADPH with various substrates, with the exception of ␣-ketoglutarate. Isolated mitochondrial ␣-ketoglutarate dehydrogenase (KGDHC) and pyruvate dehy- ϩ drogenase (PDHC) complexes produced superoxide and H2O2. NAD inhibited ROS production by the isolated enzymes and by perme- abilized mitochondria. We also measured H2O2 production by brain mitochondria isolated from heterozygous knock-out mice deficient in dihydrolipoyl dehydrogenase (Dld).