Diffusions, Superdiffusions and Partial Differential Equations E. B. Dynkin

Total Page:16

File Type:pdf, Size:1020Kb

Diffusions, Superdiffusions and Partial Differential Equations E. B. Dynkin Diffusions, superdiffusions and partial differential equations E. B. Dynkin Department of Mathematics, Cornell University, Malott Hall, Ithaca, New York, 14853 Contents Preface 7 Chapter 1. Introduction 11 1. Brownian and super-Brownian motions and differential equations 11 2. Exceptional sets in analysis and probability 15 3. Positive solutions and their boundary traces 17 Part 1. Parabolic equations and branching exit Markov systems 21 Chapter 2. Linear parabolic equations and diffusions 23 1. Fundamental solution of a parabolic equation 23 2. Diffusions 25 3. Poisson operators and parabolic functions 28 4. Regular part of the boundary 32 5. Green’s operators and equationu ˙ + Lu = −ρ 37 6. Notes 40 Chapter 3. Branching exit Markov systems 43 1. Introduction 43 2. Transition operators and V-families 46 3. From a V-family to a BEM system 49 4. Some properties of BEM systems 56 5. Notes 58 Chapter 4. Superprocesses 59 1. Definition and the first results 59 2. Superprocesses as limits of branching particle systems 63 3. Direct construction of superprocesses 64 4. Supplement to the definition of a superprocess 68 5. Graph of X 70 6. Notes 74 Chapter 5. Semilinear parabolic equations and superdiffusions 77 1. Introduction 77 2. Connections between differential and integral equations 77 3. Absolute barriers 80 4. Operators VQ 85 5. Boundary value problems 88 6. Notes 91 3 4 CONTENTS Part 2. Elliptic equations and diffusions 93 Chapter 6. Linear elliptic equations and diffusions 95 1. Basic facts on second order elliptic equations 95 2. Time homogeneous diffusions 100 3. Probabilistic solution of equation Lu = au 104 4. Notes 106 Chapter 7. Positive harmonic functions 107 1. Martin boundary 107 2. The existence of an exit point ξζ− on the Martin boundary 109 3. h-transform 112 4. Integral representation of positive harmonic functions 113 5. Extreme elements and the tail σ-algebra 116 6. Notes 117 Chapter 8. Moderate solutions of Lu = ψ(u) 119 1. Introduction 119 2. From parabolic to elliptic setting 119 3. Moderate solutions 123 4. Sweeping of solutions 126 5. Lattice structure of U 128 6. Notes 131 Chapter 9. Stochastic boundary values of solutions 133 1. Stochastic boundary values and potentials 133 2. Classes Z1 and Z0 136 3. A relation between superdiffusions and conditional diffusions 138 4. Notes 140 Chapter 10. Rough trace 141 1. Definition and preliminary discussion 141 2. Characterization of traces 145 3. Solutions wB with Borel B 147 4. Notes 151 Chapter 11. Fine trace 153 1. Singularity set SG(u) 153 2. Convexity properties of VD 155 3. Functions Ju 156 4. Properties of SG(u) 160 5. Fine topology in E0 161 6. Auxiliary propositions 162 7. Fine trace 163 8. On solutions wO 165 9. Notes 166 Chapter 12. Martin capacity and classes N1 and N0 167 1. Martin capacity 167 2. Auxiliary propositions 168 3. Proof of the main theorem 170 CONTENTS 5 4. Notes 172 Chapter 13. Null sets and polar sets 173 1. Null sets 173 2. Action of diffeomorphisms on null sets 175 3. Supercritical and subcritical values of α 177 4. Null sets and polar sets 179 5. Dual definitions of capacities 182 6. Truncating sequences 184 7. Proof of the principal results 192 8. Notes 198 Chapter 14. Survey of related results 203 1. Branching measure-valued processes 203 2. Additive functionals 205 3. Path properties of the Dawson-Watanabe superprocess 207 4. A more general operator L 208 5. Equation Lu = −ψ(u) 209 6. Equilibrium measures for superdiffusions 210 7. Moments of higher order 211 8. Martingale approach to superdiffusions 213 9. Excessive functions for superdiffusions and the corresponding h-transforms 214 10. Infinite divisibility and the Poisson representation 215 11. Historical superprocesses and snakes 217 Appendix A. Basic facts on Markov processes and martingales 219 1. Multiplicative systems theorem 219 2. Stopping times 220 3. Markov processes 220 4. Martingales 224 Appendix B. Facts on elliptic differential equations 227 1. Introduction 227 2. The Brandt and Schauder estimates 227 3. Upper bound for the Poisson kernel 228 Epilogue 231 1. σ-moderate solutions 231 2. Exceptional boundary sets 231 3. Exit boundary for a superdiffusion 232 Bibliography 235 Subject Index 243 Notation Index 245 Preface Interactions between the theory of partial differential equations of elliptic and parabolic types and the theory of stochastic processes are beneficial for, both, prob- ability theory and analysis. At the beginning, mostly analytic results were used by probabilists. More recently, the analysts (and physicists) took inspiration from the probabilistic approach. Of course, the development of analysis, in general, and of theory of partial differential equations, in particular, was motivated to a great ex- tent by the problems in physics. A difference between physics and probability is that the latter provides not only an intuition but also rigorous mathematical tools for proving theorems. The subject of this book is connections between linear and semilinear differ- ential equations and the corresponding Markov processes called diffusions and su- perdiffusions. A diffusion is a model of a random motion of a single particle. It is characterized by a second order elliptic differential operator L. A special case is the Brownian motion corresponding to the Laplacian ∆. A superdiffusion describes a random evolution of a cloud of particles. It is closely related to equations involving an operator Lu − ψ(u). Here ψ belongs to a class of functions which contains, in particular ψ(u)=uα with α>1. Fundamental contributions to the analytic theory of equations (0.1) Lu = ψ(u) and (0.2)u ˙ + Lu = ψ(u) were made by Keller, Osserman, Brezis and Strauss, Loewner and Nirenberg, Brezis and V´eron,Baras and Pierre, Marcus and V´eron. A relation between the equation (0.1) and superdiffusions was established, first, by S. Watanabe. Dawson and Perkins obtained deep results on the path behavior of the super-Brownian motion. For applying a superdiffusion to partial differential equations it is insufficient to consider the mass distribution of a random cloud at fixed times t. A model of a superdiffusion as a system of exit measures from time- space open sets was developed in [Dyn91c], [Dyn92], [Dyn93]. In particular, a branching property and a Markov property of such system were established and used to investigate boundary value problems for semilinear equations. In the present book we deduce the entire theory of superdiffusion from these properties. We use a combination of probabilistic and analytic tools to investigate positive solutions of equations (0.1) and (0.2). In particular, we study removable singulari- ties of such solutions and a characterization of a solution by its trace on the bound- ary. These problems were investigated recently by a number of authors. Marcus and V´eron used purely analytic methods. Le Gall, Dynkin and Kuznetsov combined 7 8 PREFACE probabilistic and analytic approach. Le Gall invented a new powerful probabilistic tool — a path-valued Markov process called the Brownian snake. In his pioneer- ing work he used this tool to describe all solutions of the equation ∆u = u2 in a bounded smooth planar domain. Most of the book is devoted to a systematic presentation (in a more general setting, with simplified proofs) of the results obtained since 1988 in a series of papers of Dynkin and Dynkin and Kuznetsov. Many results obtained originally by using superdiffusions are extended in the book to more general equations by applying a combination of diffusions with purely analytic methods. Almost all chapters involve a mixture of probability and analysis. Exceptions are Chapters 7 and 9 where the probability prevails and Chapter 13 where it is absent. Independently of the rest of the book, Chapter 7 can serve as an introduction to the Martin boundary theory for diffusions based on Hunt’s ideas. A contribution to the theory of Markov processes is also a new form of the strong Markov property in a time inhomogeneous setting. The theory of parabolic partial differential equations has a lot of similarities with the theory of elliptic equations. Many results on elliptic equations can be easily deduced from the results on parabolic equations. On the other hand, the analytic technique needed in the parabolic setting is more complicated and the most results are easier to describe in the elliptic case. We consider a parabolic setting in Part 1 of the book. This is necessary for constructing our principal probabilistic model — branching exit Markov systems. Superprocesses (including superdiffusions) are treated as a special case of such sys- tems. We discuss connections between linear parabolic differential equations and diffusions and between semilinear parabolic equations and superdiffusions. (Diffu- sions and superdiffusions in Part 1 are time inhomogeneous processes.) In Part 2 we deal with elliptic differential equations and with time-homogeneous diffusions and superdiffusions. We apply, when it is possible, the results of Part 1. The most of Part 2 is devoted to the characterization of positive solutions of equation (0.1) by their traces on the boundary and to the study of the boundary singularities of such solutions (both, from analytic and probabilistic points of view). Parabolic counterparts of these results are less complete. Some references to them can be found in bibliographical notes in which we describe the relation of the material presented in each chapter to the literature on the subject. Chapter 1 is an informal introduction where we present some of the basic ideas and tools used in the rest of the book. We consider an elliptic setting and, to simplify the presentation, we restrict ourselves to a particular case of the Laplacian ∆ (for L) and to the Brownian and super-Brownian motions instead of general diffusions and superdiffusions.
Recommended publications
  • Superprocesses and Mckean-Vlasov Equations with Creation of Mass
    Sup erpro cesses and McKean-Vlasov equations with creation of mass L. Overb eck Department of Statistics, University of California, Berkeley, 367, Evans Hall Berkeley, CA 94720, y U.S.A. Abstract Weak solutions of McKean-Vlasov equations with creation of mass are given in terms of sup erpro cesses. The solutions can b e approxi- mated by a sequence of non-interacting sup erpro cesses or by the mean- eld of multityp e sup erpro cesses with mean- eld interaction. The lat- ter approximation is asso ciated with a propagation of chaos statement for weakly interacting multityp e sup erpro cesses. Running title: Sup erpro cesses and McKean-Vlasov equations . 1 Intro duction Sup erpro cesses are useful in solving nonlinear partial di erential equation of 1+ the typ e f = f , 2 0; 1], cf. [Dy]. Wenowchange the p oint of view and showhowtheyprovide sto chastic solutions of nonlinear partial di erential Supp orted byanFellowship of the Deutsche Forschungsgemeinschaft. y On leave from the Universitat Bonn, Institut fur Angewandte Mathematik, Wegelerstr. 6, 53115 Bonn, Germany. 1 equation of McKean-Vlasovtyp e, i.e. wewant to nd weak solutions of d d 2 X X @ @ @ + d x; + bx; : 1.1 = a x; t i t t t t t ij t @t @x @x @x i j i i=1 i;j =1 d Aweak solution = 2 C [0;T];MIR satis es s Z 2 t X X @ @ a f = f + f + d f + b f ds: s ij s t 0 i s s @x @x @x 0 i j i Equation 1.1 generalizes McKean-Vlasov equations of twodi erenttyp es.
    [Show full text]
  • Lecture 19 Semimartingales
    Lecture 19:Semimartingales 1 of 10 Course: Theory of Probability II Term: Spring 2015 Instructor: Gordan Zitkovic Lecture 19 Semimartingales Continuous local martingales While tailor-made for the L2-theory of stochastic integration, martin- 2,c gales in M0 do not constitute a large enough class to be ultimately useful in stochastic analysis. It turns out that even the class of all mar- tingales is too small. When we restrict ourselves to processes with continuous paths, a naturally stable family turns out to be the class of so-called local martingales. Definition 19.1 (Continuous local martingales). A continuous adapted stochastic process fMtgt2[0,¥) is called a continuous local martingale if there exists a sequence ftngn2N of stopping times such that 1. t1 ≤ t2 ≤ . and tn ! ¥, a.s., and tn 2. fMt gt2[0,¥) is a uniformly integrable martingale for each n 2 N. In that case, the sequence ftngn2N is called the localizing sequence for (or is said to reduce) fMtgt2[0,¥). The set of all continuous local loc,c martingales M with M0 = 0 is denoted by M0 . Remark 19.2. 1. There is a nice theory of local martingales which are not neces- sarily continuous (RCLL), but, in these notes, we will focus solely on the continuous case. In particular, a “martingale” or a “local martingale” will always be assumed to be continuous. 2. While we will only consider local martingales with M0 = 0 in these notes, this is assumption is not standard, so we don’t put it into the definition of a local martingale. tn 3.
    [Show full text]
  • Deep Optimal Stopping
    Journal of Machine Learning Research 20 (2019) 1-25 Submitted 4/18; Revised 1/19; Published 4/19 Deep Optimal Stopping Sebastian Becker [email protected] Zenai AG, 8045 Zurich, Switzerland Patrick Cheridito [email protected] RiskLab, Department of Mathematics ETH Zurich, 8092 Zurich, Switzerland Arnulf Jentzen [email protected] SAM, Department of Mathematics ETH Zurich, 8092 Zurich, Switzerland Editor: Jon McAuliffe Abstract In this paper we develop a deep learning method for optimal stopping problems which directly learns the optimal stopping rule from Monte Carlo samples. As such, it is broadly applicable in situations where the underlying randomness can efficiently be simulated. We test the approach on three problems: the pricing of a Bermudan max-call option, the pricing of a callable multi barrier reverse convertible and the problem of optimally stopping a fractional Brownian motion. In all three cases it produces very accurate results in high- dimensional situations with short computing times. Keywords: optimal stopping, deep learning, Bermudan option, callable multi barrier reverse convertible, fractional Brownian motion 1. Introduction N We consider optimal stopping problems of the form supτ E g(τ; Xτ ), where X = (Xn)n=0 d is an R -valued discrete-time Markov process and the supremum is over all stopping times τ based on observations of X. Formally, this just covers situations where the stopping decision can only be made at finitely many times. But practically all relevant continuous- time stopping problems can be approximated with time-discretized versions. The Markov assumption means no loss of generality. We make it because it simplifies the presentation and many important problems already are in Markovian form.
    [Show full text]
  • Optimal Stopping Time and Its Applications to Economic Models
    OPTIMAL STOPPING TIME AND ITS APPLICATIONS TO ECONOMIC MODELS SIVAKORN SANGUANMOO Abstract. This paper gives an introduction to an optimal stopping problem by using the idea of an It^odiffusion. We then prove the existence and unique- ness theorems for optimal stopping, which will help us to explicitly solve opti- mal stopping problems. We then apply our optimal stopping theorems to the economic model of stock prices introduced by Samuelson [5] and the economic model of capital goods. Both economic models show that those related agents are risk-loving. Contents 1. Introduction 1 2. Preliminaries: It^odiffusion and boundary value problems 2 2.1. It^odiffusions and their properties 2 2.2. Harmonic function and the stochastic Dirichlet problem 4 3. Existence and uniqueness theorems for optimal stopping 5 4. Applications to an economic model: Stock prices 11 5. Applications to an economic model: Capital goods 14 Acknowledgments 18 References 19 1. Introduction Since there are several outside factors in the real world, many variables in classi- cal economic models are considered as stochastic processes. For example, the prices of stocks and oil do not just increase due to inflation over time but also fluctuate due to unpredictable situations. Optimal stopping problems are questions that ask when to stop stochastic pro- cesses in order to maximize utility. For example, when should one sell an asset in order to maximize his profit? When should one stop searching for the keyword to obtain the best result? Therefore, many recent economic models often include op- timal stopping problems. For example, by using optimal stopping, Choi and Smith [2] explored the effectiveness of the search engine, and Albrecht, Anderson, and Vroman [1] discovered how the search cost affects the search for job candidates.
    [Show full text]
  • Stochastic Processes and Their Applications to Change Point Detection Problems
    City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 6-2016 Stochastic Processes And Their Applications To Change Point Detection Problems Heng Yang Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/1316 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Stochastic Processes And Their Applications To Change Point Detection Problems by Heng Yang A dissertation submitted to the Graduate Faculty in Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2016 ii c 2016 Heng Yang All Rights Reserved iii This manuscript has been read and accepted by the Graduate Faculty in Mathematics in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. Professor Olympia Hadjiliadis Date Chair of Examining Committee Professor Ara Basmajian Date Executive Officer Professor Olympia Hadjiliadis Professor Elena Kosygina Professor Tobias Sch¨afer Professor Mike Ludkovski Supervisory Committee The City University of New York iv Stochastic Processes And Their Applications To Change Point Detection Problems by Heng Yang Adviser: Professor Olympia Hadjiliadis Abstract This dissertation addresses the change point detection problem when either the post- change distribution has uncertainty or the post-change distribution is time inhomogeneous. In the case of post-change distribution uncertainty, attention is drawn to the construction of a family of composite stopping times.
    [Show full text]
  • Arxiv:2003.06465V2 [Math.PR]
    OPTIMAL STOPPING OF STOCHASTIC TRANSPORT MINIMIZING SUBMARTINGALE COSTS NASSIF GHOUSSOUB, YOUNG-HEON KIM AND AARON ZEFF PALMER Abstract. Given a stochastic state process (Xt)t and a real-valued submartingale cost process (St)t, we characterize optimal stopping times τ that minimize the expectation of Sτ while realizing given initial and target distributions µ and ν, i.e., X0 ∼ µ and Xτ ∼ ν. A dual optimization problem is considered and shown to be attained under suitable conditions. The optimal solution of the dual problem then provides a contact set, which characterizes the location where optimal stopping can occur. The optimal stopping time is uniquely determined as the first hitting time of this contact set provided we assume a natural structural assumption on the pair (Xt,St)t, which generalizes the twist condition on the cost in optimal transport theory. This paper extends the Brownian motion settings studied in [15, 16] and deals with more general costs. Contents 1. Introduction 1 2. Weak Duality and Dynamic Programming 4 2.1. Notation and Definitions 4 2.2. Dual formulation 5 2.3. Dynamic programming dual formulation 6 3. Pointwise Bounds 8 4. Dual Attainment in the Discrete Setting 10 5. Dual Attainment in Hilbert Space 11 5.1. When the cost is the expected stopping time 14 6. The General Twist Condition 14 Appendix A. Recurrent Processes 16 A.1. Dual attainment 17 A.2. When the cost is the expected stopping time 20 Appendix B. Path Monotonicity 21 References 21 arXiv:2003.06465v2 [math.PR] 22 Dec 2020 1. Introduction Given a state process (Xt)t valued in a complete metric space O, an initial distribution µ, and a target distribution ν on O, we consider the set T (µ,ν) of -possibly randomized- stopping times τ that satisfy X0 ∼ µ and Xτ ∼ ν, where here, and in the sequel, the notation Y ∼ λ means that the law of the random variable Y is the probability measure λ.
    [Show full text]
  • Superdiffusions with Large Mass Creation--Construction and Growth
    SUPERDIFFUSIONS WITH LARGE MASS CREATION — CONSTRUCTION AND GROWTH ESTIMATES ZHEN-QING CHEN AND JÁNOS ENGLÄNDER Abstract. Superdiffusions corresponding to differential operators of the form Lu + βu − αu2 with large mass creation term β are studied. Our construction for superdiffusions with large mass creations works for the branching mechanism βu − αu1+γ ; 0 < γ < 1; as well. d d Let D ⊆ R be a domain in R . When β is large, the generalized principal eigenvalue λc of L+β in D is typically infinite. Let fTt; t ≥ 0g denote the Schrödinger semigroup of L + β in D with zero Dirichlet boundary condition. Under the mild assumption that there exists an 2 0 < h 2 C (D) so that Tth is finite-valued for all t ≥ 0, we show that there is a unique Mloc(D)-valued Markov process that satisfies a log-Laplace equation in terms of the minimal nonnegative solution to a semilinear initial value problem. Although for super-Brownian motion (SBM) this assumption requires β be less than quadratic, the quadratic case will be treated as well. When λc = 1, the usual machinery, including martingale methods and PDE as well as other similar techniques cease to work effectively, both for the construction and for the investigation of the large time behavior of the superdiffusions. In this paper, we develop the following two new techniques in the study of local/global growth of mass and for the spread of the superdiffusions: • a generalization of the Fleischmann-Swart ‘Poissonization-coupling,’ linking superprocesses with branching diffusions; • the introduction of a new concept: the ‘p-generalized principal eigenvalue.’ The precise growth rate for the total population of SBM with α(x) = β(x) = 1 + jxjp for p 2 [0; 2] is given in this paper.
    [Show full text]
  • A Reverse Aldous-Broder Algorithm
    Annales de l’Institut Henri Poincaré - Probabilités et Statistiques 2021, Vol. 57, No. 2, 890–900 https://doi.org/10.1214/20-AIHP1101 © Association des Publications de l’Institut Henri Poincaré, 2021 A reverse Aldous–Broder algorithm Yiping Hua,1, Russell Lyonsb,2 and Pengfei Tangb,c,3 aDepartment of Mathematics, University of Washington, Seattle, USA. E-mail: [email protected] bDepartment of Mathematics, Indiana University, Bloomington, USA. E-mail: [email protected] cCurrent affiliation: Department of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel. E-mail: [email protected] Received 24 July 2019; accepted 28 August 2020 Abstract. The Aldous–Broder algorithm provides a way of sampling a uniformly random spanning tree for finite connected graphs using simple random walk. Namely, start a simple random walk on a connected graph and stop at the cover time. The tree formed by all the first-entrance edges has the law of a uniform spanning tree. Here we show that the tree formed by all the last-exit edges also has the law of a uniform spanning tree. This answers a question of Tom Hayes and Cris Moore from 2010. The proof relies on a bijection that is related to the BEST theorem in graph theory. We also give other applications of our results, including new proofs of the reversibility of loop-erased random walk, of the Aldous–Broder algorithm itself, and of Wilson’s algorithm. Résumé. L’algorithme d’Aldous–Broder fournit un moyen d’échantillonner un arbre couvrant aléatoire uniforme pour des graphes connexes finis en utilisant une marche aléatoire simple.
    [Show full text]
  • 1 Stopping Times
    Copyright c 2006 by Karl Sigman 1 Stopping Times 1.1 Stopping Times: Definition Given a stochstic process X = {Xn : n ≥ 0}, we view Xn as representing the state of some system at time n.A random time τ is a discrete random variable taking values in the time set IN = {0, 1, 2,...}. Xτ then denotes the state of the system at the random time τ; if τ = n, then th Xτ = Xn. If Xn denotes our total fortune right after the n gamble, then it would be of interest to consider when (at what time n) to stop gambling. If we think of τ as representing such a time to stop (the first time that your fortune reaches $1000 for example), it seems reasonable that our decision can only depend on what has happened up to that time; information about the future would not be known and thus could not be used to determine our decision to stop. This is the essence of what is called a stopping time, which we shall introduce shortly. First we need to formalize the notion of “what has happened up to that time”, and this involves information of the stochastic process in question. The total information known up to time n is all the information (events) contained in {X0,...,Xn}. The point is that we gain more and more information about the process by observing its values consecutively over time. Definition 1.1 Let X = {Xn : n ≥ 0} be a stochastic process. A stopping time with respect to X is a random time such that for each n ≥ 0, the event {τ = n} is completely determined by (at most) the total information known up to time n, {X0,...,Xn}.
    [Show full text]
  • A Trajectorial Interpretation of Doob's Martingale Inequalities
    The Annals of Applied Probability 2013, Vol. 23, No. 4, 1494–1505 DOI: 10.1214/12-AAP878 c Institute of Mathematical Statistics, 2013 A TRAJECTORIAL INTERPRETATION OF DOOB’S MARTINGALE INEQUALITIES1 By B. Acciaio, M. Beiglbock,¨ F. Penkner, W. Schachermayer and J. Temme University of Vienna and University of Perugia, University of Vienna, University of Vienna, University of Vienna and University of Vienna We present a unified approach to Doob’s Lp maximal inequalities for 1 ≤ p< ∞. The novelty of our method is that these martingale inequalities are obtained as consequences of elementary deterministic counterparts. The latter have a natural interpretation in terms of robust hedging. Moreover, our deterministic inequalities lead to new versions of Doob’s maximal inequalities. These are best possible in the sense that equality is attained by properly chosen martingales. 1. Introduction. In this paper we derive estimates for the running max- imum of a martingale or nonnegative submartingale in terms of its terminal ¯ value. Given a function f we write f(t)=supu≤t f(u). Among other results, we establish the following martingale inequalities. T Theorem 1.1. Let (Sn)n=0 be a nonnegative submartingale. Then p p (Doob-Lp) E[S¯p ] ≤ E[Sp ], 1 <p< ∞, T p − 1 T e (Doob-L1) E[S¯ ] ≤ [E[S log(S )] + E[S (1 − log(S ))]]. T e − 1 T T 0 0 Here (Doob-Lp) is the classical Doob Lp-inequality, p ∈ (1, ∞) [8], The- orem 3.4. The second result (Doob-L1) represents the Doob L1-inequality in the sharp form derived by Gilat [10] from the L log L Hardy–Littlewood arXiv:1202.0447v4 [math.PR] 19 Jul 2013 inequality.
    [Show full text]
  • Optimal Stopping Time Problem for Random Walks with Polynomial Reward Functions Udc 519.21
    Teor Imovr. ta Matem. Statist. Theor. Probability and Math. Statist. Vip. 86, 2012 No. 86, 2013, Pages 155–167 S 0094-9000(2013)00895-3 Article electronically published on August 20, 2013 OPTIMAL STOPPING TIME PROBLEM FOR RANDOM WALKS WITH POLYNOMIAL REWARD FUNCTIONS UDC 519.21 YU. S. MISHURA AND V. V. TOMASHYK Abstract. The optimal stopping time problem for random walks with a drift to the left and with a polynomial reward function is studied by using the Appel polynomials. An explicit form of optimal stopping times is obtained. 1. Introduction The stopping time problem for stochastic processes has several important applications for the modelling of the optimal behavior of brokers and dealers trading securities in financial markets. The classical approach to solving the optimal stopping time problem is based on the excessive functions needed to determine the so-called reference set that defines explicitly the optimal stopping time [1–3]. An entirely different approach to the solution of the optimal stopping time problem is used in this paper. Namely, our method is based on an application of the Appel polynomials (see [4, 5]). This paper is a continuation of studies initiated in [6] and is devoted to a generalization of some results obtained in [4]. Let ξ,ξ1,ξ2,... be a sequence of independent identically distributed random variables defined on a probability space (Ω, , P)andsuchthatE ξ<0. Consider a homogeneous Markov chain X =(X1,X2,X3,...) related to the sequence {ξi} as follows: k X0 = x ∈ R,Xk = x + Sk,S0 =0,Sk = ξi,k≥ 1. i=1 We denote by Px the probability distribution generated by the process X.Thus,Px, x ∈ R, together with X defines a Markov family with respect to the filtration (k)k≥0, where 0 = {∅, Ω} and k = σ{ξ1,...,ξk}, k ≥ 1.
    [Show full text]
  • Advanced Probability
    Advanced Probability Alan Sola Department of Pure Mathematics and Mathematical Statistics University of Cambridge [email protected] Michaelmas 2014 Contents 1 Conditional expectation 4 1.1 Basic objects: probability measures, σ-algebras, and random variables . .4 1.2 Conditional expectation . .8 1.3 Integration with respect to product measures and Fubini's theorem . 12 2 Martingales in discrete time 15 2.1 Basic definitions . 15 2.2 Stopping times and the optional stopping theorem . 16 2.3 The martingale convergence theorem . 20 2.4 Doob's inequalities . 22 2.5 Lp-convergence for martingales . 24 2.6 Some applications of martingale techniques . 26 3 Stochastic processes in continuous time 31 3.1 Basic definitions . 31 3.2 Canonical processes and sample paths . 36 3.3 Martingale regularization theorem . 38 3.4 Convergence and Doob's inequalities in continuous time . 40 3.5 Kolmogorov's continuity criterion . 42 3.6 The Poisson process . 44 1 4 Weak convergence 46 4.1 Basic definitions . 46 4.2 Characterizations of weak convergence . 49 4.3 Tightness . 51 4.4 Characteristic functions and L´evy'stheorem . 53 5 Brownian motion 56 5.1 Basic definitions . 56 5.2 Construction of Brownian motion . 59 5.3 Regularity and roughness of Brownian paths . 61 5.4 Blumenthal's 01-law and martingales for Brownian motion . 62 5.5 Strong Markov property and reflection principle . 67 5.6 Recurrence, transience, and connections with partial differential equations . 70 5.7 Donsker's invariance principle . 76 6 Poisson random measures and L´evyprocesses 81 6.1 Basic definitions .
    [Show full text]