Trace Class, Widths and the Finite Approximation Property in Banach Space

Total Page:16

File Type:pdf, Size:1020Kb

Trace Class, Widths and the Finite Approximation Property in Banach Space BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 79, Number 1, January 1973 TRACE CLASS, WIDTHS AND THE FINITE APPROXIMATION PROPERTY IN BANACH SPACE BY R. A. GOLDSTEIN AND R. SAEKS Communicated by Robert G. Bartle, June 21, 1972 I. Introduction. Although there have been a number of attempts [3] to define operator classes in Banach space whose properties are analogous to the classical trace class operators of Hubert space [1], [2] it is generally agreed that a satisfactory definition has yet to be achieved [3]. The purpose of the present note is to introduce a new approach to the problem wherein operator widths [2], [4] in Banach space replace the eigenvalues of the Hubert space formulation ; the viability of the approach being illustrated by the formulation of a number of sufficient conditions for an operator to have the finite approximation property in terms of its widths. Moreover, unlike the previous approaches [3] the trace class operators defined via operator widths are representation independent and coincide exactly with the classical definitions in Hilbert space. II. Definitions and results. In the sequel X is a Banach space normed by ||-||, B is the unit ball in X and 5£n is the set of n-dimensional subspaces of B. The nth width, dn{A\ of an operator A on X is defined [4] by (1) dn(A) = inf sup inf||^w — v\\. Le&n ueB veL Classically, Kolmogorov [4] defined the nth width of a set to be a measure of the degree to which the set could be approximated by n-dimensional subspaces, the definition of equation (1) being that of Kolmogorov applied to A(B). Some remarks concerning the sequence {dn{A)} are as follows : (a) d0(A)=\\A\\; (b) {dn(A)} is a nonincreasing sequence and dn(A) -> 0 iff A is a compact operator ; (c) (see for example [2]) for X a Hilbert space and A a compact linear 1/2 1/2 operator on X, set sn(A) = K((A*A) ) = the nth eigenvalue of (A*A) (n = 1,2,...) (these are called the s numbers or characteristic numbers of n A). Then dn(A) = sn+1(A) ( = °> 1,2,...). A is an Hilbert-Schmidt or nuclear operator if the sequence {s„(,4)} is an l2 or lx sequence. AMS (MOS) subject classifications (1970). Primary 47B05, 47B10, 35P05, 35P10, 46B99. Key words and phrases. Widths, trace-class, finite approximation property, d-nuclear, compact operator. Copyright © American Mathematical Society 1973 License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use57 58 R. A. GOLDSTEIN AND R. SAEKS [January We define the "trace" classes Dp of compact linear operators on a Banach space as p Dp = ) A compact, linear £ dn(A) < oo L. (In the case of a Hubert space they reduce to the classes Cp or Sp defined in [1] or [2].) Define ||.|L:D.-K by 1/p p \\A\L = Idn(A) .0 THEOREM 1. \\A\\p is a norm on Dp. An operator A e Dl will be called d-nuclear. Before proceeding to our main theorem on the approximation of trace class operators, we introduce another sequence, pn(X\ of positive numbers — which characterize the Banach space X rather than the operator A — defined by pn(X) = sup inf \\P(L)\\, Le^n P(L)ePL. where j£?„ denotes the set of all n-dimensional linear subspaces of X, and PL denotes the set of all projections into the subspace L. (i) 1 S pn(X) S n. (ii) If * is a Hubert space, pn(X) = 1 (Vn). (iii) pn(X) = pn(X*) if X is reflective. (iv) Murray [5] has shown that pn(X) grows linearly with n for X = Lp or lp (p 4 2). We say that A has the finite approximation property iff 3 a sequence of operators, Ani with finite-dimensional ranges, such that \\A — An\\ -> 0 as n -> oo. THEOREM 2. Let A be a compact operator on X such that Urn [dn(A)Pn(X)] = 0. n-* oo Then A has the finite approximation property. Since, in Hilbert space pn(X) = 1, and dn(A) -> 0 for A compact, we trivially obtain the classical result COROLLARY 3. Every compact operator on a Hilbert space has the finite approximation property. License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 1973] THE FINITE APPROXIMATION PROPERTY IN BANACH SPACE 59 Although we are not able to answer the classical conjecture on the finite approximation property for any compact operator on a Banach space we can observe COROLLARY 4. Every A e Dx has the finite approximation property. 1+e This holds because {dn(A)}elu hence dn(A) = 0(l/n ) (s > 0) and 1+B 8 dn(A)pn(X) = 0(n • l/n ) = 0(n~ ) (n -> oo). The standard examples of nuclear operators in Hubert space have natural analogs in Banach space to which the corollary applies. In particular, the injection maps of Sobolev spaces WQ,P into LP is d-nuclear, and integral operators with smooth kernels on Lp into Lp are d-nuclear. PROOF OF THEOREM 2. dJA) = min max |Ux — L\\ = min max max ||x*Ax|| " LeJSPn||x|| = l LeJ?n \\x\\ = \ x*eL±;\x*\ = \ = min max ||/l*x*|L where X* => LJ is the annihilator of L. Le<en y*eV-\\x*\ = l A LEMMA. P{L)* = 1 - P(L ). Let L e ^£n be the minimizing subspace for dn(A) (which exists since A is compact). Then 3 a projection Pn — P{L) such ||PJ = 0(pn(X)). Set We then have Since Umi = ||1 - P„|| g 1 + ||PB||, we have 2p„(X)dn(A) ^ sup|M*Pix*||/||x*|| = |M*Pi|| = ||(1 - Pn)A\l X* Setting An = PnA, \\A ~ An\\ = 0(dn(A)pn(X)) and the theorem is proved. We conjecture that the condition of Theorem 2 is also necessary. ACKNOWLEDGEMENT. The authors wish to express their gratitude to Professor Abraham Goetz whose insights and suggestions help to guide and formulate their work. REFERENCES 1. N. Dunford and J. T. Schwartz, Linear operators. II: Spectral theory. Selfadjoint operators in Hubert space, Interscience, New York, 1963. MR 32 #6181. 2. I. C. Gohberg and M. G. Kreïn, Introduction to the theory of linear nonse If adjoint operators in Hilbert space, "Nauka", Moscow, 1965; English transi., Transi. Math. Mono­ graphs, vol. 18, Amer. Math. Soc, Providence, R.I., 1969. MR 36 #3137. 3. I. M. Gel'fand and N. Ja. Vilenkin, Generalized functions. Vol. 4: Some applications of harmonic analysis, Fizmatgiz, Moscow, 1961 ; English transi., Academic Press, New York, 1964. MR 26 #4173; MR 30 #4152. License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 60 R. A. GOLDSTEIN AND R. SAEKS 4. G. G. Lorentz, Approximation of functions, Holt, Rinehart and Winston, New York, 1966. MR 35 #4642. 5. F. J. Murray, On complementary manifolds and projections in spaces Lv and L, Trans. Amer. Math. Soc. 41 (1937), 138-152. 6. L. Nirenberg, Functional analysis, Lecture Notes, New York University, 1961. DEPARTMENT OF MATHEMATICS AND THE DEPARTMENT OF ELECTRICAL ENGINEERING, UNIVERSITY OF NOTRE DAME, NOTRE DAME, INDIANA 46556 License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use.
Recommended publications
  • L2-Theory of Semiclassical Psdos: Hilbert-Schmidt And
    2 LECTURE 13: L -THEORY OF SEMICLASSICAL PSDOS: HILBERT-SCHMIDT AND TRACE CLASS OPERATORS In today's lecture we start with some abstract properties of Hilbert-Schmidt operators and trace class operators. Then we will investigate the following natural t questions: for which class of symbols, the quantized operator Op~(a) is a Hilbert- Schmidt or trace class operator? How to compute its trace? 1. Hilbert-Schmidt and Trace class operators: Abstract theory { Definitions via singular values. As we have mentioned last time, we are aiming at developing the spectral theory for semiclassical pseudodifferential operators. For a 2 S(m), where m is a decaying t 2 n symbol, we showed that Op~(a) is a compact operator acting on L (R ). As a t consequence, either Op~(a) has only finitely many nonzero eigenvalues, or it has infinitely nonzero eigenvalues which can be arranged to a sequence whose norms converges to 0. However, in general the eigenvalues of a compact operator A are non-real. A very simple way to get real eigenvalues is to consider the operator A∗A, which is 1 a compact self-adjoint linear operator acting on L2(Rn). Thus the eigenvalues of A∗A can be list2 in decreasing order as 2 2 2 s1 ≥ s2 ≥ s3 ≥ · · · : The numbers sj (which will always be taken to be the positive one) are called the singular values of A. Definition 1.1. We say a compact operator3 A is a Hilbert-Schmidt operator if !1=2 X 2 (1) kAkHS := sj < +1: j The number kAkHS is called the Hilbert-Schmidt norm (or Schatten 2-norm) of A.
    [Show full text]
  • Multivariable Approximation by Convolutional Kernel Networks
    ITAT 2016 Proceedings, CEUR Workshop Proceedings Vol. 1649, pp. 118–122 http://ceur-ws.org/Vol-1649, Series ISSN 1613-0073, c 2016 V. K˚urková Multivariable Approximation by Convolutional Kernel Networks Veraˇ K˚urková Institute of Computer Science, Academy of Sciences of the Czech, [email protected], WWW home page: http://www.cs.cas.cz/ vera ∼ Abstract: Computational units induced by convolutional widths parameters) benefit from geometrical properties of kernels together with biologically inspired perceptrons be- reproducing kernel Hilbert spaces (RKHS) generated by long to the most widespread types of units used in neu- these kernels. These properties allow an extension of rocomputing. Radial convolutional kernels with vary- the maximal margin classification from finite dimensional ing widths form RBF (radial-basis-function) networks and spaces also to sets of data which are not linearly separable these kernels with fixed widths are used in the SVM (sup- by embedding them into infinite dimensional spaces [2]. port vector machine) algorithm. We investigate suitabil- Moreover, symmetric positive semidefinite kernels gener- ity of various convolutional kernel units for function ap- ate stabilizers in the form of norms on RKHSs suitable for proximation. We show that properties of Fourier trans- modeling generalization in terms of regularization [6] and forms of convolutional kernels determine whether sets of enable characterizations of theoretically optimal solutions input-output functions of networks with kernel units are of learning tasks [3, 19, 11]. large enough to be universal approximators. We com- Arguments proving the universal approximation prop- pare these properties with conditions guaranteeing positive erty of RBF networks using sequences of scaled kernels semidefinitness of convolutional kernels.
    [Show full text]
  • GALERKIN APPROXIMATION in BANACH and HILBERT SPACES Wolfgang Arendt, Isabelle Chalendar, Robert Eymard
    GALERKIN APPROXIMATION IN BANACH AND HILBERT SPACES Wolfgang Arendt, Isabelle Chalendar, Robert Eymard To cite this version: Wolfgang Arendt, Isabelle Chalendar, Robert Eymard. GALERKIN APPROXIMATION IN BA- NACH AND HILBERT SPACES. 2019. hal-02264895v2 HAL Id: hal-02264895 https://hal.archives-ouvertes.fr/hal-02264895v2 Preprint submitted on 19 Dec 2019 (v2), last revised 9 Jul 2020 (v3) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. GALERKIN APPROXIMATION IN BANACH AND HILBERT SPACES W. ARENDT, I. CHALENDAR, AND R. EYMARD Abstract. In this paper we study the conforming Galerkin ap- proximation of the problem: find u such that a(u, v)= L, v for all v , where and are Hilbert∈U or Banach spaces, ha is ai continuous∈ V bilinear orU sesquilinearV form and L ′ a given data. The approximate solution is sought in a finite dimensional∈ V subspace of , and test functions are taken in a finite dimensional subspace of U. We provide a necessary and sufficient condition on the form a forV convergence of the Galerkin approximation, which is also equivalent to convergence of the Galerkin approximation for the adjoint problem. We also characterize the fact that has a finite dimensional Schauder decomposition in terms of propertiesU related to the Galerkin approximation.
    [Show full text]
  • Approximation Boundedness Surjectivity
    APPROXIMATION BOUNDEDNESS SURJECTIVITY Olav Kristian Nygaard Dr. scient. thesis, University of Bergen, 2001 Approximation, Boundedness, Surjectivity Olav Kr. Nygaard, 2001 ISBN 82-92-160-08-6 Contents 1Theframework 9 1.1 Separability, bases and the approximation property ....... 13 1.2Thecompletenessassumption................... 16 1.3Theoryofclosed,convexsets................... 19 2 Factorization of weakly compact operators and the approximation property 25 2.1Introduction............................. 25 2.2 Criteria of the approximation property in terms of the Davis- Figiel-Johnson-Pe'lczy´nskifactorization.............. 27 2.3Uniformisometricfactorization.................. 33 2.4 The approximation property and ideals of finite rank operators 36 2.5 The compact approximation property and ideals of compact operators.............................. 39 2.6 From approximation properties to metric approximation prop- erties................................. 41 3 Boundedness and surjectivity 49 3.1Introduction............................. 49 3.2Somemorepreliminaries...................... 52 3.3 The boundedness property in normed spaces . ....... 57 3.4ThesurjectivitypropertyinBanachspaces........... 59 3.5 The Seever property and the Nikod´ymproperty......... 63 3.6 Some results on thickness in L(X, Y )∗ .............. 63 3.7Somequestionsandremarks.................... 65 4 Slices in the unit ball of a uniform algebra 69 4.1Introduction............................. 69 4.2Thesliceshavediameter2..................... 70 4.3Someremarks...........................
    [Show full text]
  • Free Banach Spaces and the Approximation Properties
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 142, Number 5, May 2014, Pages 1681–1687 S 0002-9939(2014)11933-2 Article electronically published on February 18, 2014 FREE BANACH SPACES AND THE APPROXIMATION PROPERTIES GILLES GODEFROY AND NARUTAKA OZAWA (Communicated by Thomas Schlumprecht) Abstract. We characterize the metric spaces whose free spaces have the bounded approximation property through a Lipschitz analogue of the local reflexivity principle. We show that there exist compact metric spaces whose free spaces fail the approximation property. 1. Introduction Let M be a pointed metric space, that is, a metric space equipped with a distin- guished point denoted 0. We denote by Lip0(M) the Banach space of all real-valued Lipschitz functions defined on M which vanish at 0, equipped with the natural Lip- schitz norm |f(x) − f(y)| f =sup ;(x, y) ∈ M 2,x= y . L x − y ∈ For all x M, the Dirac measure δ(x) defines a continuous linear form on Lip0(M). Equicontinuity shows that the closed unit ball of Lip0(M) is compact for pointwise { ∈ } ∗ convergence on M, and thus the closed linear span of δ(x); x M in Lip0(M) is an isometric predual of Lip0(M). This predual is called the Arens-Eells space of M in [We] and (when M is a Banach space) the Lipschitz-free space over M in [GK], denoted by F(M). We will use this notation and simply call F(M)thefree space over M.WhenM is separable, the Banach space F(M) is separable as well, { ∈ } ∗ since the set δ(x); x M equipped with the distance induced by Lip0(M) is isometric to M.
    [Show full text]
  • Approximation Properties for Group C*-Algebras and Group Von Neumann Algebras
    transactions of the american mathematical society Volume 344, Number 2, August 1994 APPROXIMATION PROPERTIES FOR GROUP C*-ALGEBRAS AND GROUP VON NEUMANN ALGEBRAS UFFE HAAGERUP AND JON KRAUS Abstract. Let G be a locally compact group, let C*(G) (resp. VN(G)) be the C*-algebra (resp. the von Neumann algebra) associated with the left reg- ular representation / of G, let A(G) be the Fourier algebra of G, and let MqA(G) be the set of completely bounded multipliers of A(G). With the com- pletely bounded norm, MqA(G) is a dual space, and we say that G has the approximation property (AP) if there is a net {ua} of functions in A(G) (with compact support) such that ua —»1 in the associated weak '-topology. In par- ticular, G has the AP if G is weakly amenable (•» A(G) has an approximate identity that is bounded in the completely bounded norm). For a discrete group T, we show that T has the AP •» C* (r) has the slice map property for sub- spaces of any C*-algebra -<=>VN(r) has the slice map property for a-weakly closed subspaces of any von Neumann algebra (Property Sa). The semidirect product of weakly amenable groups need not be weakly amenable. We show that the larger class of groups with the AP is stable with respect to semidirect products, and more generally, this class is stable with respect to group exten- sions. We also obtain some results concerning crossed products. For example, we show that the crossed product M®aG of a von Neumann algebra M with Property S„ by a group G with the AP also has Property Sa .
    [Show full text]
  • Preduals for Spaces of Operators Involving Hilbert Spaces and Trace
    PREDUALS FOR SPACES OF OPERATORS INVOLVING HILBERT SPACES AND TRACE-CLASS OPERATORS HANNES THIEL Abstract. Continuing the study of preduals of spaces L(H,Y ) of bounded, linear maps, we consider the situation that H is a Hilbert space. We establish a natural correspondence between isometric preduals of L(H,Y ) and isometric preduals of Y . The main ingredient is a Tomiyama-type result which shows that every contractive projection that complements L(H,Y ) in its bidual is automatically a right L(H)-module map. As an application, we show that isometric preduals of L(S1), the algebra of operators on the space of trace-class operators, correspond to isometric preduals of S1 itself (and there is an abundance of them). On the other hand, the compact operators are the unique predual of S1 making its multiplication separately weak∗ continuous. 1. Introduction An isometric predual of a Banach space X is a Banach space F together with an isometric isomorphism X =∼ F ∗. Every predual induces a weak∗ topology. Due to the importance of weak∗ topologies, it is interesting to study the existence and uniqueness of preduals; see the survey [God89] and the references therein. Given Banach spaces X and Y , let L(X, Y ) denote the space of operators from X to Y . Every isometric predual of Y induces an isometric predual of L(X, Y ): If Y =∼ F ∗, then L(X, Y ) =∼ (X⊗ˆ F )∗. Problem 1.1. Find conditions on X and Y guaranteeing that every isometric predual of L(X, Y ) is induced from an isometric predual of Y .
    [Show full text]
  • THE TIGHT APPROXIMATION PROPERTY 1. Introduction One Of
    THE TIGHT APPROXIMATION PROPERTY OLIVIER BENOIST AND OLIVIER WITTENBERG Abstract. This article introduces and studies the tight approximation property, a property of algebraic varieties defined over the function field of a complex or real curve that refines the weak approximation property (and the known cohomological obstructions to it) by incorporating an approximation condition in the Euclidean topology. We prove that the tight approximation property is a stable birational invariant, is compatible with fibrations, and satisfies descent under torsors of linear algebraic groups. Its validity for a number of rationally connected varieties follows. Some concrete consequences are: smooth loops in the real locus of a smooth compactification of a real linear algebraic group, or in a smooth cubic hypersurface of dimension 2, can be approximated by rational algebraic curves; homogeneous spaces of linear≥ algebraic groups over the function field of a real curve satisfy weak approximation. 1. Introduction One of the basic results of the theory of rationally connected varieties states that on any smooth and proper variety over C which is rationally connected—that is, on which two general points can be joined by a rational curve—any finite set of points can in fact be joined by a single rational curve (see [Kol96, Chapter IV, Theorem 3.9]). Questions on the existence of algebraic curves on algebraic varieties have been at the core of further developments of the theory. Graber, Harris and Starr [GHS03] have shown that a dominant map f : X B between smooth proper varieties over C, where B is a connected curve, admits→ a section if its geometric generic fibre is rationally connected.
    [Show full text]
  • The Version for Compact Operators of Lindenstrauss Properties a and B
    THE VERSION FOR COMPACT OPERATORS OF LINDENSTRAUSS PROPERTIES A AND B Miguel Mart´ın Departamento de An´alisisMatem´atico Facultad de Ciencias Universidad de Granada 18071 Granada, Spain E-mail: [email protected] ORCID: 0000-0003-4502-798X Abstract. It has been very recently discovered that there are compact linear operators between Banach spaces which cannot be approximated by norm attaining operators. The aim of this expository paper is to give an overview of those examples and also of sufficient conditions ensuring that compact linear operators can be approximated by norm attaining operators. To do so, we introduce the analogues for compact operators of Lindenstrauss properties A and B. 1. Introduction The study of norm attaining operators started with a celebrated paper by J. Lindenstrauss of 1963 [27]. There, he provided examples of pairs of Banach spaces such that there are (bounded linear) operators between them which cannot be approximated by norm attaining operators. Also, sufficient conditions on the domain space or on the range space providing the density of norm attaining operators were given. We recall that an operator T between two Banach spaces X and Y is said to attain its norm whenever there is x 2 X with kxk = 1 such that kT k = kT (x)k (that is, the supremum defining the operator norm is actually a maximum). Very recently, it has been shown that there exist compact linear operators between Banach spaces which cannot be approximated by norm attaining operators [30], solving a question that has remained open since the 1970s. We recall that an operator between Banach spaces is compact if it carries bounded sets into relatively compact sets or, equivalently, if the closure of the image of the unit ball is compact.
    [Show full text]
  • The Completely Bounded Approximation Property for Extended Cuntz–Pimsner Algebras
    THE COMPLETELY BOUNDED APPROXIMATION PROPERTY FOR EXTENDED CUNTZ–PIMSNER ALGEBRAS KENNETH J. DYKEMA AND ROGER R. SMITH Abstract. The extended Cuntz–Pimsner algebra E(H), introduced by Pimsner, is constructed from a Hilbert B, B–bimodule H over a C∗–algebra B. In this paper we investigate the Haagerup invariant Λ(·) for these algebras, the main result being that Λ(E(H)) = Λ(B) when H is full over B. In particular, E(H) has the completely bounded approxi- mation property if and only if the same is true for B. 1. Introduction The Haagerup invariant for a C∗–algebra A is defined to be the smallest constant Λ(A) for which there exists a net {φα : A → A}α∈N of finite rank maps satisfying lim kφα(x) − xk = 0, x ∈ A, and kφαkcb ≤ Λ(A), α ∈ N. (1) α If no such net exists then Λ(A) is defined to be ∞, while if Λ(A) < ∞ then A is said to have the completely bounded approximation property (CBAP). The definition of ∗ Λ(A) arose from [12, 8]. In the first of these it was shown that Cr (F2), the reduced C∗–algebra of the free group on two generators, has such a net of contractions, and a stronger result using complete contractions was obtained in the second paper. Sub- sequently, many examples of different values of Λ(·) were given in [6]. An interesting problem is to investigate the behavior of Λ(·) under the standard constructions of ∗ C –algebra theory. In [19], the formula Λ(A1 ⊗ A2) = Λ(A1)Λ(A2) was established for the minimal tensor product, while Λ(A oα G) = Λ(A) was proved for discrete amenable groups in [20] and for general amenable groups in [16].
    [Show full text]
  • S0002-9947-1980-0570783-0.Pdf
    transactions of the american mathematical society Volume 260, Number 1, July 1980 NONSTANDARD EXTENSIONS OF TRANSFORMATIONS BETWEEN BANACH SPACES BY D. G. TACON Abstract. Let X and Y be (infinite-dimensional) Banach spaces and denote their nonstandard hulls with respect to an Nj -saturated enlargement by X and Y respectively. If 9> (X, Y) denotes the space of bounded linear transformations then a subset S of elements of ® (X, Y) extends naturally to a subset S of *$>(X, Y). This paper studies the behaviour of various kinds of transformations under this extension and introduces, in this context, the concepts of super weakly compact, super strictly singular and socially compact operators. It shows that (® (X, Y))~ c 'S (X, Y) provided X and Y are infinite dimensional and contrasts this with the inclusion %(H) c (%(H))~ where %(H) denotes the space of compact operators on a Hubert space. The nonstandard hull of a uniform space was introduced by Luxemburg [14] and the construction, in the case of normed spaces, has since been investigated in a number of papers (see, for example [4], [6], [7], [8], [9], [10], [15]). Our intention here is to examine the behaviour of single bounded linear transformations and classes of bounded linear transformations under the nonstandard hull extension. We recount the principal ideas. Consider a normed space (X, || • ||) embedded in a set theoretical structure 911 and consider an N, -sa tura ted enlargement *91t of 9H. An element p G *X is said to be finite if *||p|| is a finite element of *R, the set of such elements being denoted by fin(*Ar).
    [Show full text]
  • A Banach Space Without a Basis Which Has the Bounded Approximation Property
    A Banach space without a basis which has the bounded approximation property by STANISLAW J. SZAREK(1) Case Western Reverse University Cleveland, Ohio, U.S.A. 1. Introduction and the main results Let X be a separable Banach space (real or complex). A sequence (x~) of elements of X is called a (Schauder) basis iff every element of X can be uniquely written as a sum of a series Ent~X n, where the tn's are scalars. X is said to have the bounded approximation property (BAP) iff there exists a sequence (A n) of finite rank operators on X such that limn I~n x-x[[=O for x E X, i.e./x--the identity operator on X--is a limit of a sequence of finite rank operators in the strong operator topology. Also recall that X has the approximation property (AP) iff I x can be approximated by finite rank operators uniformly on compact sets. It is clear that Xhasabasis ~ XhasBAP =~ XhasAP The fact that the converse implication to the second one does not hold in general was discovered by Figiel and Johnson [8] soon after Enflo's example [7] of a space without AP. The main purpose of this paper is to show that also the implication "BAP=~basis" does not hold in general; this answers problems asked by a number of authors (e.g. [14], [18], [27]). Before stating the result, we recall more notation. For a given basis (x n) of X one denotes by bc (xn) (the basis constant of ix~)) the smallest K such that [[E~= 1 tnXn][<<.K[l~M=ltnXn[ [ for all N<<_M and all (tn); one further denotes be(X) =inf{bc(xn): (xn) a basis of X).
    [Show full text]